
The Intrinsic Hodge Theory of Hyperbolic Curves
by Shinichi Mochizuki

I. Uniformization as a Species of Hodge Theory

(A.) Uniformizations Defined by the Exponential Function

In elementary mathematics, the simplest variety – i.e., geometric object defined by
polynomial equations – that one encounters is a line, i.e., the set of points in the Euclidean
plane R2 defined by an equation of the form aX + bY = c (where a, b, c ∈ R). After
translation, rotation, and dilation, such an equation may be written in the form X = 0. In
this case, the variety in question passes through the origin and, moreover, admits a natural
group structure. Also, it is easy to understand in a very explicit way the totality of points
(x, y) ∈ R2 that lie on this variety: Indeed, this set may be identified (via the projection
(x, y) �→ y) with R itself.

The next simplest type of variety that one encounters is the variety in R2 defined by
an equation of degree 2. After translation, rotation, reflection, and dilation of the X and
Y coordinates, we see that such an equation is always one of the following three types:
X2 + Y 2 = 1, XY = 1, X2 = Y . In the final case, X2 = Y , the projection (x, y) �→ x
defines a natural bijection of the set of points on the variety with R. In the first two cases,
however, such projections do not give isomorphisms of the given variety with a linear
variety.

In the first two cases, in order to find an explicit cataloguing indexed by R of all the
points (x, y) lying on the variety – such a linear cataloguing is called a uniformization –
it is necessary to introduce functions that are not algebraic, i.e., polynomial in nature.
Namely, the maps

i · t �→ ei·t ∈ C = {x + iy | x, y ∈ R} = {(x, y) | x, y ∈ R} = R2

and

t �→ (et, e−t) ∈ R2

where t ∈ R, and et is the exponential function

et def= 1 + t +
t2
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define such catalogues, or uniformizations, for the varieties X2 + Y 2 = 1 and XY = 1,
respectively. Moreover, these uniformizations are homomorphisms with respect to the
additive group structure on R and certain natural group structures on the target varieties
which are defined by polynomial equations. In the case of XY = 1, this uniformization
map is a bijection, while in the case of X2 + Y 2 = 1, the uniformization map is surjective,
but has a kernel generated by 2πi ∈ R · i. Since the uniformization map is normalized in
both cases by the condition that the derivative at 0 ∈ R have length 1, it thus follows that
the number 2πi ∈ R · i is naturally associated to the unit circle (i.e., the variety defined
by X2 + Y 2 = 1). Such a number is referred to as a period of the variety.

(B.) Translation into the p-adic Case

Thus, in summary, in (A.) we saw that the exponential function allows us to give a
natural and explicit accounting of all the R-valued solutions of such equations as X2+Y 2 =
1 and XY = 1. There are two natural ways to generalize the uniformization theory of
(A.). The most obvious is to ask to what extent it may be generalized to more general
types of equations, i.e., more general types of varieties. We will consider such questions
in more detail in (C.), (D.) and (E.) below. Another natural way to attempt to generalize
the theory of (A.) is to ask:

To what extent does the theory of (A.) extend to fields other than R?

For instance, since the exponential function et is defined not only for t ∈ R, but for all
t ∈ C, it is not difficult to see that that the theory of (A.) generalizes immediately to
the field C of complex numbers. In fact, over C, one sees that the varieties defined by
X2 + Y 2 = 1 and XY = 1 are actually the same variety. Thus, by working over C, one
sees that the theory of (A.) consists essentially of one case, not two.

Ultimately, the central motivation for wanting to generalize this uniformization theory
to more general fields arises from diophantine geometry. Indeed,

Diophantine geometry is concerned precisely with the question of explicitly cata-
loguing all solutions of equations with values in a number field (i.e., finite exten-
sion field of Q).

Thus, ideally, if one had a complete theory of uniformizations (= natural explicit cata-
logues of rational points of a variety) over an arbitrary number field, such as Q, then
(tautologically) one could solve the most central question of diophantine geometry, i.e., of
cataloguing all rational solutions of polynomial equations.

At the present time, unfortunately, there does not yet exist such a theory of uni-
formizations over a number field. Nevertheless, if one has as one’s goal the realization of
such an arithmetic uniformization theory, it is natural to try to approximate this goal by
first creating a theory of uniformizations over p-adic fields. For instance, if one has such a
theory of p-adic uniformizations, one could try to concoct a global uniformization theory
by somehow “gluing together” the local uniformization theories at the various infinite (i.e.
“R”) and finite (i.e. p-adic) primes.
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Let us begin by looking at the p-adic analogue of the theory of (A.). Since the two
cases treated in (A.) are really one case (after one passes to an appropriate quadratic
extension of the base field), let us, for simplicity, treat the case of the variety

Gm
def= Spec(Zp[X,X−1])

(i.e., the variety defined by XY = 1). Note that Gm has a natural group structure (just as
in (A.)). Moreover, it has a natural invariant differential (so called because the differential
is invariant with respect to translations arising from the group structure)

ω
def=

dX

X

If one tries to construct the uniformization as a map from Gm to some linear space (=
the inverse of what we did in (A.) – i.e., the logarithm function), one sees that the desired
uniformization should be obtained by somehow “integrating” this invariant differential
ω = dX

X . Thus, the question arises:

How does one effect such an “integration” of ω = dX
X in the p-adic context?

