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Section 0: Introduction

In this manuscript, we give an exposition of various ideas and results related to
the fundamental results of [Tama1-2], [Mzk1-2] concerning Grothendieck’s Conjec-
ture of Anabelian Geometry (which we refer to as the “Grothendieck Conjecture” for
short; cf. [Mzk2], Introduction, for a brief introduction to this conjecture). Many
of these ideas existed prior to the publication of [Tama1-2], [Mzk1-2], but were not
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discussed in these papers because of their rather elementary nature and secondary
importance (by comparison to the main results of these papers). Nevertheless, it is
the hope of the author that the reader will find the present manuscript useful as a
supplement to [Tama1-2], [Mzk1-2]. In particular, we hope that the discussion of
the present manuscript will serve to clarify the meaning and motivation behind the
main result of [Mzk2].

Our main results are the following:

(1) In §1, we take the reverse point of view to the usual one (i.e., that the
Grothendieck Conjecture should be regarded as a sort of (anabelian) Tate
Conjecture) and show that in a certain case, the Tate Conjecture may be
regarded as a sort of Grothendieck Conjecture (cf. Theorem 1.1, Corollary
1.2). In particular, Corollary 1.2 is interesting in that it allows one to
express the fundamental phenomenon involved in the Tate and Grothen-
dieck Conjectures using elementary language that can, in principle, be
understood even by high school students (cf. the Introduction to §1; the
Remarks following Corollary 1.2).

(2) In §2, we show how the main result of [Mzk2] gives rise to a purely
algebro-geometric corollary (i.e., one which has nothing to do with Galois
groups, arithmetic considerations, etc.) in characteristic 0 (cf. Corollary
2.1). Moreover, we give a partial generalization of this result to positive
characteristic (cf. Theorem 2.2).

(3) In §3, we discuss real analogues of anabelian geometry. Not surprisingly,
the real case is substantially easier than the case where the base field is
p-adic or a number field. Thus, we are able to prove much stronger results
in the real case than in the p-adic or number field cases (cf. Theorem
3.6, Corollaries 3.7, 3.8, 3.10, 3.11, 3.13, 3.14, 3.15). In particular, we are
able to prove various real analogues of the so-called Section Conjecture of
anabelian geometry (which has not been proven, at the time of writing,
for any varieties over p-adic or number fields) — cf. [Groth], p. 289, (2);
[NTM], §1.2, (GC3), for a discussion of the Section Conjecture. Also, we
note that the real case is interesting relative to the analogy between the
differential geometry that occurs in the real case and certain aspects of
the p-adic case (cf. [Mzk4], Introduction, §0.10; the Introduction to §3 of
the present manuscript). It was this analogy that led the author to the
proof of the main result of [Mzk2].

(4) In §4, we show that a certain isomorphism version (cf. Theorem 4.12)
of the main result of [Mzk2] can be proven over “generalized sub-p-adic
fields” (cf. Definition 4.11), which form a somewhat larger class of fields
than the class of “sub-p-adic fields” dealt with in [Mzk2]. This result is
interesting in that it is reminiscent of the main results of [Tama2], as well
as of the rigidity theorem of Mostow-Prasad for hyperbolic manifolds of
real dimension 3 (cf. the Remarks following the proof of Theorem 4.12).



TOPICS IN ANABELIAN GEOMETRY 3

Although we believe the results of §4 to be essentially new, we make no claim of
essential originality relative to the results of §1, 2, 3, which may be proven using
well-known standard techniques. Nevertheless, we believe that it is likely that, even
with respect to §1, 2, 3, the point of view of the discussion is likely to be new (and
of interest relative to understanding the main result of [Mzk2]).

Finally, before beginning our exposition, we pause to review the main result
of [Mzk2] (which is the central result to which the ideas of the present manuscript
are related). To do this, we must introduce some notation. Let Σ be a nonempty
set of prime numbers. If K is a field, then let us denote its absolute Galois group
Gal(K/K) (where K is some algebraic closure of K) by ΓK . If X is a geometrically
connected K-scheme, then let us recall that its algebraic fundamental group π1(X)
(for some choice of base-point) fits into a natural exact sequence

1 → π1(X ⊗K K) → π(X) → ΓK → 1

Let us denote by ΔX the maximal pro-Σ quotient of π1(X ⊗K K) (i.e., the inverse
limit of those finite quotients whose orders are products of primes contained in Σ).
The profinite group ΔX is often referred to as the (pro-Σ) geometric fundamental
group of X. Note that since the kernel of π1(X ⊗K K) → ΔX is a characteristic
subgroup of π1(X ⊗K K), it follows that it is normal inside π1(X). Denote the
quotient of π1(X) by this normal subgroup by ΠX . The profinite group ΠX is
often referred to as the (pro-Σ) arithmetic fundamental group of X. (When it is
necessary to specify the set of primes Σ, we will write ΔΣ

X , ΠΣ
X .) Thus, we have a

natural exact sequence

1 → ΔX → ΠX → ΓK → 1

In [Mzk2], the author proved the following result:

Theorem A. Let K be a sub-p-adic field (i.e., a field isomorphic to a subfield
of a finitely generated field extension of Qp), where p ∈ Σ. Let XK be a smooth
variety over K, and YK a hyperbolic curve over K. Let Homdom

K (XK , YK) be the
set of dominant K-morphisms from XK to YK. Let Homopen

ΓK
(ΠX ,ΠY ) be the set

of open, continuous group homomorphisms ΠX → ΠY over ΓK , considered up to
composition with an inner automorphism arising from ΔY . Then the natural map

Homdom
K (XK , YK) → Homopen

ΓK
(ΠX ,ΠY )

is bijective.

Remark. Theorem A as stated above is a formal consequence of “Theorem A” of
[Mzk2]. In [Mzk2], only the cases of Σ = {p}, and Σ equal to the set of all prime
numbers are discussed, but it is easy to see that the case of arbitrary Σ containing
p may be derived from the case Σ = {p} by precisely the same argument as that
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used in [Mzk2] (cf. [Mzk2], the Remark following Theorem 16.5) to derive the case
of Σ equal to the set of all prime numbers from the case of Σ = {p}.

Acknowledgements: The author would like to thank A. Tamagawa and T. Tsuji
for stimulating discussions of the various topics presented in this manuscript. In
particular, the author would especially like to express his gratitude A. Tamagawa
for discussions concerning removing the hypothesis of “monodromy type” from
Theorem 4.12 in an earlier version of this manuscript. Also, the author greatly
appreciates the advice given to him by Y. Ihara (orally) concerning the Remark
following Corollary 1.2, and by M. Seppala and C. McMullen (by email) concerning
the Teichmüller theory used in §3.

Section 1: The Tate Conjecture as a Sort of Grothendieck Conjecture

In this §, we attempt to present what might be referred to as the most fun-
damental “prototype result” among the family of results (including the Tate and
Grothendieck Conjectures) that states that maps between varieties are “essentially
equivalent” to maps between arithmetic fundamental groups. The result given be-
low, especially in the form Corollary 1.2, is interesting in that it allows one to
express the fundamental phenomenon involved using elementary language that can,
in principle, be understood even by high school students (cf. the Remark following
Corollary 1.2). In particular, it does not require a knowledge of the notion of a Ga-
lois group or any another advanced notions, hence provides a convincing example
of how advanced mathematics can be applied to prove results which can be stated
in simple terms. Also, it may be useful for explaining to mathematicians in other
fields (who may not be familiar with Galois groups or other notions used in arith-
metic geometry) the essence of the Tate and Grothendieck Conjectures. Another
interesting feature of Corollary 1.2 is that it shows how the Tate conjecture may
be thought of as being of the “same genre” as the Grothendieck Conjecture in that
it expresses how the isomorphism class of a curve (in this case, an elliptic curve)
may be recovered from Galois-theoretic information.

§1.1. The Tate Conjecture for non-CM Elliptic Curves

Let K be a number field (i.e., a finite extension of Q). If E is an elliptic curve
over K, and N is a natural number, then let us write

K(E[N ])

for the minimal finite extension field of K over which all of the N-torsion points
are defined. Note that the extension K(E[N ]) will always be Galois. Then we have
the following elementary consequence of the “Tate Conjecture for abelian varieties
over number fields” proven in [Falt]:
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Theorem 1.1. Let K be a number field. Let E1 and E2 be elliptic curves over K
such that neither E1 nor E2 admits complex multiplication over Q. Then E1 and
E2 are isomorphic as elliptic curves over K if and only if K(E1[N ]) = K(E2[N ])
for all natural numbers N .

Remark. Note that the expression “K(E1[N ]) = K(E2[N ])” is to be understood to
mean “equal as subfields of some fixed algebraic closure of K.” Moreover, the sub-
stance of this expression is independent of the choice of algebraic closure precisely
because both fields in question are Galois extensions of K.

Proof. If E1
∼= E2 over K, then it is clear that K(E1[N ]) = K(E2[N ]) for

all natural numbers N . Thus, let us assume that K(E1[N ]) = K(E2[N ]) for all
natural numbers N , and prove that E1

∼= E2 over K. In this proof, we use the
notation and results of §1.2 below. Since we assume that K(E1[N ]) = K(E2[N ]),
let us denote this field by K[N ]. Also, if p is a prime number, then let us write
K[p∞] for the union of the K[pn], as n ranges over the positive integers. Finally,
for n ≥ 0, we denote the Galois group Gal(K[p∞]/K[pn]) by Γ[pn]; the center of
Γ[pn] by ZΓ[pn]; and the quotient Γ[pn]/ZΓ[pn] by PΓ[pn].

