The Intrinsic Hodge Theory of p-adic Hyperbolic Curves

Shinichi Mochizuki
Research Institute for
Mathematical Sciences
Kyoto University
Kyoto 606-01, JAPAN
motizuki@kurims.kyoto-u.ac.jp

- §1. Introduction
- §2. The Physical Approach in the p-adic Case
- §3. The Modular Approach in the p-adic Case

§1. Introduction

(A.) The Fuchsian Uniformization

Hyperbolic Curve: smooth, proper connected genus g alg. curve -r points, s.t. 2g - 2 + r > 0

Over \mathbf{C} : unif. by upper half-plane \mathcal{H} $X(\mathbf{C}) = \mathcal{X} \cong \mathcal{H}/\Gamma$ $\Longrightarrow \pi_1(\mathcal{X}) \to PSL_2(\mathbf{R}) = \operatorname{Aut}(\mathcal{H})$

 \exists a <u>p-adic analogue</u> of this <u>Fuchsian uniformization</u>?

Note: Fuchsian \neq Schottky

(cf. D. Mumford's theory), e.g.,

Fuchsian unif. involves arithmetic, i.e.,

real analytic structures \iff Frobenius at the infinite prime

(B.) The Physical Interpretation

alg. curve
$$X \iff SO(2) \backslash PSL_2(\mathbf{R}) / \Gamma$$

(physical/analytic obj.)
 $\iff \pi_1(\mathcal{X}) + \rho_{\mathcal{X}}$
 $\iff \underline{top.} + \underline{arith. \ str.}$

 $\underline{\text{Modular forms}}$ define first " \iff ."

(C.) The Modular Interpretation

$$\rho_{\mathcal{X}} : \pi_1(\mathcal{X}) \to PSL_2(\mathbf{R}) \subseteq PGL_2(\mathbf{C})$$
$$\Longrightarrow \pi_1(\mathcal{X}) \curvearrowright \mathbf{P}^1_{\mathbf{C}}$$

Algebraize quotient
$$(\mathcal{H} \times \mathbf{P}^1_{\mathbf{C}})/\pi_1(\mathcal{X})$$

 $\Longrightarrow (P \to X, \nabla_P)$
 $(\mathbf{P}^1\text{-bundle} + \text{connection})$

... <u>a</u> (canonical) <u>indigenous bundle</u>

Moduli of I.B.'s: $\mathcal{S}_{g,r} \to \mathcal{M}_{g,r}$

- ... algebraic "Schwarz torsor" (w.r.t. Ω of $\mathcal{M}_{g,r}$), defined over $\mathbf{Z}[\frac{1}{2}]$.
- can. I.B. \Longrightarrow canonical real analytic $s: \mathcal{M}_{q,r}(\mathbf{C}) \to \mathcal{S}_{q,r}(\mathbf{C})$

Teichmüller theory (Bers unif.) \iff study of can. real an. sect. s \iff study of quasi-fuchsian

deformations of $\rho_{\mathcal{X}}$

(D.) "Intrinsic Hodge Theory"

alg. geom. \iff topology + arith.

Ex.: classical/p-adic Hodge theory: de Rham coh. \iff sing./ét. coh.+Gal.

Here: alg. geom. = curve itself, moduli top. + arith. = theory of $\rho_{\mathcal{X}}$ \Longrightarrow "intrinsic"

Not just philosophy; $\operatorname{classical}/p$ -adic Hodge theory <u>techniques</u> important.

§2. The Physical Approach in the p-adic case

(A.) The Arithmetic Fundamental Group

$$K \stackrel{\text{def}}{=} \text{char. 0 field, } \Gamma_K \stackrel{\text{def}}{=} \text{Gal}(\overline{K}/K)$$

$$X$$
: hyp. curve/K, $\overline{X} \stackrel{\text{def}}{=} X \times_K \overline{K}$.

$$\Rightarrow 1 \to \pi_1(\overline{X}) \to \pi_1(X) \to \Gamma_K \to 1$$

 $\pi_1(\overline{X})$ (geom. π_1): indep. of moduli (but in char. p, may determine moduli! – A. Tamagawa)

Grothendieck's <u>anabelian philosophy</u>: "Extension should determine moduli."

(B.) The Main Theorem

Theorem 1: $K \subseteq \text{fin. gen. extn.}/\mathbb{Q}_p$, X: hyperbolic curve/K, S: smooth variety/K.

$$\Rightarrow X(S)^{\mathrm{dom}} \xrightarrow{\sim} \mathrm{Hom}_{\Gamma_K}^{\mathrm{open}}(\pi_1(S), \pi_1(X))$$

i.e., <u>alg. curve</u> $X \iff \underline{\text{phys./an. obj.}} \text{ Hom}_{\Gamma_K}^{\text{open}}(-, \pi_1(X))$

Builds on work of: H. Nakamura, A. Tamagawa + G. Faltings, Bloch/Kato.

Proof: Consider p-adic analytic diff. forms on $(\mathbf{Z}_p[T]_{(p)}^{\text{tame}})^{\wedge}$

(maps to X) – cf. mod. forms on \mathcal{H} .

Remark: Also pro-p, function field versions (cf. F. Pop).

(C.) Comparison with the Case of Abelian Varieties

Th.1 resembles Tate Conjecture, i.e.,
Hom(abelian varieties) \iff Hom(Tate modules)

But T. C. false over local fields!

New point of view:

Theorem 1 = p-adic version of <u>physical aspect</u> of of Fuchsian unif.

§3. The Modular Approach in the p-adic case

(A.) The Example of Shimura Curves

 \exists <u>a can. p-adic section of Sch. torsor:</u> $\mathcal{S}_{g,r} \to \mathcal{M}_{g,r}$ (cf. can. real. an. s)?