To understand how this works, let us first recall that in the classical case at the infinite
prime, “integration” may be regarded as a pairing between differentials and paths. More-
over, since one’s differentials are holomorphic, this pairing only depends on the homotopy
class of a path. In the classical case, homotopy classes of (closed) paths make up the
fundamental group of (the topological space underlying) the variety in question. Thus, in
the p-adic context, it is natural to look for an analogue to integration in the form of a
pairing between differentials and some sort of “p-adic fundamental group.” What do we
mean by “p-adic fundamental group”? In the classical case, the fundamental group may
be thought of, equivalently, in terms of homotopy classes of paths as well as in terms of
automorphism groups of coverings. In the p-adic case, one may then think of the “p-adic
fundamental group” as the automorphisms of unramified Galois coverings of the variety
in question whose Galois groups are (pro-)p-groups, i.e., (inverse limits of) finite groups of
order a power of p.

In the case of Gm, the pairing in question is given (roughly speaking) as follows:

(1.) First, we pull back the differential ω via the covering

φn : Gm ⊗Zp
Zp[ζn] −→ Gm ⊗Zp

Zp[ζn]

given by X �→ Xpn

(where n is a positive integer, and ζn is a primitive pn-th
root of unity). Here, we think of the differential ω = dX

X ∈ ΩGm/Zp
as defining a

differential ωn ∈ ΩGm⊗ZpZp[ζn]/Zp
.
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(2.) Then, given an element γ of the Galois group of the above covering, we consider
the difference

p−n{γ(φ∗
nωn) − φ∗

nωn} ∈ ΩZp[ζn]/Zp

If one considers these differences over all n (as n → ∞), one obtains a p-adic pairing:

(Zp · ω) ⊗ π
(p)
1 ((Gm)Qp

) → Cp(1)

Here, Qp is an algebraic closure of Qp; Cp is the p-adic completion of Qp; and the “(1)”
following the Cp is a “Tate twist,” i.e., if we think of all the objects involved as being

equipped with a natural action of ΓQp

def= Gal(Qp/Qp), then the “(1)” means that the given
action (e.g., the natural action on Cp) is twisted by the action of the cyclotomic character
ΓZp

→ Zp
×. Finally, π

(p)
1 ((Gm)Qp

) is the (geometric) “p-adic fundamental group” of Gm

discussed above. Since essentially all the coverings that make up this fundamental group
are given as in (1.) above, we see immediately that π

(p)
1 ((Gm)Qp

) may be identified with
Zp(1).

Then the fundamental theorem here (analogous to the uniformization theory of (A.))
is that this pairing defines an isomorphism

Cp · ω ∼= H1
et((Gm)Qp

,Cp(1)) def= HomZp
(π(p)

1 ((Gm)Qp
),Cp(1))

(where the “et” stands for “étale cohomology”). Less rigorously, but more intuitively, this
theorem asserts an equivalence

dX

X
←→ {X1/pn}n∈N

Here, the right-hand side denotes the “coverings of Gm defined by taking p-power roots
of X.” Note that both sides are a sort of representation of the logarithm function – which
is natural since the logarithm/exponential function is fundamental to the theory of (A.).
Namely, the left-hand side is “the derivative of the logarithm of X” while the right-hand
side, at least from a “real/complex analytic point of view” is

1 +
1
pn

log(X) + . . .

In fact, in the p-adic case, one can define a natural logarithm function log(X) which
converges in a small p-adic neighborhood of 1 ∈ Gm(Zp) via the same power series in
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1−X as in the complex case. Then the derivative of this function will be equal to ω, and
X

1
pn can be written as the same power series in log(X) as in the complex case. Moreover,

the inverse to this power series also converges in a sufficiently small p-adic neighborhood
(Cp)≤ε ⊆ Cp of 0 ∈ Cp and defines a “uniformization map”:

expGm
: (Cp)≤ε → Gm(Cp)

Yet another way to regard this fundamental isomorphism is relative to the above
discussion of integrating ω = dX

X along (closed) paths. Since we are dealing with the
fundamental group here, our paths are, in fact, closed, and so, from the discussion of (A.),
we should expect to get the analogue of integrating ω along closed paths, i.e., multiples
of the period 2πi. Thus, the above isomorphism may also be regarded as a sort “p-
adic period,” or “p-adic version of 2πi.” This is precisely the point of view of p-adic
Hodge theory. Note further that in the analytic case, if we consider the logarithm function
log(X) on the universal covering of (Gm)C

def= Spec(C[X,X−1]), and let γ be a deck
transformation of this universal covering, then γ(log(X)) − log(X) is a multiple of the
period 2πi. This expression γ(log(X)) − log(X) is reminiscent of the recipe given above
(cf. (2.)) for the p-adic period map.

Finally, before proceeding, we note that if instead of using “Cp” coefficients, one takes
as one’s coefficients a sort of very large ring of p-adic functions “R

∧
Qp

,” then one can prove
a similar isomorphism

R
∧
Qp

⊗OU
ΩU/Zp

∼= H1
et(U,R

∧
Qp

(1))

for any sufficiently small open U of any smooth one-dimensional (p-adic formal) scheme X
over Zp. This is the content of Faltings’ theory of almost étale extensions and forms the
basis of Faltings’ p-adic Hodge theory ([Falt2]).