Let p be a prime number. Then by the semisimplicity of the Tate module,
together with the Tate conjecture (both proven in general in [Falt]; cf. also [Ser2],
IV), the fact that neither E1 nor E2 admits complex multiplication over Q implies
that there exists an integer n ≥ 1 such that the Galois representation on the p-
power torsion points of E1 (respectively, E2) induces an isomorphism β1 : Γ[pn] ∼=
GL

[n]
2 (Zp) (respectively, β2 : Γ[pn] ∼= GL

[n]
2 (Zp)), where GL

[n]
2 (Zp) ⊆ GL2(Zp) is

the subgroup of matrices that are ≡ 1 modulo pn. Since the kernel of GL
[n]
2 (Zp) →

PGL
[n]
2 (Zp) is easily seen to be equal to the center of GL

[n]
2 (Zp), it thus follows

that β1, β2 induce isomorphisms

α1 : PΓ[pn] ∼= PGL
[n]
2 (Zp); α2 : PΓ[pn] ∼= PGL

[n]
2 (Zp)

Thus, in particular, by Lemma 1.3 of §1.2 below, we obtain that (after possibly
increasing n) the automorphism α

def= α1 ◦ α−1
2 of PGL

[n]
2 (Zp) is defined by con-

jugation by an element of PGL2(Zp). In particular, we obtain that there exists a
Zp-linear isomorphism

ψ : Tp(E1) ∼= Tp(E2)

between the p-adic Tate modules of E1 and E2 with the property that for σ ∈ Γ[pn],
we have ψ(σ(t)) = λσσ(ψ(t)) (∀t ∈ Tp(E1)), for some λσ ∈ Zp

× which is indepen-
dent of t. On the other hand, since the determinant of ψ is clearly compatible with
the Galois actions on both sides (given by the cyclotomic character), it thus follows
(by taking determinants of both sides of the equation ψ(σ(t)) = λσσ(ψ(t))) that
λ2

σ = 1. Since the correspondence σ �→ λσ is clearly a homomorphism (hence a
character of order 2), we thus obtain that:
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(*) There exists a finite extension K ′ of K over which the Gal(K/K′)-
modules Tp(E1) and Tp(E2) become isomorphic.

(Here, K ′ is the extension of K[pn] (of degree ≤ 2) defined by the kernel of σ �→ λσ.
In fact, if p > 2, then this extension is trivial (since Γ[pn] is a pro-p-group).) Thus,
by the Tate Conjecture proven in [Falt], we obtain that HomK′ (E1, E2) ⊗Z Zp

contains an element that induces an isomorphism on p-adic Tate modules. On
the other hand, since HK′

def= HomK′ (E1, E2) (the module of homomorphisms
(E1)K′ → (E2)K′ over K ′) is a finitely generated free Z-module of rank ≤ 1 (since
E1, E2 do not have complex multiplication over Q), we thus obtain that HK′ is a
free Z-module of rank 1. Let ε ∈ HK′ be a generator of HK′ . Then ε necessar-
ily corresponds to an isogeny E1 → E2 that induces an isomorphism on p-power
torsion points.

Now write HK

def= HomK(E1, E2). Then the above argument shows that HK is
a free Z-module of rank 1 with a generator ε that induces an isomorphism on p-power
torsion points for every prime number p. But this implies that ε : (E1)K → (E2)K

is an isomorphism, i.e., that E1 and E2 become isomorphic over K.

Thus, it remains to check that E1 and E2 are, in fact, isomorphic over K.
Let p ≥ 5 be a prime number which is sufficiently large that: (i) K is absolutely
unramified at p; (ii) the Galois representations on the p-power torsion points of E1

and E2 induce isomorphisms

β1 : Γ[p0] ∼= GL2(Zp); β2 : Γ[p0] ∼= GL2(Zp)

(the existence of such p follows from the “modulo l versions” (for large l) of the
semisimplicity of the Tate module, together with the Tate conjecture in [Mord],
VIII, §5 ; cf. also [Ser2], IV). Now we would like to consider the extent to which
the automorphism β

def= β1◦β−1
2 of GL2(Zp) is defined by conjugation by an element

of GL2(Zp). Note that by what we did above, we know that the morphism induced
by β on PGL

[n]
2 (Zp) (for some large n) is given by conjugation by some element

A ∈ GL2(Zp). Let γ : GL2(Zp) → GL2(Zp) be the automorphism of GL2(Zp)
obtained by composing β with the automorphism given by conjugation by A−1.
Thus, γ induces the identity on PGL

[n]
2 (Zp). But this implies (by Lemma 1.4

below) that γ induces the identity on PGL2(Zp). In particular, it follows that
there exists a homomorphism λ : GL2(Zp) → Zp

× such that γ(σ) = λ(σ) · σ
(∀σ ∈ GL2(Zp)). Next, let us recall that since p ≥ 5, the topological group SL2(Zp)
has no abelian quotients (an easy exercise). Thus, λ factors through the determinant
map GL2(Zp) → Zp

×. Moreover, (cf. the argument at the beginning of the proof
involving arbitrary p) since the composites of β1, β2 with the determinant map are
given by the cyclotomic character, we obtain that λ2 = 1. In particular, we obtain
that λ is trivial on the index 2 subgroup of GL2(Zp) of elements whose determinant
is a square. Put another way, if we write Kp for the quadratic extension of K

determined by composing the cyclotomic character Gal(K/K) → Zp
× (which is

surjective since K is absolutely unramified at p) with the unique surjection Zp
× �
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Z/2Z, then over Kp, the Tate modules Tp(E1), Tp(E2) become isomorphic as Galois
modules, which implies that HomKp(E1, E2) = 0. But this implies that E1 and E2

become isomorphic over Kp.

On the other hand, for distinct primes p, p′ as above, Kp, Kp′ form linearly
disjoint quadratic extensions of K (as can be seen by considering the ramification
at p, p′). Thus, the fact that both Gal(K/Kp) and Gal(K/Kp′) act trivially on
HomK(E1, E2) implies that Gal(K/K) acts trivially on HomK(E1, E2), so E1

∼= E2

over K, as desired. ©

Remark. The above proof benefited from discussions with A. Tamagawa and T.
Tsuji.

Remark. Note that in the above proof (cf. also the arguments of §1.2 below), we
use in an essential way the strong rigidity properties of the simple p-adic Lie group
PGL2(Zp). Such rigidity properties are not shared by abelian Lie groups such as
Zp; this is why it was necessary to assume in Theorem 1.1 that the elliptic curves
in question do not admit complex multiplication.

Corollary 1.2. There is a finite set CM ⊆ Z such that if E1 and E2 are arbitrary
elliptic curves over Q whose j-invariants j(E1), j(E2) do not belong to CM, then E1

and E2 are isomorphic as elliptic curves over Q if and only if Q(E1[N ]) = Q(E2[N ])
for all natural numbers N .

Proof. In light of Theorem 1.1, it suffices to show that there are only finitely
many possibilities (all of which are integral — cf., e.g., [Shi], p. 108, Theorem 4.4)
for the j-invariant of an elliptic curve over Q which has complex multiplication
over Q. But this follows from the finiteness of the number of imaginary quadratic
extensions of Q with class number one (cf., e.g., [Stk]), together with the theory
of [Shi] (cf. [Shi], p. 123, Theorem 5.7, (i), (ii)). (Note that we also use here the
elementary facts that: (i) the class group of any order surjects onto the class group
of the maximal order; (ii) in a given imaginary quadratic extension of Q, there are
only finitely many orders with trivial class group.) ©

Remark. According to an (apparently) unpublished manuscript of J.-P. Serre
([Ser3]) whose existence was made known to the author by Y. Ihara, the set CM
of Corollary 1.2, i.e., the list of rational j-invariants of elliptic curves with complex
multiplication, is as follows:

d = 1, f = 1 =⇒ j = j(i) = 26 · 33

d = 1, f = 2 =⇒ j = j(2i) = (2 · 3 · 11)3

d = 2, f = 1 =⇒ j = j(
√
−2) = (22 · 5)3, ([Weber], p. 721)

d = 3, f = 1 =⇒ j = j(
−1 +

√
−3

2
) = 0
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d = 3, f = 2 =⇒ j = j(
√
−3) = 24 · 33 · 53, ([Weber], p. 721)

d = 3, f = 3 =⇒ j = j(
−1 + 3

√
−3

2
) = −3 · 215 · 53, ([Weber], p. 462)

d = 7, f = 1 =⇒ j = j(
−1 +

√
−7

2
) = −33 · 53, ([Weber], p. 460)

d = 7, f = 2 =⇒ j = j(
√
−7) = (3 · 5 · 17)3, ([Weber], p. 475)

d = 11, f = 1 =⇒ j = j(
−1 +

√
−11

2
) = −215, ([Weber], p. 462)

d = 19, f = 1 =⇒ j = −(25 · 3)3, ([Weber], p. 462)

d = 43, f = 1 =⇒ j = −(26 · 3 · 5)3, ([Weber], p. 462)

d = 67, f = 1 =⇒ j = −(25 · 3 · 5 · 11)3, ([Weber], p. 462)

d = 163, f = 1 =⇒ j = −(26 · 3 · 5 · 23 · 29)3, ([Weber], p. 462)

(where Q(
√
−d) is the imaginary quadratic extension of Q containing the order in

question, f is the conductor of the order, and the reference given in parentheses is
for the values of the invariants “f” and “f1” of [Weber], which are related to the
j-invariant as follows: j = (f24 − 16)3/f24 = (f24

1 + 16)3/f24
1 ).

Remark. Thus, if one defines elliptic curves over Q using cubic equations, constructs
the group law on elliptic curves by considering the intersection of the cubic with
various lines, and interprets the notion of isomorphism of elliptic curves (over Q) to
mean “being defined by the same cubic equation, up to coordinate transformations,”
then Corollary 1.2 may be expressed as follows:

Except for the case of finitely many exceptional j-invariants, two elliptic
curves E1, E2 over Q are isomorphic if and only if for each natural number
N , the coordinates (∈ C) necessary to define the N-torsion points of E1

generate the same “subfield of C” — i.e., “collection of complex numbers
closed under addition, subtraction, multiplication, and division” — as the
coordinates necessary to define the N-torsion points of E2.

(where, of course, the j-invariant is defined as a polynomial in the coefficients of the
cubic). In this form, the essential phenomenon at issue in the Tate or Grothendieck
Conjectures may be understood even by high school students or mathematicians
unfamiliar with Galois theory.

