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31. Introduction
(A.) The Fuchsian Uniformization

Hyperbolic Curve: smooth,
proper connected genus ¢ alg.
curve —r points, s.t. 2g —2+1r >0

Over C: unif. by upper half-plane ‘H
X(C)=Xx=H/T

— 7T1(X) — PSLQ(R) — Aut(H)

4 a p-adic analogue of this
Fuchsian uniformization?

Note: Fuchsian # Schottky
(cf. D. Mumford’s theory), e.g.,
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Fuchsian unif. involves arithmetic, i.e.,

real analytic structures <
Frobenius at the infinite prime

(B.) The Physical Interpretation

alg. curve X <= SO(2)\PSLy(R)/T
(physical /analytic obj.)
— m(X) + px
< top. + arith. str.

Modular forms define first “<——.”
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(C.) The Modular Interpretation
px T (X) — PSLy;(R) C PGLy(C)
— m (X) N P&
Algebraize quotient (H x Pg)/m (X))
— (P — X, Vp)
(P'-bundle + connection)

. a (canonical) indigenous bundle

Moduli of I.B.’s:  §,, — M,

. algebraic “Schwarz torsor”

(
Q of M,.,), defined over Z[3].

can. I.B. = canonical real analvytic

s: My, (C) = 8, (C)
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Teichmiiller theory (Bers unif.)
<= study of can. real an. sect. s
<= study of quasi-fuchsian
deformations of py

(D.) “Intrinsic Hodge Theory”

alg. geom. < topology + arith.

Ex.: classical /p-adic Hodge theory:
de Rham coh. <= sing./ét. coh.4+Gal.

Here: alg. geom. = curve itself, moduli
top. + arith. = theory of py
—> “intrinsic”

Not just philosophy; classical /p-adic
Hodge theory techniques important.




32. The Physical Approach
in the p-adic case

(A.) The Arithmetic Fundamental
Group

K % char. 0 field, T € Gal(K/K)

X: hyp. curve/K, X “ X xx K.

= 1—-mX) - m(X)—=Tg—1

1 (7) (geom. m1): indep. of moduli

(but in char. p, may determine
moduli! — A. Tamagawa)

Grothendieck’s anabelian philosophy:
“bExtension should determine moduli.”




(B.) The Main Theorem

Theorem 1: K C fin. gen. extn./Q,,
X: hyperbolic curve/K,
S : smooth variety/K.

= X (5)%™ = Homp ™ (1 (5), m1 (X))
i.e., alg. curve X <=
phys./an. obj. Homp"™"(—,m (X))

Builds on work of: H. Nakamura, A.
Tamagawa + G. Faltings, Bloch/Kato.

Proof: Consider p-adic analytic diff.
forms on (Zp[ T ] 5™ )"

(maps to X) — cf. mod. forms on H.
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Remark: Also pro-p, function field
versions (cf. F. Pop).

(C.) Comparison with the Case of
Abelian Varieties

Th.1 resembles Tate Conjecture, i.e.,

Hom (abelian varieties) <=
Hom(Tate modules)

But T. C. false over local fields!

New point of view:

Theorem 1 = p-adic version of

physical aspect of

of Fuchsian unif.



3. The Modular Approach
in the p-adic case

(A.) The Example of Shimura
Curves

4 a can. p-adic section of Sch. torsor:

Sgr — My, (cf. can. real. an. s)7

Guide: theory of Shimura curves
(cf. Y. Thara’s theory)

Ex.: Over M o, de Rham coh. of

univ. ell. curve =— can. ind. bun.

Note: mod p, p-curv. square nilpotent!

N.B.: p-curvature Lt « | Frob., V |7



(B.) The Stack of Nilcurves

(Sg.r)F, 2 Nyt the stack of nilcurves
(curves 4+ 1.B. with sq. nilp. p-curv.)

Theorem 2: Ny, — (Mg, )g,: finite,
flat, local complete intersection,
degree = p?97317" .,

N, “almost” a section of Sch. torsor!

Remarks: (1) N, , = central object of
study of “p-adic Teichmiiller theory.”

(2) d natural, smooth substacks
Ny r[d] € N, -, where d = degree
of zero divisor (spikes) of p-curv.
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(2) (cont’d) (d = oo == dormant);
Nygrldl #0 = dim=3g—3+r.

(3) N,.[0] affine; this =
M, connected!

(cf. Teich. th./C; ab. vars. (Oort)!)

def . :
(4) molecule = nilcurve s.t. curve is

is tot. degen. (| J P'’s)

analyze mol.’s = str. of N, . at oo

def :
(5) atom = “toral” nilcurve s.t. curve

is P! —{0,1, c0}.
{atoms} < three radii € F,/{£1}
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(5) (cont’d) — reminiscent of:
“pants” (top. = P! —{0,1, 00})
decomp. of hyp. Riemann surfaces

Il
O O

(C.) Canonical Liftings

r def ,
Ng,fr D (N;,Td)Fp = et. IOCU.S/(Mg,r)Fp
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= N4 — (Mg ,)z, ... étale

morph. of p-adic formal stacks

Theorem 3: 3! (sy :/\/';ﬁad — Sg.r:
Frob. lift. @ ~ N2

s.t. I.B. det’d by sar is invariant
w.r.t. Frob. act. det’d by @/, i.e.,

s = desired can. sect. of Sch. torsor!

Remarks: (1) (1/p) - d®, is isom., i.e.,
® \r is ordinary Frobenius lifting

(2) 4 general theory of ord. F.L.’s =

(a.) can. loc. iso. t0 G X ... X G
(b.) can. Witt vector liftings of
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points/char. p perfect fields

(cf. real analytic Kahler metrics)

(3) ®ar <+ Weil-Petersson metric
can. mult. pars. «» Bers unif.

(4) Serre-Tate Th. for ord. AV’s
arises from 3 ord. F.L. ® 4 (e.g., can.

mult. coords. < “S.-T. pars.,” etc.)

= Th.3 = Serre-Tate
theory for hyp. curves!

(5) But ®5r, P4, respective “ord’s”
are not compatible!

— M, — A, not isometric/C
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(for WP metric, Siegel upper
half-plane metric)

(6) (NN g, €N, [0] ... for other d,

3 can. lift. theory with “Lubin-Tate
(instead of G,) uniformizations”!

In fact, the larger d
= the more “Lubin-Tate”
the uniformization!

(7) 3 corresponding can. Gal. reps.

p : arithmetic w1 (curve)
— PG Ly (large ring w/Gal. act.)

...the p-adic analogues of the can. rep.
px arising from the Fuchs. unif.!
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