(C.) Elliptic Curves

Now we come to the question of generalizing the above uniformization theory to more
general varieties. So far, we have considered the case of varieties in the plane defined by
equations of degree 1 and 2. The next case, then, to consider is the case of a variety in the
plane defined by an equation of degree 3. Up to various elementary algebraic operations
(such as adding the point at infinity), this case is essentially the case of elliptic curves, i.e.,
(in the language of schemes) smooth, proper, geometrically connected curves of genus 1.

Let E be an elliptic curve over C. Write T (E) for the tangent space to E at its
origin. Thus, T (E) is a one-dimensional complex vector space. Then E admits a natural
exponential map:

expE : T (E) → E
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which uniformizes E. If one chooses an appropriate basis of T (E), then this uniformization
allows one to write E in the form

C/Λ

where Λ def= Z + Z · τ , for some τ ∈ H
def= {z ∈ C| Im(z) > 0}. Moreover, we observe

that this uniformization of E also induces a uniformization of the moduli space (actually,
an algebraic stack) of elliptic curves. Indeed, since elliptic curves are algebraic objects,
this moduli space M1,0 also admits a natural structure of algebraic variety. Thus, the
correspondence

τ (∈ H) �→ C/(Z + Z · τ)

defines a uniformization map

H → M1,0

This map induces an isomorphism between the upper half-plane H and the universal cov-
ering space of M1,0 (thought of as a stack). Put another way, this map gives us a natural
coordinate – namely, τ – on (the universal cover of) M1,0 which gives us an explicit cata-
logue of all the C-valued points M1,0(C), i.e., all the C-valued solutions of the polynomial
equations defining the algebraic object M1,0.

Next, we observe that the above complex theory has a well-known p-adic analogue.
Namely, just as in (B.) above, we considered the p-adic Hodge theory of Gm, one may also
consider the p-adic Hodge theory of elliptic curves. In the case of elliptic curves, however,
the field Cp is not sufficient to define the “p-adic periods.” Instead, one must work with
bigger rings, such as the ring Bcrys of Fontaine. Let E be an elliptic curve over a finite
extension K of Qp. For simplicity, let us assume that E admits an extension to an elliptic
curve over the ring of integers OK . One then obtains an isomorphism (after tensoring up
to Bcrys)

H1
DR(E,OE) ⊗K Bcrys

∼= H1
et(E,Qp) ⊗Qp

Bcrys

between the de Rham and étale cohomologies (in dimension one) of the elliptic curve. Here
the de Rham cohomology H1(E,OE) of E may be thought of as the analogue for an elliptic
curve of the one-dimensional space generated by the invariant differential dX

X in the case
of Gm. The étale cohomology H1

et(E,Qp) may be thought of as

HomZp
(π(p)

1 (EK),Qp)

where EK

def= E ⊗K K; K is an algebraic closure of K; and π
(p)
1 (EK) is the “geometric

p-adic fundamental group of E.” This étale cohomology module H1
et(E,Qp) is equipped
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with a natural action of the Galois group ΓK
def= Gal(K/K). Thus, the above comparison

isomorphism may be regarded as asserting an equivalence between the de Rham coho-
mology (equipped with certain natural auxiliary structures like the Hodge filtration and
Frobenius action) and the étale cohomology (equipped with its Galois action) of E.

The p-adic Hodge theory of an elliptic curve is easiest to understand in the ordinary
case. This is the case where the reduction modulo mK (= the maximal ideal of OK) of the
elliptic curve has a nonzero Hasse invariant. Another equivalent characterization is that
the Cartier operator on the invariant differentials of the reduction modulo p is bijective. It
turns out that in some sense, “most” elliptic curves are ordinary. In the ordinary case, the
ΓK

def= Gal(K/K)-module M
def= H1

et(E,Zp(1)) fits into an exact sequence of ΓK-modules

0 → M1 → M → M0 → 0

where M1 and M0 are Zp-modules of rank 1. If one then restricts from K to the p-adic
completion K̂unr of the maximal unramified extension of K, then the following phenomena
occur:

(1.) Over K̂unr, E becomes isomorphic, in a formal neighborhood of the origin, to
Gm. This isomorphism respects the group structures on E and Gm.

(2.) The resulting Γ
K̂unr-modules M1 and M0 become isomorphic to Zp(1) and Zp,

respectively. The above exact sequence then defines an extension class

qE ∈ H1
et(K̂

unr,Zp(1)) ∼= {(K̂unr)×}∧

(where the “∼=” is given by Kummer theory). In fact, this class qE ∈ (O×
K̂unr

)∧.
Moreover, the assignment

E �→ qE ∈ (O×
K̂unr

)∧

defines a bijection between all deformations of the reduction modulo m
K̂unr of E

to an elliptic curve over O
K̂unr and the set (O×

K̂unr
)∧.