§1.2. Some Pro-p Group Theory

Let n ≥ 1 be an integer. In this §, let us denote by PGL2 the algebraic
group (defined over Z) obtained by forming the quotient of GL2 by Gm (where
Gm ↪→ GL2 is the standard embedding by scalars), and by
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PGL
[n]
2 (Zp) ⊆ PGL2(Zp)

the subgroup of elements which are ≡ 1 modulo pn. Let us write pgl2(Zp) for the
quotient of the Lie algebra M2(Zp) (of 2 by 2 matrices with Zp coefficients) by
the scalars Zp ⊆ M2(Zp). Thus, pgl2(Zp) ⊆ pgl2(Zp) ⊗Zp Qp = pgl2(Qp). Write
pgl

[n]
2 (Zp) ⊆ pgl2(Zp) for the submodule which is the image of matrices in M2(Zp)

which are ≡ 0 modulo pn. Thus, for n sufficiently large, pgl
[n]
2 (Zp) maps bijectively

onto PGL
[n]
2 (Zp) via the exponential map (cf. [Ser1], Chapter V, §7).

Lemma 1.3. Let α : PGL
[n]
2 (Zp) → PGL

[n]
2 (Zp) be an automorphism of the

profinite topological group PGL
[n]
2 (Zp) such that α(PGL

[m]
2 (Zp)) = PGL

[m]
2 (Zp)

for all m ≥ n. Then there exists an element A ∈ PGL2(Zp) such that for some
m ≥ n, the restriction α|

PGL
[m]
2 (Zp)

is given by conjugation by A.

Proof. Let us write

A : pgl2(Qp) → pgl2(Qp)

for the morphism on Lie algebras induced by α. By [Ser1], Chapter V, §7, 9, after
possibly replacing n by a larger n, we may assume that α is the homomorphism
obtained by exponentiating A. Moreover, by the well-known theory of the Lie
algebra pgl2(Qp), it follows that A may be obtained by conjugating by some A′ ∈
PGL2(Qp). (Indeed, this may be proven by noting that A induces an automorphism
of the “variety of Borel subalgebras of pgl2(Qp).” Since this variety is simply P1

Qp
,

we thus get an automorphism of P1
Qp

, hence an element of PGL2(Qp), as desired.)
On the other hand, it follows immediately from the structure theory of finitely
generated Zp-modules that A′ may be written as a product

A′ = C1 · A′′ · C2

where C1, C2 ∈ PGL2(Zp), and A′′ is defined by a matrix of the form

(
λ1 0

0 λ2

)
,

where λ1, λ2 ∈ Qp
×.

Now observe that the fact that A arises from an automorphism of PGL
[n]
2 (Zp)

implies that A induces an automorphism of pgl
[n]
2 (Zp) (cf. the discussion at the

beginning of this §). Since conjugation by C1 and C2 clearly induces automorphisms
of pgl

[n]
2 (Zp), it thus follows that conjugation by A′′ induces an automorphism of

pgl
[n]
2 (Zp). Now, by considering, for instance, upper triangular matrices with zeroes

along the diagonal, one sees that A′′ can only induce an automorphism of pgl
[n]
2 (Zp)

if λ1 = λ2 · u, where u ∈ Zp
×. Let A

def= λ−1
1 · A′. Then clearly A ∈ PGL2(Zp),
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and conjugation by A induces A. Thus, by using the exponential map, we obtain
that for some m ≥ n, the restriction α|

PGL
[m]
2 (Zp)

is given by conjugation by A, as
desired. ©

The following lemma was pointed out to the author by A. Tamagawa:

Lemma 1.4. Let α : PGL2(Zp) → PGL2(Zp) be an automorphism of the profi-
nite topological group PGL2(Zp) such that for some integer m ≥ 1, the restriction
α|

PGL
[m]
2 (Zp)

is the identity. Then α itself is the identity.

Proof. First let us show that α is the identity on the image in PGL2(Zp) of

matrices of the form

(
1 λ

0 1

)
(where λ ∈ Zp). For m ≥ 0 an integer, write

Um ⊆ PGL2(Zp) for the subgroup of images in PGL2(Zp) of matrices of the form

(
1 λ

0 1

)

where λ ∈ pm·Zp. Since, by hypothesis, α preserves Um for some m, it follows that α
preserves the centralizer Z(Um) of Um in PGL2(Zp). On the other hand, one checks
easily that Z(Um) = U0. Thus, α preserves U0, i.e., induces an automorphism of
the topological group U0

∼= Zp which is the identity on pm · Zp. Since Zp is torsion
free, it thus follows that α is the identity on U0, as desired. Moreover, let us observe
that since conjugation commutes with the operation of taking centralizers, one sees
immediately that the above argument implies also that α is the identity on all
conjugates of U0 in PGL2(Zp).

Next, let us observe that α is the identity on the subgroup B ⊆ PGL2(Zp)
consisting of images of matrices of the form:

(
μ1 λ

0 μ2

)

(where λ ∈ Zp, μ1, μ2 ∈ Zp
×). Indeed, since B is generated by U0 and the subgroup

T ⊆ PGL2(Zp) of images of matrices of the form

(
μ 0

0 1

)
, it suffices to see that

α is the identity on T . But T acts faithfully by conjugation on U0, and α is the
identity on U0. This implies that α is the identity on T , hence on B. Moreover,
as in the previous paragraph, this argument implies that α is the identity on all
conjugates of B in PGL2(Zp). Since PGL2(Zp) is generated by the union of the
conjugates of B, it thus follows that α is the identity on PGL2(Zp). ©
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Section 2: Hyperbolic Curves as their own “Anabelian Albanese Varieties”

In this §, we present an application (Corollary 2.1) of the main theorem of
[Mzk2] which is interesting in that it is purely algebro-geometric, i.e., it makes no
mention of Galois actions or other arithmetic phenomena.

§2.1. A Corollary of the Main Theorem of [Mzk2]

In this §, we fix a nonempty set of prime numbers Σ, and use the notation of
the discussion of Theorem A in the Introduction. Now Theorem A has the following
immediate consequence:

Corollary 2.1. Let K be a field of characteristic 0. Let C be a hyperbolic
curve over K, and let ψ : X → Y be a morphism of (geometrically integral)
smooth varieties over K which induces an isomorphism ΔX

∼= ΔY . Let us write
“Homdom

K (−, C)” for the set of dominant K-morphisms from “−” to C. Then the
natural morphism of sets

Homdom
K (Y,C) → Homdom

K (X,C)

induced by ψ : X → Y is a bijection.

Proof. By a standard technique involving the use of subfields of K which are
finitely generated over Q, we reduce immediately to the case where K is finitely
generated over Q. (We recall for the convenience of the reader that the essence of
this technique lies in the fact that since we are working with K-schemes of finite
type, all schemes and morphisms between schemes are defined by finitely many
polynomials with coefficients in K, hence may be defined over any subfield of K
that contains these coefficients (of which there are only finitely many!).)

Next, observe that since the morphism ψ : X → Y induces an isomorphism
between the respective geometric fundamental groups, it follows from the exact
sequences reviewed in the Introduction that it induces an isomorphism ΠX

∼= ΠY .
By Theorem A of the Introduction, it thus follows that the morphism of sets under
consideration — i.e., Homdom

K (Y,C) → Homdom
K (X,C) — is naturally isomorphic

to the morphism of sets given by

Homopen
ΓK

(ΠY ,ΠC) → Homopen
ΓK

(ΠX ,ΠC)

which is bijective. This completes the proof. ©

Remark. As stated above, Corollary 2.1 is interesting in that it is a purely algebro-
geometric application of Theorem A, i.e., it makes no mention of Galois actions or
other arithmetic phenomena. The observation that Corollary 2.1 holds first arose in
discussions between the author and A. Tamagawa. Typical examples of morphisms
ψ : X → Y as in Corollary 2.1 are:
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(1) the case where X → Y is a fiber bundle in, say, the étale topology, with
proper, simply connected fibers;

(2) the case where Y ⊆ Pn
k is a closed subvariety of dimension ≥ 3 in some

projective space, and X is obtained by intersecting Y with a hyperplane
in Pn

k .

In these cases, the fact that the resulting morphism on geometric fundamental
groups is an isomorphism follows from the long exact homotopy sequence of a fiber
bundle in the first case (cf. [SGA1], X, Corollary 1.4), and Lefshetz-type theorems
(cf. [SGA2], XII, Corollary 3.5) in the second case. Since this consequence of
Theorem A (i.e., Corollary 2.1) is purely algebro-geometric, it is natural to ask if
one can give a purely algebro-geometric proof of Corollary 2.1. In §2.2 below, we
give a partial answer to this question.

§2.2. A Partial Generalization to Finite Characteristic

Let k be an algebraically closed field. Let C be a proper hyperbolic curve over
k. Suppose that we are also given a connected, smooth closed subvariety

Y ⊆ Pn
k

of projective space, of dimension ≥ 3, together with a hyperplane H ⊆ Pn
k such

that the scheme-theoretic intersection X
def= H

⋂
Y is still smooth. Note that X is

necessarily connected (cf. [SGA2], XII, Corollary 3.5) and of dimension ≥ 2.

If k is of characteristic p > 0, and S is a k-scheme, then let us write ΦS : S → S
for the Frobenius morphism on S (given by raising regular functions on S to the
power p). If k is of characteristic 0, then we make the convention that ΦS : S → S
denotes the identity morphism. If T is a k-schemes, then we define

HomΦ(T,C)

to be the inductive limit of the system

Homdom
k (T,C) → Homdom

k (T,C) → . . . → Homdom
k (T,C) → . . .

where the arrows are those induced by applying the functor Homdom
k (−, C) to the

morphism ΦT . Thus, in particular, if k is of characteristic 0, then HomΦ(T,C) =
Homdom

k (T,C).

Now we have the following partial generalization of Corollary 2.1 of §2.1 to the
case of varieties over a field of arbitrary characteristic:

Theorem 2.2. Let k, C, X, and Y be as above. Then the natural morphism

HomΦ(Y,C) → HomΦ(X,C)
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induced by the inclusion X ↪→ Y is a bijection.