Guide: theory of Shimura curves (cf. Y. Ihara's theory)

Ex.: Over $\mathcal{M}_{1,0}$, de Rham coh. of univ. ell. curve \Longrightarrow can. ind. bun.

Note: mod p, p-curv. square nilpotent!

N.B.: p-curvature $\stackrel{\text{def}}{=}$ " [Frob., ∇] "

(B.) The Stack of Nilcurves

- $(S_{g,r})_{\mathbf{F}_p} \supseteq \mathcal{N}_{g,r}$: the stack of <u>nilcurves</u> (curves + I.B. with sq. nilp. *p*-curv.)
- Theorem 2: $\mathcal{N}_{g,r} \to (\mathcal{M}_{g,r})_{\mathbf{F}_p}$: finite, flat, local complete intersection, degree = p^{3g-3+r} , i.e.,
- $\mathcal{N}_{g,r}$ "almost" a section of Sch. torsor!
- Remarks: (1) $\mathcal{N}_{g,r}$ = central object of study of "p-adic Teichmüller theory."
 - (2) \exists natural, smooth substacks $\mathcal{N}_{g,r}[d] \subseteq \mathcal{N}_{g,r}$, where d = degree of zero divisor (spikes) of p-curv.

- (2) (cont'd) $(d = \infty \implies \underline{\text{dormant}});$ $\mathcal{N}_{g,r}[d] \neq \emptyset \implies \dim = 3g - 3 + r.$
- (3) $\mathcal{N}_{g,r}[0]$ affine; this \Longrightarrow $\mathcal{M}_{g,r}$ connected! (cf. Teich. th./ \mathbf{C} ; ab. vars. (Oort)!)
- (4) molecule $\stackrel{\text{def}}{=}$ nilcurve s.t. curve is is tot. degen. ($\bigcup \mathbf{P}^1$'s) analyze mol.'s \Rightarrow str. of $\mathcal{N}_{g,r}$ at ∞
- (5) $\underline{\text{atom}} \stackrel{\text{def}}{=}$ "toral" nilcurve s.t. curve is $\mathbf{P}^1 \{0, 1, \infty\}$. {atoms} \leftrightarrow three radii $\in \mathbf{F}_p/\{\pm 1\}$

(5) (cont'd) — reminiscent of: "pants" (top. $\cong \mathbf{P}^1 - \{0, 1, \infty\}$) decomp. of hyp. Riemann surfaces

(C.) Canonical Liftings

$$\mathcal{N}_{g,r} \supseteq (\mathcal{N}_{g,r}^{\mathrm{ord}})_{\mathbf{F}_p} \stackrel{\mathrm{def}}{=} \text{\'et. locus}/(\mathcal{M}_{g,r})_{\mathbf{F}_p}$$

 $\Rightarrow \mathcal{N}_{g,r}^{\mathrm{ord}} \to (\mathcal{M}_{g,r})_{\mathbf{Z}_p} \dots$ étale morph. of *p*-adic formal stacks

Theorem 3: $\exists ! (s_{\mathcal{N}} : \mathcal{N}_{g,r}^{\text{ord}} \to \mathcal{S}_{g,r};$ Frob. lift. $\Phi_{\mathcal{N}} \curvearrowright \mathcal{N}_{g,r}^{\text{ord}})$ s.t. I.B. def'd by $s_{\mathcal{N}}$ is invariant w.r.t. Frob. act. def'd by $\Phi_{\mathcal{N}}$, i.e., $s_{\mathcal{N}} = \underline{\text{desired can. sect. of Sch. torsor!}}$

- Remarks: (1) $(1/p) \cdot d\Phi_{\mathcal{N}}$ is isom., i.e., $\Phi_{\mathcal{N}}$ is ordinary Frobenius lifting
 - (2) \exists general theory of ord. F.L.'s \Rightarrow
 - (a.) can. loc. iso. to $\widehat{\mathbf{G}}_{\mathrm{m}} \times \ldots \times \widehat{\mathbf{G}}_{\mathrm{m}}$
 - (b.) can. Witt vector liftings of

points/char. p perfect fields

(cf. real analytic Kähler metrics)

- (3) $\Phi_{\mathcal{N}} \leftrightarrow \text{Weil-Petersson metric}$ can. mult. pars. $\leftrightarrow \text{Bers unif.}$
- (4) Serre-Tate Th. for ord. AV's arises from \exists ord. F.L. $\Phi_{\mathcal{A}}$ (e.g., can. mult. coords. \leftrightarrow "S.-T. pars.," etc.)
 - \Rightarrow Th.3 = Serre-Tate theory for hyp. curves!
- (5) But $\Phi_{\mathcal{N}}$, $\Phi_{\mathcal{A}}$, respective "ord's" are not compatible!
 - \leftrightarrow $\mathcal{M}_g \to \mathcal{A}_g \text{ not isometric}/\mathbf{C}$

(for WP metric, Siegel upper half-plane metric)

- (6) $(\mathcal{N}_{g,r}^{\mathrm{ord}})_{\mathbf{F}_p} \subseteq \mathcal{N}_{g,r}[0] \dots$ for other d,
 - \exists can. lift. theory with "Lubin-Tate (instead of $\widehat{\mathbf{G}}_{\mathrm{m}}$) uniformizations"!

In fact, the larger d

- ⇒ the more "Lubin-Tate" the uniformization!
- (7) \exists corresponding can. Gal. reps.

 ρ : arithmetic $\pi_1(\text{curve})$

- $\rightarrow PGL_2(\text{large ring w/Gal. act.})$
- ... the p-adic analogues of the can. rep. $\rho_{\mathcal{X}}$ arising from the Fuchs. unif.!