In other words, (by composing the isomorphism of (1.) above with expGm
) one may regard

(1.) as a sort of p-adic analogue of the uniformization of an elliptic curve over the complex
numbers, while the bijection of (2.) (which is in some sense induced by “pushing forward”
the uniformization of (1.)) may be regarded as a local p-adic uniformization of the moduli
space M1,0 of elliptic curves, hence as a sort of p-adic analogue of the uniformization of
M1,0 (over C) by the upper half-plane H. The bijection of (2.) is often referred to as
Serre-Tate theory for ordinary elliptic curves.
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(D.) The Notion of Intrinsic Hodge Theory

Next, we would like to see to what extent the theory discussed so far may be generalized
to plane curves of degree > 3, and, more generally, to arbitrary varieties. Before we discuss
this generalization, however, we must consider in more detail precisely what we would
like to generalize. That is to say, because the examples we have considered so far are
relatively simple, they have many different aspects. Thus, when one wishes to consider
generalizations, one must specify which aspects one wants the generalizations to retain and
which aspects one is willing to sacrifice as “inessential” when one generalizes.

One central aspect of both the complex and p-adic theories that we have discussed so
far is that they involve some sort of comparison or equivalence between what one might call
the “de Rham world” (of polynomials and their differentials) and the “topology/geometry
world” (over C) or the “p-adic étale topology plus Galois action world” (in the p-adic
case). This sort of equivalence, or comparison isomorphism,

algebraic geometry ⇐⇒
topology+ (differential) geometry/p-adic étale topology plus Galois action

is the main theme of (both complex and p-adic) Hodge theory. The most basic example
of such a comparison isomorphism, or Hodge theory, is (in the complex case) the de
Rham isomorphism between de Rham and singular cohomology, or (in the p-adic case) the
isomorphism (over such rings as Bcrys) between the algebraic de Rham cohomology and the
p-adic étale cohomology (with Galois action). This Hodge theory of cohomologies is thus a
direct generalization of the comparison isomorphisms discussed above in (B.) and (C.). In
fact, although there now exist a number of proofs of the main theorems of p-adic Hodge
theory, one proof (due to Faltings – [Falt3]) is based precisely on the local isomorphism

R
∧
Qp

⊗OU
ΩU/Zp

∼= H1
et(U,R

∧
Qp

(1))

discussed at the end of (B.). Namely, the comparison isomorphism in the general case (for
varieties of arbitrary dimension) is obtained by essentially gluing together products of the
above local isomorphism applied to sufficiently small opens of a given variety over a p-adic
field.

In the present discussion, however, we wish to consider a different type of generaliza-
tion. That is to say, although we still want the generalization to be some sort of Hodge
theory, i.e., some sort of equivalence as discussed above, we would like to consider Hodge
theories for which the object appearing on the algebraic geometry side is (not some coho-
mology module associated to the given variety, but) the “variety itself,” i.e., the rational
points or moduli of the given variety. That is to say, although it just so happened that
in the case of relatively simple varieties like Gm or elliptic curves, the “variety itself”
happened to be essentially embodied in its first cohomology module (in more fancy lan-
guage: elliptic curves and Gm “are” 1-motives), in general, the cohomology modules of a
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given variety only embody certain limited aspects of the variety, and are not “essentially
equivalent” to the “variety itself.” In the following, we shall refer to Hodge theories of the
“variety itself” as intrinsic Hodge theories, or IHT’s for short (to be distinguished from
the more classical “Hodge theories of cohomologies”). Those intrinsic Hodge theories for
which the expression “variety itself” turns out to mean “the rational points of the variety”
will be called physical (since they give a new way to “physically recover the variety”), while
those intrinsic Hodge theories for which the expression “variety itself” is used to mean “the
moduli of the variety” will be called modular.

If one thinks back to our discussion of uniformizations of algebraic varieties as natural
“geometric” (our translation for “linear” in the general case) catalogues of all rational
points, one sees that it is essentially a tautology of terminology that

physical IHT ⇐⇒ uniformization theory of the given variety

modular IHT ⇐⇒ uniformization theory of the moduli space of the given variety

Nonetheless, although we will be concerned with a different sort of generalization of the
theory of (A.), (B.), and (C.) from the classical Hodge theory of cohomologies, the tech-
niques that will be employed in the proofs of the main theorems that we will discuss in II.
and III. below will be based on the techniques of (cohomological) p-adic Hodge theory (as
in [Falt2,3]).

(E.) Curves of Higher Genus: the Fuchsian Uniformization

Finally, we come to the case of plane curves of higher (i.e., > 1) genus, or, more
generally, hyperbolic curves. A hyperbolic curve is an algebraic curve obtained by removing
r points from a smooth, proper curve of genus g, where g and r are nonnegative integers
such that 2g − 2 + r > 0. If X is a hyperbolic curve over the field of complex numbers C,
then X gives rise in a natural way to a Riemann surface X . As one knows from complex
analysis, the most fundamental fact concerning such a Riemann surface (due to Köbe) is
that it may be uniformized by the upper half-plane, i.e.,

X ∼= H/Γ

where H
def= {z ∈ C | Im(z) > 0}, and Γ ∼= π1(X ) (the topological fundamental group of X )

is a discontinuous group acting on H. This uniformization is referred to as the Fuchsian
uniformization of X . Thus, one sees immediately that the Fuchsian uniformization, i.e.,