Proof. Let us denote by AX , AY , and AC the Albanese varieties of X, Y , and
C , respectively. We refer to [Lang], Chapter II, §3, for basic facts concerning
Albanese varieties. Thus, the inclusion X ↪→ Y induces a morphism AX → AY . I
claim that this morphism is a purely inseparable isogeny . Indeed, by various well-
known Leftshetz theorem-type results (cf., [SGA2], XII, Corollary 3.5), the inclusion
X ↪→ Y induces an isomorphism π1(X) ∼= π1(Y ); since (by the universal property
of the Albanese variety as the “minimal abelian variety to which the original variety
maps”) we have surjections π1(X) � π1(AX), π1(Y ) � π1(AY ), we thus obtain
that π1(AX ) � π1(AY ) is a surjection. Moreover, since X → AX , Y → AY induce
isomorphisms on the respectively étale first cohomology groups with Zl-coefficients
(where l is prime to the characteristic of k), we thus obtain that π1(AX ) � π1(AY )
is a surjection which is an isomorphism on the respective maximal pro-l quotients.
Now it follows from the elementary theory of abelian varieties that this implies that
AX → AY is a isogeny of degree a power of p. Finally, applying again the fact that
π1(AX) � π1(AY ) is surjective (i.e., even on maximal pro-p quotients), we conclude
(again from the elementary theory of abelian varieties) that this isogeny has trivial
étale part, hence is purely inseparable, as desired. Note that since AX → AY is an
isogeny, it follows in particular that it is faithfully flat.

Now let γX : X → C be a dominant k-morphism. Write αX : AX → AC for
the induced morphism on Albanese varieties. If γX arises from some γY : Y → C ,
then this γY is unique. Indeed, γY is determined by its associated αY , and the
composite of αY with AX → AY is given by αX (which is uniquely determined
by γX). Thus, the fact that αY is uniquely determined follows from the fact that
AX → AY is faithfully flat. This completes the proof of the claim, and hence of
the injectivity portion of the bijectivity assertion in Theorem 2.2.

Now suppose that γX is arbitrary (i.e., does not necessarily arise from some
γY ). The surjectivity portion of the bijectivity assertion in Theorem 2.2 amounts
to showing that, up to replacing γX by the composite of γX with some power of
ΦX , γX necessarily arises from some γY : Y → C . Now although αX : AX → AC

itself might not factor through AY , since AX → AY is purely inseparable, it follows
that the composite of αX with some power of ΦAX will factor through AY . Thus, if
we replace γX by the composite of γX with some power of ΦX , then αX will factor
(uniquely) through AY . Let us denote this morphism by αY : AY → AC . Thus, in
order to complete the proof of surjectivity, it suffices to show:

(*) The restriction αY |Y of αY to Y (relative to the natural morphism
Y → AY ) maps into the subvariety C ⊆ AC.

Before continuing, we observe the following:

(1) The assertion (*) for characteristic zero k follows immediately from the
assertion (*) for k of finite characteristic. Indeed, this follows via the usual
argument of replacing k first by a finitely generated Z-algebra, and then
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reducing modulo various primes. Thus, in the following, we assume the k
is of characteristic p > 0.

(2) The assertion (*) will follow if we can show that the restriction αY |�Y
(where we write Ŷ for the completion of Y along X) maps into C ⊆ AC .

Now let us show that (up to possibly composing γX again with a power of Frobe-
nius), γX extends to Ŷ . If I is the sheaf of ideals on Y that defines the closed
subscheme X ⊆ Y , then let us write Yn

def= V (In) ⊆ Y for the n-th infinitesimal
neighborhood of X in Y , and J def= I|X ∼= OX(−1). Write T for the pull-back of
the tangent bundle of C to X via γX . Since T −1 is generated by global sections,
it thus follows that T −1 ⊗ J−1 is ample, hence, by Serre duality (cf., e.g., [Harts],
Chapter III, Theorem 7.6), together with the fact that dim(X) ≥ 2, that there
exists a natural number N such that

H1(X,T ⊗pN ⊗ J⊗pN

) = 0

Note that this implies that for all n ≥ pN , we have:

H1(X,T ⊗pN ⊗ J⊗n) = 0

(Indeed, it suffices to assume that n > pN . Then since J−1 ∼= OX(1) is very
ample, it follows that there exists a section s ∈ Γ(X,OX (1)) whose zero locus
Z

def= V (s) ⊆ X is smooth of dimension ≥ 1. Thus, s defines an exact sequence

0 → T ⊗pN ⊗ J⊗n → T ⊗pN ⊗ J⊗n−1 → T ⊗pN ⊗ J⊗n−1|Z → 0

whose associated long exact cohomology sequence yields:

H0(Z,T ⊗pN ⊗ J⊗n−1|Z) → H1(X,T ⊗pN ⊗ J⊗n) → H1(X,T ⊗pN ⊗J⊗n−1)

But H0(Z,T ⊗pN ⊗J⊗n−1|Z) = 0 since T ⊗pN ⊗J⊗n−1|Z is the inverse of an ample
line bundle on a smooth scheme of dimension ≥ 1, while H1(X,T ⊗pN ⊗J ⊗n−1) = 0
by the induction hypothesis.)

Next, observe that ΦN
YpN

: YpN → YpN factors through X (since ΦN
YpN

is induced

by raising functions to the pN -th power). Thus, if we compose γX : X → C with
ΦN

X , we see that this composite extends to a morphism YpN → C . Moreover, since
the pull-back to X via this composite of the tangent bundle on C is given by T ⊗pN

,
it follows that the obstruction to extending this composite to Yn+1 for n ≥ pN is
given by an element of the cohomology group

H1(X,T ⊗pN ⊗ J⊗n)
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which (by the above discussion concerning cohomology groups) is zero. Thus, in
summary, if we replace the given γX by its composite with ΦN

X , the resulting γX

extends to a morphism Ŷ → C . This completes the proof of (*), and hence of the
entire proof of Theorem 2.2. ©

Remark. The above proof benefited from discussions with A. Tamagawa.

Remark. Note that the other case discussed in the Remark at the end of §2.1,
i.e., the case of a fiber bundle with proper, simply connected fibers also admits
a purely algebro-geometric proof: namely, it follows immediately from the theory
of Albanese varieties that there do not exist any nonconstant morphisms from a
simply connected smooth proper variety to an abelian variety.

Remark. The role played by the Albanese variety in the proof of Theorem 2.2 given
above suggests that the property proven in Corollary 2.1 and Theorem 2.2 might be
thought of as asserting that a hyperbolic curve is, so to speak, its own “anabelian
Albanese variety.” This is the reason for the title of §2.

Section 3: Discrete Real Anabelian Geometry

The original motivation for the p-adic result of [Mzk2] came from the (dif-
ferential) geometry of the upper half-plane uniformization of a hyperbolic curve.
This point of view — and, especially, the related idea that Kähler geometry at
archimedean primes should be regarded as analogous to Frobenius actions at p-adic
primes — is discussed in detail in [Mzk4], Introduction (especially §0.10; cf. also
the Introduction of [Mzk3]). In the present §, we attempt to make this motivation
more rigorous by presenting the real analogues of various theorems/conjectures of
anabelian geometry. The substantive mathematics here — i.e., essentially the ge-
ometry of the Siegel upper half-plane and Teichmüller space — is not new, but
has been well-known to topologists, Teichmüller theorists, and symmetric domain
theorists for some time. What is (perhaps) new is the formulation or point of
view presented here, namely, that these geometric facts should be regarded as real
analogues of Grothendieck’s conjectured anabelian geometry.

§3.1. Real Complex Manifolds

We begin with the following purely analytic definition: Let X be a complex
manifold and ι an anti-holomorphic involution (i.e., automorphism of order 2) of
X.

Definition 3.1. A pair such as (X, ι) will be referred to as a real complex
manifold. If X has the structure of an abelian variety whose origin is fixed by ι,
then (X, ι) will be referred to as a real abelian variety. If dimC(X) = 1, then (X, ι)
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will be referred to as a real Riemann surface. A real Riemann surface (X, ι) will be
called hyperbolic if the universal covering space of X is isomorphic (as a Riemann
surface) to the upper half-plane H

def= {z ∈ C | Im(z) > 0}.

Remark. Note that if XR is a smooth algebraic variety over R, then XR(C) equipped
with the anti-holomorphic involution defined by complex conjugation defines a real
complex manifold (X, ι). Moreover, one checks easily that XR is uniquely deter-
mined by (X, ι). Conversely, any real complex manifold (X, ι) such that X is
projective arises from a unique algebraic variety XR over R. Indeed, this follows
easily from “Chow’s Theorem” (that any projective complex manifold is necessarily
algebraic) and the (related) fact that any holomorphic isomorphism between pro-
jective algebraic varieties (in this case, the given X and its complex conjugate) is
necessarily algebraic. Thus, in summary, one motivating reason for the introduction
of Definition 3.1 is that it allows one to describe the notion of a (proper, smooth)
algebraic variety over R entirely in terms of complex manifolds and analytic maps.

Remark. In the case of one complex dimension, one does not even need to assume
projectivity: That is, any real Riemann surface (X, ι) such that X is algebraic arises
from a unique algebraic curve XR over R. Indeed, this follows easily by observing
that any holomorphic isomorphism between Riemann surfaces associated to com-
plex algebraic curves is necessarily algebraic. (Note that this may be proven by
noting that any such isomorphism extends naturally to the “one-point compactifi-
cations” of the Riemann surfaces (which have natural algebraic structures), hence
is necessarily algebraizable.) It is not clear to the author whether or not this can
be generalized to higher dimensions.

In the following, we shall consider various groups G with natural augmentations
G → Gal(C/R). In this sort of situation, we shall denote the inverse image of the
identity element (respectively, the complex conjugation element) in Gal(C/R) by
G+ (respectively, G−).

If X is a complex manifold, then we shall denote by

Aut(X) → Gal(C/R)

the group of automorphisms of X which are either holomorphic or anti-holomorphic,
equipped with its natural augmentation (which sends holomorphic (respectively,
anti-holomorphic) automorphisms to the identity (respectively, complex conjuga-
tion element) in Gal(C/R)). Thus,

Aut+(X),Aut−(X) ⊆ Aut(X)

denote the subsets of holomorphic and anti-holomorphic automorphisms, respec-
tively. In many cases, X will come equipped with a natural Riemannian metric
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which is preserved by Aut(X). The principal examples of this situation are the
following:

Example 3.2. (The Siegel Upper Half-Plane) Let g ≥ 1 be an integer. Let
us write

Hg
def= {Z ∈ Mg(C) | Z = tZ; Im(Z) > 0}

(where “t” denotes the “transpose matrix,” and “> 0” is to be understood to mean
“positive definite”) for the Siegel upper half-plane. (Thus, H1 is the usual upper
half-plane H.) We shall regard Hg as a complex manifold (equipped with the obvious

complex structure). Set Jg
def=

(
0 Ig

−Ig 0

)
∈ M2g(R) (where Ig ∈ Mg(R) is the

identity matrix). Write

GSp2g
def= {M ∈ M2g(R) | M · J · tM = η · J, η ∈ R×}

for the group of symplectic similitudes. Thus, we have a natural character

χ : GSp2g → Gal(C/R)

that maps an M ∈ GSp2g to the sign of η (where η is as in the above defini-
tion of GSp2g). In particular, χ defines GSp+

2g, GSp−2g. Then we have a natural
homomorphism

φ : GSp2g → Aut(Hg)

given by letting M =

(
A B

C D

)
∈ GSp2g act on Z ∈ Hg by

Z �→ (AZχ(M) + B)(CZχ(M) + D)−1

Thus, φ is compatible with the augmentations to Gal(C/R). Now it is clear that
the kernel of φ is given by the scalars R× ⊆ GSp2g. In fact, φ is surjective.
Indeed, this is well-known when +’s are added to both sides (i.e., for holomorphic
automorphisms — cf., e.g., [Maass], §4, Theorem 2). On the other hand, since φ is
compatible with the augmentations to Gal(C/R), the surjectivity of φ thus follows
from the “5-Lemma.” Thus, in summary, we have a natural isomorphism

GSp2g/R× ∼= Aut(Hg)

Moreover, the space Hg admits a natural Riemannian metric. Relative to this met-
ric, any two points Z1, Z2 of Hg can be joined by a unique geodesic (cf. [Maass], §3,
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Theorem). Moreover, this Riemannian metric is preserved by the action of GSp2g

on Hg. (Indeed, this follows from [Maass], §4, Theorem 1, in the holomorphic case.
As for the anti-holomorphic case, it suffices to check that the metric is preserved
by a single anti-holomorphic map. But this is clear from [Maass], §4, Theorem 1,
for the map Z �→ −Z.)

Example 3.3. (Teichmüller Space) Let g, r ≥ 0 be integers such that 2g−2+
r > 0. Let us denote by Tg,r the Teichmüller space of genus g Riemann surfaces
with r marked points. Thus, Tg,r has a natural structure of complex manifold.
Moreover, Tg,r is equipped with a natural Kähler metric, called the Weil-Petersson
metric, whose associated Riemannian metric has the property that any two points
t1, t2 ∈ Tg,r may be joined by a unique geodesic (cf. [Wolp], §5.1).

Write

Modg,r

for the full modular group, i.e., the group of homotopy classes of homeomorphisms of
a topological surface of type (g, r) onto itself. Note that Modg,r is equipped with an
augmentation Modg,r → Gal(C/R) given by considering whether or not the homeo-
morphism preserves the orientation of the surface. The quotient Tg,r/Mod+

g,r (in the
sense of stacks) may be identified with the moduli stack Mg,r of hyperbolic curves
of type (g, r) over C, and the Weil-Petersson metric descends to Mg,r. Moreover,
the Riemannian metric arising from the Weil-Petersson metric on Mg,r is preserved
by complex conjugation. Indeed, this follows easily, for instance, from the definition
of the Weil-Petersson metric in terms of integration of the square of the absolute
value of a quadratic differential (on the Riemann surface in question) divided by
the (1, 1)-form given by the Poincaré metric (on the Riemann surface in question)
— cf., e.g, [Wolp], §1.4.

If (g, r) is not exceptional (i.e., not equal to the cases (0, 3), (0, 4), (1, 1), (1, 2),
or (2, 0)), then it is known (by a theorem of Royden — cf., e.g., [Gard], §9.2,
Theorem 2) that one has a natural isomorphism

Modg,r
∼= Aut(Tg,r)

which is compatible with the natural augmentations to Gal(C/R). Now I claim that
(at least if (g, r) is nonexceptional, then) Aut(Tg,r) preserves (the Riemannian met-
ric arising from) the Weil-Petersson metric. Indeed, since Tg,r/Mod+

g,r = Mg,r,
and the Weil-Petersson metric descends to Mg,r, it thus follows that Mod+

g,r pre-
serves the Weil-Petersson metric. Thus, the claim follows from the fact (observed
above) that (the Riemannian metric arising from) the Weil-Petersson metric on
Mg,r is preserved by complex conjugation.

Now let us return to our discussion of an arbitrary real complex manifold (X, ι).
By analogy with the case when (X, ι) arises from a real algebraic variety (cf. the
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Remark following Definition 3.1), we will refer to the fixed point locus of ι as the
real locus of (X, ι), and use the notation

X(R)

for this locus. Observe that X(R) is necessarily a real analytic submanifold of
X of real dimension equal to the complex dimension of X. (Indeed, this follows
immediately by considering the local structure of ι at a point x ∈ X(R).) Moreover,
at any x ∈ X(R), the involution ι induces a semi-linear (i.e., with respect to complex
conjugation) automorphism ιx of order 2 of the complex vector space Tx(X) (i.e.,
the tangent space to the complex manifold X at x). That is to say, ιx defines a
real structure Tx(X)R ⊆ Tx(X)R ⊗R C = Tx(X) on Tx(X). Put another way, this
real structure Tx(X)R is simply the tangent space to the real analytic submanifold
X(R) ⊆ X.

Since ι acts without fixed points on X\X(R), it follows that the quotient of
X\X(R) by the action of ι defines a real analytic manifold over which X\X(R)
forms an unramified double cover. In the following, in order to analyze the action
of ι on all of X, we would like to consider the quotient of X by the action of ι in
the sense of real analytic stacks. Let us denote this quotient by Xι. Thus, we have
an unramified double cover

X → Xι

which extends the cover discussed above over X\X(R).

The Galois group of this double cover (which is isomorphic to Z/2Z) may be
identified with the Galois group Gal(C/R). Thus, this double cover induces a short
exact sequence of fundamental groups

1 → π1(X) → π1(Xι) → Gal(C/R) → 1

where we omit base-points, since they are inessential to the following discussion.
(Here, by “π1” we mean the usual (discrete) topological fundamental group in the
sense of algebraic topology.)

Now write X̃ → X for the universal covering space of X. Thus, X̃ also
has a natural structure of complex manifold, and ι induces an anti-holomorphic
automorphism ι̃ (not necessarily of order 2!) of X̃, which is uniquely determined
up to composition with the covering transformations of X̃ → X. Since X̃ is also the
universal cover of the real analytic stack Xι, it thus follows that by considering the
covering transformations of the covering X̃ → Xι, we get a natural homomorphism

π1(Xι) → Aut(X̃)

which is compatible with the natural projections of both sides to Gal(C/R).
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Thus, if, for instance, (X, ι) is a hyperbolic real Riemann surface, then by
Example 3.2, there is a natural isomorphism Aut(X̃) ∼= PGL2(R) = GSp2/R×

(well-defined up to conjugation by an element of PGL+
2 (R)). Thus, we obtain a

natural representation

ρX : π1(Xι) → PGL2(R)

which is compatible with the natural projections of both sides to Gal(C/R).

Definition 3.4. Let (X, ι) be a hyperbolic real Riemann surface. Then the
representation

ρX : π1(Xι) → PGL2(R)

(which is defined up to composition with conjugation by an element of PGL+
2 (R))

just constructed will be referred to as the canonical representation of (X, ι).

Remark. The point of view of Definition 3.4 is discussed in [Mzk3], §1, “Real
Curves,” although the formulation presented there is somewhat less elegant.

§3.2. Fixed Points of Anti-Holomorphic Involutions

Let T be a (nonempty) complex manifold which is also equipped with a smooth
Riemannian metric. Let us also assume that the Riemannian metric on T satisfies
the following property:

(*) For any two distinct points t1, t2 ∈ T , there exists a unique geodesic
joining t1 and t2.

Then we have the following result, which is fundamental to the theory of the present
§3:

Lemma 3.5. Let T be a (nonempty) complex manifold equipped with a smooth
Riemannian metric satisfying the condition (*). Let ιT : T → T be an anti-
holomorphic involution of T which preserves this Riemannian metric. Then the
fixed point set FιT

def= {t ∈ T | ιT (t) = t} of ιT is a nonempty, connected real
analytic submanifold of T of real dimension equal to the complex dimension of T .

Proof. By the discussion of §3.1, it follows that it suffices to prove that ιT is
nonempty and connected. First, we prove nonemptiness. Let t1 ∈ T be any point
of T , and set t2

def= ιT (t1). If t1 = t2, then t1 ∈ FιT , so we are done. If t1 = t2, then
let γ be the unique geodesic joining t1, t2. Then since the subset {t1, t2} is preserved
by ιT , it follows that γ is also preserved by ιT . Thus, it follows in particular that
the midpoint t of γ is preserved by ιT , i.e., that t ∈ FιT , so FιT is nonempty as
desired. Connectedness follows similarly: If t1, t2 ∈ FιT , then the unique geodesic γ
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joining t1, t2 is also clearly fixed by ιT , i.e., γ ⊆ FιT , so FιT is pathwise connected.
©

Remark. The idea for this proof (using the Weil-Petersson metric in the case of
Teichmüller space) is essentially due to Wolpert ([Wolp]), and was related to the
author by C. McMullen. We remark that this idea has been used to give a solution
of the Nielsen Realization Problem (cf. the Introduction of [Wolp]). It is easiest to
see what is going on by thinking about what happens in the case when T = H (the
upper half-plane) equipped with the Poincaré metric dx2+dy2

y2 . Also, we remark that
in the case when T = P1

C, both the hypothesis and the conclusion of Lemma 3.5 are
false! (That is, the hypothesis is false because there will always exist “conjugate
points,” and the conclusion is false because it is easy to construct examples of
anti-holomorphic involutions without fixed points.)