X(C) ∼= H/Γ

may be regarded as being a physical IHT of the hyperbolic curve X.
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This is not the only way to interpret the Fuchsian uniformization, however. That is
to say, it also has a modular aspect, as follows. First, note that the action of Γ on H defines
a canonical representation

ρX : π1(X ) → PSL2(R) def= SL2(R)/{±1} = AutHolomorphic(H)

Note that ρX may also be regarded as a representation into PGL2(C) = GL2(C)/C×,
hence as defining an action of π1(X ) on P1

C. Taking the quotient of H × P1
C by the

action of π1(X ) on both factors then gives rise to a projective bundle with connection on
X . It is immediate that this projective bundle and connection may be algebraized, so we
thus obtain a projective bundle and connection (P → X,∇P ) on X. This pair (P,∇P )
has certain properties which make it an indigenous bundle (terminology due to Gunning).
More generally, an indigenous bundle on X may be thought of as a projective structure
on X , i.e., a subsheaf of the sheaf of holomorphic functions on X such that locally any
two sections of this subsheaf are related by a linear fractional transformation. Thus, the
Fuchsian uniformization defines a special canonical indigenous bundle on X.

In fact, the notion of an indigenous bundle is entirely algebraic. Thus, one has a
natural moduli stack Sg,r → Mg,r of indigenous bundles, which forms a torsor (under
the affine group given by the sheaf of differentials on Mg,r) – called the Schwarz torsor
– over the moduli stack Mg,r of hyperbolic curves of type (g, r). Moreover, Sg,r is not
only algebraic, it is defined over Z[12 ]. Thus, the canonical indigenous bundle defines a
canonical real analytic section

s : Mg,r(C) → Sg,r(C)

of the Schwarz torsor at the infinite prime. Moreover, not only does s “contain” all
the information that one needs to define the Fuchsian uniformization of an individual
hyperbolic curve (indeed, this much is obvious from the definition of s!), it also essentially
“is” (interpreted properly) the Bers uniformization of the universal covering space (i.e.,
“Teichmüller space”) of Mg,r(C) (cf. the discussions in the Introductions of [Mzk1,4] for
more details). That is to say, the study of this canonical section s may be regarded as the
realization of the Fuchsian uniformization as a modular IHT. Alternatively, from the point
of view of classical Teichmüller theory, one may regard the uniformization theory of the
moduli of hyperbolic curves as the theory of (so-called) quasi-fuchsian deformations of the
representation ρX .

In II. and III. below, we wish to discuss p-adic analogues of the above physical and
modular IHT’s for complex hyperbolic curves.

At this point, the reader might ask if we can continue in this fashion to obtain IHT’s
for arbitrary algebraic varieties. Unfortunately, however, even over C (where things tend
to be much better understood than in the p-adic case), the uniformization and moduli
theory of algebraic varieties of dimension ≥ 2 is far from being well-understood. Thus, in
the present manuscript, we shall restrict our attention to curves.
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II. The Anabelian Geometry of Hyperbolic Curves

(A.) Grothendieck’s Anabelian Philosophy

Let K be a field of characteristic zero. Let us denote by K an algebraic closure of K.
Let ΓK

def= Gal(K/K). Suppose that XK is a variety over K. Then we will denote by

π1(XK)

the algebraic fundamental group of XK (cf. [SGA1]). This group is a compact, profinite
topological group, well-defined up to inner automorphism (since we did not specify a
“base-point”), and which has the following property: The category of finite sets with a
continuous π1(XK)-action is naturally equivalent to the category of finite étale coverings
of XK . Moreover, if K is, for instance, an algebraically closed subfield of C, then π1(XK)
may be identified with the profinite completion (= inverse limit of all finite quotients) of
the usual topological fundamental group πtop

1 (XC) (where XC
def= XK ⊗K C).

Now let XK be a hyperbolic curve over K; write XK

def= X ×K K. Then one has an
exact sequence

1 → π1(XK) → π1(XK) → ΓK → 1

of algebraic fundamental groups. We shall refer to π1(XK) as the geometric fundamental
group of XK . Note that, by the above discussion of the case where K ⊆ C, it follows that
the structure of π1(XK) is determined entirely by (g, r) (i.e., the “type” of the hyperbolic
curve XK). In particular, π1(XK) does not depend on the moduli of XK . Of course, this
results from the fact that K is of characteristic zero. In positive characteristic, on the other
hand, preliminary evidence ([Tama2]) suggests that the fundamental group of a hyperbolic
curve over an algebraically closed field (far from being independent of the moduli of the
curve!) may in fact completely determine the moduli of the curve.

We shall refer to π1(XK) (equipped with its augmentation to ΓK) as the arithmetic
fundamental group of XK . Although it is made up of two “parts” – i.e., π1(XK) and
ΓK – which do not depend on the moduli of XK , it is not unreasonable to expect that
the extension class defined by the above exact sequence, i.e., the structure of π1(XK)
as a group equipped with augmentation to ΓK , may in fact depend quite strongly on
the moduli of XK . Indeed, according to the anabelian philosophy of Grothendieck (cf.
[LS]), for “sufficiently arithmetic” K, one expects that the structure of the arithmetic
fundamental group π1(XK) should be enough to determine the moduli of XK . Although
many important versions of Grothendieck’s anabelian conjectures remain unsolved (most
notably the so-called Section Conjecture (cf., e.g., [LS], p. 289, 2)), in the remainder of this
§, we shall discuss various versions that have been resolved in the affirmative. For instance,
such a version of these conjectures which will be discussed in (B.) below (Theorem 1)
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states roughly that (nonconstant) morphisms from a smooth K-variety to XK should be in
bijective correspondence with (open) homomorphisms (over ΓK) between the corresponding
arithmetic fundamental groups. Thus, there is an obvious analogy between this (form
of Grothendieck’s) conjecture and the Tate conjecture on abelian varieties, which states
roughly that morphisms between abelian varieties are equivalent to morphisms between
their arithmetic fundamental groups.