Now assume that (X, ι) is any real complex manifold equipped with a smooth
Riemannian metric (i.e., X is equipped with a smooth Riemannian metric preserved
by ι) such that the induced Riemannian metric on the universal cover T

def= X̃
satisfies (*). Let Y ⊆ X(R) be a connected component of the real analytic manifold
X(R). Then since ι acts trivially on Y , the quotient of Y by the action of ι forms a
real analytic stack Y ι whose associated coarse space is Y itself, and which fits into
a commutative diagram:

Y −→ Y ι⏐⏐� ⏐⏐�
X −→ Xι

Moreover, the mapping Y ι → Y (where we think of Y as the coarse space associated
to the stack Y ι) defines a splitting of the exact sequence:

1 → π1(Y ) → π1(Y ι) → Gal(C/R) → 1

hence a homomorphism Gal(C/R) → π1(Y ι). If we compose this homomorphism
with the natural homomorphism π1(Y ι) → π1(Xι), then we get a morphism

αY : Gal(C/R) → π1(Xι)

naturally associated to Y , which is well-defined up to composition with an inner
autormorphism of π1(X). In particular, the image of complex conjugation under
αY defines a conjugacy class of involutions ιY of π1(Xι). Thus, to summarize, we
have associated to each connected component Y ⊆ X(R) of the real locus of (X, ι)
a conjugacy class of involutions ιY in π1(Xι).

Now we have the following immediate consequence of Lemma 3.5:
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Theorem 3.6. (“General Discrete Real Section Conjecture”) Let (X, ι)
be a real complex manifold equipped with a smooth Riemannian metric (i.e., X
is equipped with a smooth Riemannian metric preserved by ι) such that the induced
Riemannian metric on the universal cover X̃ satisfies (*). Then the correspondence
Y �→ ιY defines a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))

from the set of connected components of the real locus X(R) to the set of conjugacy
classes of sections of π1(Xι) → Gal(C/R) (or, equivalently, involutions in π1(Xι)).
Moreover, the centralizer of an involution ιY ∈ π1(Xι) is the image of π1(Y ι) in
π1(Xι).

Proof. Indeed, let ιT ∈ π1(Xι) be an involution. Then ιT may be thought of as an
anti-holomorphic involution of T

def= X̃. By Lemma 3.5, the fixed point locus FιT

of ιT is nonempty and connected. Thus, FιT maps into some connected component
Y ⊆ X(R). (In fact, the morphism FιT → Y is a covering map.) By functoriality
(consider the map of triples (T, ιT , FιT ) → (X, ι, Y )!), it follows that ιY = ιT . Thus,
every involution in π1(Xι) arises as some ιY . Next, let us show uniqueness. If ιT
arises from two distinct Y1, Y2 ⊆ X(R), then it would follow that the fixed point
locus FιT contains at least two distinct connected components (corresponding to
Y1, Y2), thus contradicting Lemma 3.5. Finally, if α ∈ π1(Xι) commutes with ιY ,
then α preserves FιY , hence induces an automorphism of FιY over Y ι. But since
FιY → Y ι is a covering map, this implies that α is in the image of π1(Y ι) in π1(Xι).
This completes the proof. ©

Remark. Thus, Theorem 3.6 is a sort of analogue of the so-called “Section Con-
jecture” of anabelian geometry for the discrete fundamental groups of real complex
manifolds — see [Groth], p. 289, (2); [NTM], §1.2, (GC3), for more on the Section
Conjecture.

Remark. Theorem 3.6 generalizes immediately to the case where X is a complex
analytic stack. In this case, “Y ι” is to be understood to be the real analytic stack
whose stack structure is inherited from that of the real analytic stack Xι. We leave
the routine details to the reader.

§3.3. Hyperbolic Curves and their Moduli

By the discussion of Examples 3.2 (in the case of H), 3.3, in §3.1, together with
Theorem 3.6 of §3.2, we obtain the following:

Corollary 3.7. (“Discrete Real Section Conjecture for Hyperbolic Real
Riemann Surfaces”) Let (X, ι) be a hyperbolic real Riemann surface. Then
the correspondence Y �→ ιY of §3.2 defines a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))
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from the set of connected components of the real locus X(R) to the set of conjugacy
classes of sections of π1(Xι) → Gal(C/R) (or, equivalently, involutions in π1(Xι)).

Remark. Some readers may find it strange that there is no discussion of “tangential
sections” (at the “points at infinity” of X) in Corollary 3.7. The reason for this is
that in the present “real context,” where we only consider connected components of
the set of real points, every tangential section arising from a real point at infinity
may be obtained as a limit of a sequence of real points that are not at infinity
(and, which, moreover, may be chosen to lie in the same connected components
of the real locus), hence is “automatically included” in the connected component
containing those real points.

Corollary 3.8. (“Discrete Real Section Conjecture for Moduli of Hy-
perbolic Curves”) Let g, r ≥ 0 be integers such that 2g − 2 + r > 0. Write
(Mg,r , ιM) for the moduli stack of complex hyperbolic curves of type (g, r), equipped
with its natural anti-holomorphic involution (arising from the structure of Mg,r as
an algebraic stack defined over R). If (X, ι) arises from a real hyperbolic curve of
type (g, r), then the exact sequence

1 → π1(X) → π1(Xι) → Gal(C/R) → 1

defines a homomorphism α(X,ι) : Gal(C/R) → π1(MιM
g,r ) = Modg,r ⊆ Out(π1(X))

(where “Out(−)” denotes the group of outer automorphisms of the group in paren-
theses). This correspondence (X, ι) �→ α(X,ι) defines a bijection

π0(Mg,r(R)) ∼= HomGal(C/R)(Gal(C/R), π1(MιM
g,r ))

from the set of connected components of Mg,r(R) to the set of conjugacy classes
of sections of π1(MιM

g,r ) → Gal(C/R) (or, equivalently, involutions in π1(MιM
g,r )).

Moreover, the centralizer of an involution ιY ∈ π1(MιM
g,r ) is the image of π1(Y ι) in

π1(MιM
g,r ).

Remark. Note that the injectivity portion of the bijection of Corollary 3.8, together
with the determination of the centralizer of an involution (the final sentence in the
statement of Corollary 3.8), may be regarded as the discrete real analogue of the
so-called “Strong Isomorphism Version of the Grothendieck Conjecture.” (For the
convenience of the reader, we recall that the “Strong Isomorphism Version of the
Grothendieck Conjecture” is the statement of Theorem A in the Introduction, ex-
cept with K-morphism (respectively, homomorphism) replaced by K-isomorphism
(respectively, isomorphism).)

Remark. The author was informed by M. Seppala that results similar to Corollary
3.8 have been obtained in [AG].

§3.4. Abelian Varieties and their Moduli
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We begin with a lemma:

Lemma 3.9. Let (X, ι) be a real complex manifold such that X is an abelian
variety over C. Then there exists a translation-invariant Riemannian metric on X
which is preserved by ι.

Proof. By the Remark following Definition 3.1, (X, ι) arises from a projective
algebraic variety XR over R. Write Xc for the complex conjugate of the complex
manifold X (i.e., Xc and X have the same underlying real analytic manifold, but
holomorphic functions on Xc are anti-holomorphic functions on X). Since X is an
abelian variety over C, it follows that Xc is also an abelian variety over C. Thus,
the holomorphic isomorphism ι : X ∼= Xc is the composite of an isomorphism of
abelian varieties (i.e., one which preserves the group structures) with a translation.
In particular, it follows that ι preserves the invariant differentials V

def= Γ(X,ΩX )
on X. Thus, ι induces a semi-linear (with respect to complex conjugation) auto-
morphism of V , i.e., ι induces a real structure VR ⊆ VR ×R C = V on V . Then any
inner product on the real vector space VR induces an ι-invariant inner product on
the underlying real vector space of V which, in turn, induces a translation-invariant
Riemannian metric on X which is preserved by ι, as desired. ©

Remark. Note that any Riemannian metric on X̃ arising from a Riemannian metric
as in the conclusion of Lemma 3.9 induces a geometry on X̃ which is isomorphic
to Euclidean space, hence enjoys the property that any two points are joined by a
unique geodesic.

Now if we apply Theorem 3.6 using Lemma 3.9, Example 3.2, we obtain the
following:

Corollary 3.10. (“Discrete Real Section Conjecture for Real Abelian
Varieties”) Let (X, ι) be a real abelian variety. Then the correspondence Y �→
ιY of §3.2 defines a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), π1(Xι))

from the set of connected components of the real locus X(R) to the set of conjugacy
classes of sections of π1(Xι) → Gal(C/R) (or, equivalently, involutions in π1(Xι)).

Corollary 3.11. (“Discrete Real Section Conjecture for Moduli of
Abelian Varieties”) Let g ≥ 1 be a positive integer. Write (Ag, ιA) for the
moduli stack of principally polarized abelian varieties of dimension g, equipped with
its natural anti-holomorphic involution (arising from the structure of Ag as an
algebraic stack defined over R). If (X, ι) is a real abelian variety of dimension g,
then the exact sequence

1 → π1(X) → π1(Xι) → Gal(C/R) → 1
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defines a homomorphism α(X,ι) : Gal(C/R) → π1(AιA
g ) ∼= GSp(π1(X)) (where

“GSp” denotes the automorphisms that preserve, up to a constant multiple, the
symplectic form defined by the polarization). This correspondence (X, ι) �→ α(X,ι)

defines a bijection

π0(Ag(R)) ∼= HomGal(C/R)(Gal(C/R), π1(AιA
g ))

from the set of connected components of Ag(R) to the set of conjugacy classes
of sections of π1(AιA

g ) → Gal(C/R) (or, equivalently, involutions in π1(AιA
g )).

Moreover, the centralizer of an involution ιY ∈ π1(AιA
g ) is the image of π1(Y ι) in

π1(AιA
g ).

Proof. Note that the bijectivity of the natural morphism

π1(AιA
g ) → GSp(π1(X))

follows from the fact that it is compatible with the projections on both sides to
Gal(C/R) (where the projection GSp(π1(X)) → Z× = Gal(C/R) is given by looking
at the constant multiple to which the symplectic form arising from the polarization
is mapped), together with the well-known bijectivity of this morphism on the “+”
portions of both sides. ©

§3.5. Profinite Real Anabelian Geometry

So far we have considered the real analogue of Grothendieck’s anabelian ge-
ometry given by using the discrete fundamental groups of varieties. Another “real
analogue” of anabelian geometry is that given by using the profinite fundamental
groups. Just as in the discrete, the fundamental result was an existence theorem for
real points in the presence of involutions (i.e., Lemma 3.5), in the profinite case, the
fundamental existence is given by the following theorem of Cox (cf. [Frdl], Corollary
11.3):

Lemma 3.12. Let X be a connected real algebraic variety. Then X(R) = ∅ if
and only if Hi

et(X,Z/2Z) = 0 (where “Hi
et” denotes étale cohomology) for infinitely

many i.

Remark. In particular, if the complex manifold X(C) is a “K(π,1)” space (i.e.,
its universal cover is contractible), and, moreover, its fundamental group π1(X(C))
is good (i.e., the cohomology of π1(X(C)) with coefficients in any finite π1(X(C))-
module is isomorphic (via the natural morphism) to the cohomology of the profinite
completion of π1(X(C)) with coefficients in that module), then we obtain that:

(*) X(R) = ∅ if and only if Hi
et(π

alg
1 (X),Z/2Z) = 0 for infinitely many

integers i.
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(where πalg
1 (X) denotes the algebraic fundamental group of the scheme X). Also,

let us observe that if the projection πalg
1 (X) → Gal(C/R) possesses a splitting,

then the fact that Hi
et(Gal(C/R),Z/2Z) = 0 for infinitely many i implies that

Hi
et(π

alg
1 (X),Z/2Z) = 0 for infinitely many i.

Since hyperbolic curves and abelian varieties satisfy the conditions of the above
Remark, we thus obtain the following:

Corollary 3.13. (“Profinite Real Section Conjecture for Real Hyper-
bolic Curves”) Let X be a hyperbolic curve over R. Then the profinite version
of the correspondence Y �→ ιY of §3.2 defines a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 (X))

from the set of connected components of the real locus X(R) to the set of conju-
gacy classes of sections of πalg

1 (X) → Gal(C/R) (or, equivalently, involutions in
πalg

1 (X)).

Proof. Surjectivity follows from the above Remark, using the technique of [Tama1]:
Namely, given a section α : Gal(C/R) → πalg

1 (X) of πalg
1 (X) → Gal(C/R), the

family of open subgroups of πalg
1 (X) containing Im(α) defines a system of coverings

{Xi → X} (as i varies over the elements of some index set I) such that (by the
above Remark) each Xi(R) = 0. Since each Xi(R) has only finitely many connected
components, it thus follows that there exists a compatible system (indexed by I)
of connected components of Xi(R). But this amounts to the assertion that α arises
from some connected component of X(R), as desired (cf. [Tama1], Corollary 2.10).

Injectivity follows from the fact that involutions arising from distinct connected
components define distinct elements of H1(πalg

1 (X),Z/2Z) — cf. [Schd], §20, Propo-
sitions 20.1.8, 20.1.12. ©

Remark. To the author’s knowledge, the first announcement in the literature of
a result such as Corollary 3.13 (in the proper case) appears in a manuscript of
Huisman ([Huis]). (In fact, [Huis] also treats the one-dimensional case of Corollary
3.14 below.) Unfortunately, however, the author was not able to follow the portion
of Huisman’s proof ([Huis], Lemma 5.7) that corresponds to the application of Cox’s
theorem (as in the Remark following Lemma 3.12).

Corollary 3.14. (“Profinite Real Section Conjecture for Real Abelian
Varieties”) Let X be an abelian variety over R. Then the profinite version of
the correspondence Y �→ ιY of §3.2 defines a bijection

π0(X(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 (X))
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from the set of connected components of the real locus X(R) to the set of conju-
gacy classes of sections of πalg

1 (X) → Gal(C/R) (or, equivalently, involutions in
πalg

1 (X)).

Proof. Surjectivity follows as in the proof of Corollary 3.13. Injectivity follows, for
instance, from the discrete result (Corollary 3.10), together with the injectivity of
the natural morphism

H1(Gal(C/R), π1(X(C))) → H1(Gal(C/R), πalg
1 (X ⊗R C))

— itself a consequence of the fact that πalg
1 (X ⊗R C)) = π1(X(C)) ⊗Z Ẑ, where Ẑ

is the profinite completion of Z (hence a faithfully flat Z-module). ©

As for the case of moduli, the above argument breaks down in most cases since
it is either false that or unknown whether or not the fundamental group of the
corresponding moduli stacks is good. More precisely, π1(Ag) = Sp(2g, Z) is known
not to be good if g ≥ 2 (cf. Lemma 3.16 below). (If g = 1, then the “profinite real
section conjecture” for Ag is essentially contained in Corollary 3.13 above.) On the
other hand, to the author’s knowledge, it is not known whether or not π1(Mg,r)
is good if g > 2. If g ≤ 2, then, up to passing to finite étale coverings, Mg,r may
be written as a successive extension of smooth families of hyperbolic curves, hence
has a good fundamental group. Thus, we obtain the following:

Corollary 3.15. (“Profinite Real Section Conjecture for Moduli of
Hyperbolic Curves of Genus ≤ 2”) Let g, r ≥ 0 be integers such that 2g−2+r >
0, g ≤ 2. Write (Mg,r)R for the moduli stack of complex hyperbolic curves of type
(g, r) over R. If X is a real hyperbolic curve of type (g, r), then X defines a section
α(X,ι) : Gal(C/R) → πalg

1 ((Mg,r)R). This correspondence (X, ι) �→ α(X,ι) defines a
bijection

π0((Mg,r)R(R)) ∼= HomGal(C/R)(Gal(C/R), πalg
1 ((Mg,r)R))

from the set of connected components of (Mg,r)R(R) to the set of conjugacy classes
of sections of πalg

1 ((Mg,r)R) → Gal(C/R) (or, equivalently, conjugacy classes of
involutions in πalg

1 ((Mg,r)R)). Moreover, the centralizer of an involution ιY ∈
πalg

1 ((Mg,r)R) is the image of the profinite completion of π1(Y ι) in πalg
1 ((Mg,r)R).

Proof. Since (as just remarked) the fundamental groups involved are good, surjec-
tivity follows as in Corollaries 3.13, 3.14.

As for injectivity, we reason as follows. Given two real hyperbolic curves X,
Y of the same type (g, r) which induce the same section α (up to conjugacy) of
πalg

1 ((Mg,r)R) → Gal(C/R), we must show that they belong to the same connected
component of (Mg,r)R(R). First, let us observe that since [C : R] = 2, it follows
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that the marked points of X and Y over C consist of: (i.) points defined over R;
(ii) complex conjugate pairs. Moreover, the combinatorial data of which points are
defined over R and which points are conjugate pairs is clearly determined by the
section α. Thus, there exists an “ordering of connected components of the divisor
of marked points over R” of X, Y , which is compatible with α. Write

N → (Mg,r)R

for the finite étale covering defined by the moduli stack (over R) of hyperbolic
curves equipped with such an ordering. Note, in particular, that the injectivity
assertion under consideration for (Mg,r)R follows formally from the corresponding
injectivity assertion for N . Moreover, N may be written as a “successive extension”

N = Nr → Nr−1 → . . . → N1 → N0

of smooth families (i.e., the Nj+1 → Nj) of either hyperbolic curves (where we
include curves which are stacks — cf. the remark in parentheses following the list
below) or surfaces (of a special type, to be described below) over the stack N0,
where N0 may be described as follows:

(1) If g = 0, then N0 is the moduli stack of 4-pointed curves of genus 0,
equipped with an “ordering type” T , where T is one of the following: a
total ordering of the four points; a total ordering of two points, plus a pair
of conjugate points; a total ordering of two pairs of conjugate points. In
each of these three cases, one sees that N0 is a hyperbolic curve over R, so
we conclude the corresponding injectivity assertion for N0 from Corollary
3.13.

(2) If g = 1, then N0 is either the moduli stack of 1-pointed curves of genus
1 (which is a hyperbolic curve, so we may conclude the corresponding
injectivity assertion for N0 from Corollary 3.13), or N0 is the moduli
stack of 2-pointed curves of genus 1, where the two points are unordered.
In the latter case, by considering the “group of automorphisms of the
underlying genus 1 curve which preserve the invariant differentials,” we
get a morphism N0 → (M1,1)R, which is a smooth family whose fiber over
the elliptic curve E is the stack given by forming the quotient of E\{0E}
(where 0E is the origin of E) by the action of ±1. (Indeed, this fiber
parametrizes the “difference” of the two unordered points.) In particular,
(M1,1)R, as well as these fibers over (M1,1)R are hyperbolic curves, so the
corresponding injectivity assertion for N0 follows from Corollary 3.13.

(3) If g = 2, then N0 is the moduli stack of 0-pointed curves of genus 2.
Moreover, by using the well-known morphism (M2,0)R → (M0,6)R (given
by considering the ramification points of the canonical double covering
of the projective line associated to a curve of genus 2), this case may be
reduced to the case g = 0, which has already been dealt with.
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(We remark here that even though some of the hyperbolic curves appearing above
are in fact stacks, by passing to appropriate finite étale coverings which are still
defined over R and for which the real points in question lift to real points of the
covering, injectivity for such “stack-curves” follows from injectivity for usual curves
as proven in Corollary 3.13.) Finally, the surfaces that may appear as fibers in the
families Nj+1 → Nj appearing above are of the following type: If C is a hyperbolic
curve over R, write ΔC ⊆ C ×R C for the diagonal. Then the surfaces in question
are of the form {(C ×R C)\ΔC}/S2 (where S2 is the symmetric group on two
letters permuting the two factors of C , and we note that this quotient is the same
whether taken in the sense of schemes or of stacks). Now by passing (as in the
one-dimensional case) to appropriate finite étale coverings of these surfaces which
are still defined over R and for which the real points in question lift to real points of
the covering, the corresponding injectivity assertion for such surfaces follows from
injectivity for surfaces that may be written as a smooth family of hyperbolic curves
parametrized by a hyperbolic curve, hence is a consequence of Corollary 3.13. Thus,
by “dévissage” we conclude the desired injectivity for (Mg,r)R.