Note that this anabelian philosophy is a special case of the notion of “intrinsic Hodge
theory” discussed above: indeed, on the algebraic geometry side, one has “the curve itself,”
whereas on the topology plus arithmetic side, one has the arithmetic fundamental group,
i.e., the purely (étale) topological π1(XK), equipped with the structure of extension given
by the above exact sequence.

In fact, it is interesting to note – especially relative to the discussion at the beginning
of I., (B.), above – that Grothendieck’s anabelian philosophy arose as an approach to
diophantine geometry. It is primarily for this reason that it was originally thought that the
most natural sort of “arithmetic” base field K over which one should expect Grothendieck’s
anabelian conjectures to hold was a number field. Another reason for the idea that the base
field in these conjectures should be a number field was the analogy with Tate’s conjecture
on homomorphisms between abelian varieties (cf., e.g., [Falt1]). Indeed, in discussions
of Grothendieck’s anabelian philosophy, it was common to refer to statements such as
that of Theorem 1 below as the “anabelian Tate conjecture,” or the “Tate conjecture for
hyperbolic curves.” In fact, however, there is an important difference between Theorem 1
and the “Tate conjecture” of, say, [Falt1]: Namely, whereas Theorem 1 below holds over
local fields (i.e., finite extensions of Qp), the Tate conjecture for abelian varieties is false
over local fields. Moreover, until the proof of Theorem 1, it was generally thought that, just
like its abelian cousin, the “anabelian Tate conjecture” was essentially global in nature.
That is to say, it appears that the point of view of the author, i.e., that Theorem 1 should
be regarded as a p-adic version of the “physical aspect” of the Fuchsian uniformization of
a hyperbolic curve, does not exist in the literature (prior to the work of the author).

(B.) The Main Result

Building on earlier work of H. Nakamura and A. Tamagawa (see, especially, [Tama1]),
the author applied the p-adic Hodge theory of [Falt2] and [BK] to prove the following result
(cf. Theorem A of [Mzk5]):

Theorem 1. Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let XK be a hyperbolic curve over K. Then for any smooth variety SK

over K, the natural map

XK(SK)dom → Homopen
ΓK

(π1(SK), π1(XK))

is bijective. Here, the superscripted “dom” denotes dominant (⇐⇒ nonconstant) K-
morphisms, while Homopen

ΓK
denotes open, continuous homomorphisms compatible with the
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augmentations to ΓK , and considered up to composition with an inner automorphism aris-
ing from π1(XK).

Note that this result constitutes an analogue of the “physical aspect” of the Fuchsian
uniformization, i.e., it exhibits the scheme XK (in the sense of the functor defined by
considering (nonconstant) K-morphisms from arbitrary smooth SK to XK) as equivalent
to the “physical/analytic object”

Homopen
ΓK

(−, π1(XK))

defined by the topological π1(XK) together with some additional canonical arithmetic
structure (i.e., π1(XK)).

In fact, various slightly stronger versions of Theorem 1 hold. For instance, instead
of the whole geometric fundamental group π1(XK), it suffices to consider its maximal
pro-p quotient π1(XK)(p). Indeed, this “π1(XK)(p)” is the precise definition of what was
meant by the expression “p-adic fundamental group” in the discussion of I., (B.). Another
strengthening allows one to prove the following result (cf. Theorem B of [Mzk5]), which
generalizes a result of Pop ([Pop]):

Theorem 2. Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let L and M be function fields of arbitrary dimension over K. Then the
natural map

HomK(Spec(L),Spec(M)) → Homopen
ΓK

(ΓL,ΓM )

is bijective. Here, Homopen
ΓK

(ΓL,ΓM ) is the set of open, continuous group homomorphisms
ΓL → ΓM over ΓK , considered up to composition with an inner homomorphism arising
from Ker(ΓM → ΓK).

(C.) The Idea of the Proof

To understand the proof of Theorem 1, let us first recall the situation in the com-
plex case. If X is a hyperbolic curve over C, then as discussed in I., (E.), we have an
isomorphism

X(C) ∼= H/Γ

One way to think of this isomorphism is as the datum of an algebraic structure (i.e., the
structure of X as an algebraic curve) on the analytic quotient H/Γ. In complex analysis,
this sort of algebraic structure is typically constructed by starting with the upper half-
plane H, and then constructing various automorphic forms on H, i.e., differential forms on
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H that are invariant with respect to the natural action of Γ. These differential forms then
define a morphism

H → P

from H to some projective space P whose image is precisely the algebraic curve X. The
point here is that although the automorphic forms that one constructs on H will eventially
be seen to be “algebraic” (i.e., as differential forms on X), their construction (as differen-
tials forms on H) is entirely analytic. Note that this technique of constructing an algebraic
structure on an analytic quotient appears frequently in the theory of Shimura varieties
(where the automorphic forms are Poincaré series, Eisenstein series, etc.).

It is precisely this analytic argument that was the motivating idea behind the p-adic
proof of Theorem 1. Indeed, suppose that one is given two hyperbolic curves XK , YK

over K. For simplicity, let us assume that both XK and YK are both proper and non-
hyperelliptic, and that K is a finite extension of Qp. Suppose, moreover, that we are given
an isomorphism

α : π1(XK) ∼= π1(YK)

of the respective arithmetic fundamental groups which is compatible with the projections
to ΓK . Then Theorem 1 states that α necessarily arises geometrically, i.e., from a K-
isomorphism XK

∼= YK . In the following, we would like to give a rough sketch of the ideas
used to prove this result.

First, observe that α induces an isomorphism

π
(p)
1 (XK)ab ∼= π

(p)
1 (YK)ab

between the abelianizations of the maximal pro-p quotients of the respective geometric
fundamental groups. Then it follows from p-adic Hodge theory that if one tensors this
isomorphism with Cp (i.e, the p-adic completion of K), and then takes ΓK-invariants,

one obtains (naturally) on both sides the respective spaces of global differentials, DX
def=

H0(XK , ωXK
) and DY

def= H0(YK , ωYK
). Thus, one obtains an isomorphism

DX
∼= DY

induced by α. Let PX
def= P(DX), PY

def= P(DY ) be the corresponding projective spaces.
Thus, one obtains an isomorphism PX

∼= PY . On the other hand, since we assumed that
XK and YK are non-hyperelliptic, it follows from elementary algebraic geometry that we
have canonical embeddings XK ⊆ PX , YK ⊆ PY . In other words, we have a diagram:
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PX
∼= PY⋃ ⋃

XK
?−→ YK

Thus, the problem of constructing an isomorphism XK
∼= YK as desired is reduced to

showing that the isomorphism PX
∼= PY that we have already constructed maps XK into

YK . This is proven precisely by considering certain p-adic analytic representations of the
differentials of DX and DY as differentials on a certain p-adic space (= the spectrum of a
certain large p-adic field) in a fashion reminiscent of the way in which analytic represen-
tations (i.e., automorphic forms) of differential forms appeared in the above discussion of
the complex case. We refer to [Mzk5], [NTM], for more details.

III. Teichmüller Theory over the p-adics

(A.) The Motivating Example: Shimura Curves

As discussed in I., (E.), classical complex Teichmüller theory may be formulated as the
study of the canonical real analytic section s of the Schwarz torsor Sg,r → Mg,r. Thus, it is
natural to suppose that the p-adic analogue of classical Teichmüller theory should revolve
around some sort of canonical p-adic section of the Schwarz torsor. Then the question
arises:

How does one define a canonical p-adic section of the Schwarz torsor?

Put another way, for each (or at least most) p-adic hyperbolic curves, we would like to
associate a (or at least a finite, bounded number of) canonical indigenous bundles. Thus,
we would like to know what sort of properties such a “canonical indigenous bundle” should
have.

The model that provides the answer to this question is the theory of Shimura curves.
In fact, the theory of canonical Schwarz structures, canonical differentials, and canonical
coordinates on Shimura curves localized at finite primes has been extensively studied by Y.
Ihara (see, e.g., [Ihara]). In some sense, Ihara’s theory provides the prototype for the “p-adic
Teichmüller theory” of arbitrary hyperbolic curves ([Mzk1-4]) to be discussed in (B.) and
(C.) below. The easiest example of a Shimura curve is M1,0, the moduli stack of elliptic
curves. In this case, the projectivization of the rank two bundle on M1,0 defined by the
first de Rham cohomology module of the universal elliptic curve on M1,0 gives rise (when
equipped with the Gauss-Manin connection) to the canonical indigenous bundle on M1,0.
Moreover, it is well-known that the p-curvature (a canonical invariant of bundles with
connection in positive characteristic which measures the extent to which the connection is
compatible with Frobenius) of this bundle has the following property:

The p-curvature of the canonical indigenous bundle on M1,0 (reduced mod p) is
square nilpotent.

It was this observation that was the key to the development of the theory of [Mzk1-4].
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(B.) The Characteristic p Theory

Let p be an odd prime. Let Ng,r ⊆ (Sg,r)Fp
denote the closed algebraic substack of

indigenous bundles with square nilpotent p-curvature. Then one has the following key
result ([Mzk1], Chapter II, Theorem 2.3):

Theorem 3. The natural map Ng,r → (Mg,r)Fp
is a finite, flat, local complete in-

tersection morphism of degree p3g−3+r. Thus, up to “isogeny” (i.e., up to the fact that
this degree is not equal to one), Ng,r defines a canonical section of the Schwarz torsor
(Sg,r)Fp

→ (Mg,r)Fp
in characteristic p.

It is this stack Ng,r of nilcurves – i.e., hyperbolic curves in characteristic p equipped with
an indigenous bundle with square nilpotent p-curvature – which is the central object of
study in the theory of [Mzk1-4].

Many facts are now known about the finer structure of Ng,r. One interesting conse-
quence of this structure theory of Ng,r is that it gives a new proof of the connectedness of
(Mg,r)Fp

(for p large relative to g). This fact is interesting – relative to the claim that
this theory is a p-adic version of Teichmüller theory – in that one of the first applications
of classical complex Teichmüller theory is to prove the connectedness of Mg,r. Also, it is
interesting to note that F. Oort has succeeded in giving a proof of the connnectedness of
the moduli stack of principally polarized abelian varieties by applying the structure theory
of certain natural substacks of this moduli stack in characteristic p.

(C.) Canonical Liftings

So far, we have been discussing the characteristic p theory. Ultimately, however, we
would like to know if the various characteristic p objects discussed in (B.) lift canonically
to objects which are flat over Zp. Unfortunately, it seems that it is unlikely that Ng,r

itself lifts canonically to some sort of natural Zp-flat object. If, however, we consider the
open substack – called the ordinary locus – (N ord

g,r )Fp
⊆ Ng,r which is the étale locus of

the morphism Ng,r → (Mg,r)Fp
, then (since the étale site is invariant under nilpotent

thickenings) we get a canonical lifting, i.e., an étale morphism

N ord
g,r → (Mg,r)Zp

of p-adic formal stacks. Over N ord
g,r , one has the sought-after canonical p-adic splitting of

the Schwarz torsor (cf. Theorem 0.1 of the Introduction of [Mzk1]):

Theorem 4. There is a canonical section N ord
g,r → Sg,r of the Schwarz torsor over N ord

g,r

which is the unique section having the following property: There exists a lifting of Frobenius
ΦN : N ord

g,r → N ord
g,r such that the indigenous bundle on the tautological hyperbolic curve

over N ord
g,r defined by the section N ord

g,r → Sg,r is invariant with respect to the Frobenius
action defined by ΦN .
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Moreover, it turns out that the Frobenius lifting ΦN : N ord
g,r → N ord

g,r (i.e., morphism
whose reduction modulo p is the Frobenius morphism) has the special property that 1

p ·dΦN
induces an isomorphism Φ∗

NΩN ord
g,r

∼= ΩN ord
g,r

. Such a Frobenius lifting is called ordinary. It
turns out that any ordinary Frobenius lifting (i.e., not just ΦN ) defines a set of canonical
multiplicative coordinates in a formal neighborhood of any point α valued in an alge-
braically closed field k of characteristic p, as well as a canonical lifting of α to a point
valued in W (k) (Witt vectors with coefficients in k). Moreover, there is a certain analogy
between this general theory of ordinary Frobenius liftings and the theory of real analytic
Kähler metrics (which also define canonical coordinates). Relative to this analogy, the
canonical Frobenius lifting ΦN on N ord

g,r may be regarded as corresponding to the Weil-
Petersson metric on complex Teichmüller space (a metric whose canonical coordinates are
the coordinates arising from the Bers uniformization of Teichmüller space). Thus, ΦN is,
in a very real sense, a p-adic analogue of the Bers uniformization in the complex case.
Moreover, there is, in fact, a canonical ordinary Frobenius lifting on the “ordinary locus”
of the tautological curve over N ord

g,r whose relative canonical coordinate is analogous to the
canonical coordinate arising from the Köbe uniformization of a hyperbolic curve.

Next, we observe that Serre-Tate theory for ordinary (principally polarized) abelian
varieties (cf., e.g., the case of ordinary elliptic curves discussed in I., (C.)) may also be
formulated as arising from a certain canonical ordinary Frobenius lifting. Thus, the Serre-
Tate parameters (respectively, Serre-Tate canonical lifting) may be identified with the
canonical multiplicative parameters (respectively, canonical lifting to the Witt vectors) of
this Frobenius lifting. That is to say, in a very concrete and rigorous sense, Theorem 4
may be regarded as the analogue of Serre-Tate theory for hyperbolic curves. Nevertheless,
we remark that it is not the case that the condition that a nilcurve be ordinary (i.e.,
defines a point of (N ord

g,r )Fp
⊆ Ng,r) either implies or is implied by the condition that its

Jacobian be ordinary. Although this fact may disappoint some readers, it is in fact very
natural when viewed relative to the general analogy between ordinary Frobenius liftings
and real analytic Kähler metrics discussed above. Indeed, relative to this analogy, we see
that it corresponds to the fact that, when one equips Mg with the Weil-Petersson metric
and Ag (the moduli stack of principally polarized abelian varieties) with its natural metric
arising from the Siegel upper half-plane uniformization, the Torelli map Mg → Ag is not
isometric.

Finally, we remark that once one develops these theories of canonical liftings, one
also gets accompanying canonical (crystalline) Galois representations of the arithmetic
fundamental group of the tautological curve over N ord

g,r (and its Lubin-Tate generalizations)
into PGL2 of various complicated rings with Galois action. It turns out that these Galois
representations are the analogues of the canonical representation ρX (of I., (E.)). Moreover,
it is these Galois representations which exhibit p-adic Teichmüller theory as a modular
intrinsic Hodge theory, i.e., an equivalence between (local) algebraic moduli and structures
arising from the Galois action on the étale fundamental group of the tautological curve –
cf. the discussion of I., (D.).
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