Before proceeding, we observe that the above argument shows that the bijec-
tivity assertion of Corollary 3.15 also holds for any finite étale covering of Mg,r

which is defined over R.

The final statement on centralizers may be proven as follows: Given an in-
volution ιY , write MY → (Mg,r)R for the pro-covering defined by the subgroup
generated by ιY in πalg

1 ((Mg,r)R). Then the statement on centralizers follows from
the fact that the conjugates of ιY in πalg

1 ((Mg,r)R) are in bijective correspondence
with the connected components of the inverse images of Y in MY (where we note
that this bijective correspondence follows from the observation of the preceding
paragraph). ©

Remark. Note that in many respects the profinite theory is more difficult and less
elegant than the discrete theory, where everything follows easily from the very gen-
eral Lemma 3.5. It is thus the feeling of the author that the discrete theory provides
a more natural real analogue of anabelian geometry than the profinite theory.

Lemma 3.16. Let g ≥ 2, and let H ⊆ Sp(2g, Z) be a subgroup of finite in-
dex. Then there exists a subgroup H ′ ⊆ H which is normal and of finite index in
Sp(2g, Z) such that the cohomological dimension of the profinite completion of H ′

is > dimR(Ag) = 2 ·dimC(Ag) = g(g+1). (This estimate holds even if one restricts
to H ′-modules of order equal to a power of p, for any fixed prime number p.) In
particular, if g ≥ 2, then Sp(2g, Z) is not good.

Proof. First, note that if Sp(2g, Z) is good, then so is any subgroup H of finite
index. But there exist H such that if we write AH ′ → Ag for the finite étale covering
defined by a finite index subgroup H ′ ⊆ H, then AH ′ is a complex manifold (i.e.,
not just a stack). The cohomology of H ′ is then given by the cohomology of AH ′.
Moreover, the cohomological dimension of AH ′ is = dimR(AH ′) = dimR(Ag). Thus,
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if the cohomological dimension of the profinite completion of H ′ is > dimR(Ag), it
follows that the cohomology of H ′ and of its profinite completion (with coefficients
in a finite module) are not isomorphic in general, i.e., that H ′ is not good. But this
implies that Sp(2g, Z) is not good, as desired.

Next, let us assume that we are given H as in the statement of Lemma 3.16, and
prove the existence of an H ′ as stated. First, let us observe that since the congruence
subgroup problem has been resolved affirmatively for Sp(2g, Z) (cf. [BMS]), it follows
that:

Sp(2g, Z)∧ = Sp(2g, Ẑ) =
∏
p

Sp(2g, Zp)

(where the “∧” denotes the profinite completion, and the product is taken over all
prime numbers p). Thus, it follows that the cohomological dimension of Sp(2g, Z)∧

is ≥ the cohomological dimension of Sp(2g, Zp) for any prime p. In particular, in
order to complete the proof of Lemma 3.16, it suffices to show that Sp(2g, Zp) ad-
mits a collection of arbitrarily small normal open subgroups whose p-cohomological
dimension is > g(g + 1).

But this follows from the theory of [Laz]: Indeed, by [Laz], V, §2.2.8, it follows
that that the p-cohomological dimension of any “p-valuable group” is equal to the
“rank” r of the group. Here, a p-valuable group (cf. [Laz], III, §2.1.2) is a topogical
group with a filtration satisfying certain properties. In the present context, the
topological group Sp[n](2g, Zp) (i.e., symplectic matrices which are ≡ to the identity
matrix modulo pn), equipped with the filtration defined by the Sp[m](2g, Zp) for
m ≥ n, will satisfy these properties. Moreover, the rank r of a p-valuable group
(cf. [Laz], III, §2.1.1, §2.1.3) is the Qp-dimension of the Lie algebra sp(2g,Qp) of
Sp(2g, Zp). Thus, in this case,

r = dimQp(sp(2g,Qp)) = dimR(sp(2g,R)) = dimR(Sp(2g, R)) > dimR(Hg) = dimR(Ag)

(where Hg is the Siegel upper half-plane — cf. Example 3.2). Indeed, the inequality
here follows from the fact that Sp(2g, R) acts transitively on Hg, with positive
dimensional isotropy subgroups. This completes the proof. ©

Section 4: Complements to the p-adic Theory

In this §, we present certain complements to the p-adic theory of [Mzk2] which
allow us to prove a certain isomorphism version of Theorem A of [Mzk2] (cf. §0 of
the present manuscript) over a somewhat larger class of fields K than was treated in
[Mzk2]. This larger class of fields — which we refer to as generalized sub-p-adic —
consists of those fields which may be embedded as subfields of a finitely generated
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extension of the quotient field of W (Fp) (the ring of Witt vectors with coefficients
in the algebraic closure of Fp, for some prime number p).

§4.1. Good Chern Classes

In this §, we work over a base field K, which we assume (for simplicity, although
it is not absolutely necessary for much of what we shall do) to be of characteristic
0. Let XK be a smooth, geometrically connected variety over K.

If p is a prime number, and n ≥ 1 an integer, then we may consider the
Kummer sequence on XK , i.e., the exact sequence of sheaves on (XK)et (i.e., the
étale site of XK) given by

0 → (Z/pnZ)(1) → Gm → Gm → 0

(where, the “(1)” is a “Tate twist,” and the morphism from Gm to Gm is given by
raising to the pn-th power.) The connecting morphism induced on étale cohomology
by the Kummer sequence then gives us a morphism

δp,n : H1
et(XK , Gm) → H2

et(XK , (Z/pnZ)(1))

Now suppose that L is a line bundle on XK . Then applying δp,n to L ∈ H1
et(XK , Gm)

gives us a compatible system of classes δp,n(L) ∈ H2
et(XK , (Z/pnZ)(1)), hence (by

letting p, n vary) a class c1(L) ∈ H2
et(XK , Ẑ(1)).

Definition 4.1. We shall refer to c1(L) ∈ H2
et(XK , Ẑ(1)) as the (profinite,

étale-theoretic) first Chern class of L. If N ≥ 1 is an integer, then we shall refer to
c1(L) mod N ∈ H2

et(XK , (Z/NZ)(1)) as the (étale-theoretic) first Chern class of L
modulo N .

Next, let us write

π1(XK)

for the (algebraic) fundamental group of XK (where we omit the base-point since
it will not be explicitly necessary in our discussion). Also, let us assume that we
are given a quotient

π1(XK) � Q

(where Q is profinite, and the surjection is continuous). Then we make the following
crucial definition:
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Definition 4.2. Let N ≥ 1 be an integer. For i, j ∈ Z, a cohomology class
η ∈ Hi

et(XK , (Z/NZ)(j)) will be called good if there exists a (nonempty) finite étale
covering Y → XK such that η|Y ∈ Hi

et(Y, (Z/NZ)(j)) is zero.

Next, suppose that π1(XK) � Q is a surjection such that the composite of the
natural surjection π1(XK) � ΓK with the cyclotomic character ΓK → (Z/NZ)×

factors through Q. Then we shall say that η is Q-good if this covering Y → XK may
be chosen to arise from a quotient of π1(XK) that factors through π1(XK) � Q. If
L is a line bundle on XK , then we will say that its Chern class is good (respectively,
Q-good) modulo N if the Chern class of L modulo N in H2

et(XK , (Z/NZ)(1)) is
good (respectively, Q-good).

Recall that a discrete group Γ is said to be good if the cohomology of Γ with
coefficients in any finite Γ-module is isomorphic (via the natural morphism) to the
cohomology of the profinite completion of Γ with coefficients in that module. Then
the justification for the terminology of Definition 4.2 is the following:

Lemma 4.3. Suppose that K is a subfield of C (the complex number field); that
the topological space X def= XC(C) is a “K(π,1)” space (i.e., its universal cover is
contractible); and that the topological fundamental group πtop

1 (X ) is good. Then it
follows that all cohomology classes η ∈ Hi

et(XK , (Z/NZ)(j)) are good.

Proof. Write XC
def= XK ⊗K C, XK

def= XK ⊗K K. Since finite étale coverings of
XC are always defined over a finite extension of K, and (by well-known elemen-
tary properties of étale cohomology) the natural morphism Hi

et(XK , (Z/NZ)(j)) →
Hi

et(XC, (Z/NZ)(j)) is an isomorphism, one sees immediately that it suffices to
prove Lemma 4.3 when K = C, j = 0. But then

Hi
et(XC, Z/NZ) ∼= Hi

sing(XC, Z/NZ) ∼= Hi(πtop
1 (X ),Z/NZ)

(where the second isomorphism (between singular and group cohomology) follows
from the fact that X is a “K(π,1)” space). Thus, the fact that η vanishes upon
restriction to a (nonempty) finite étale covering follows from the fact that πtop

1 (X )
is assumed to be good. ©

Remark. Thus, under the hypotheses of Lemma 4.3, every cohomology class is
good. In general, however, we would like to work with varieties XK that do not
satisfy the hypotheses of Lemma 4.3, but which nonetheless have the property that
the cohomology classes that we are interested in are good.

Now let L be a line bundle on XK . Let us write L → XK for the geometric
line bundle associated to L (i.e., the spectrum over XK of the symmetric algebra
over OXK of L−1). Also, let us write
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L× ⊆ L → XK

for the complement of the zero section in L. Thus, L× → XK is a Gm-torsor, and
we have an exact sequence of (algebraic) fundamental groups

Ẑ(1) = π1((Gm)K) → π1(L×) → π1(XK ) → 1

(where we omit base-points since they will not be explicitly necessary in our dis-
cussion). In general, however, it is not necessarily the case that the first arrow
is injective. (Consider, for instance, the line bundle O(−1) on P1 (over, say, an
algebraically closed field K of characteristic zero), in which case L× = A2\{0} has
trivial fundamental group.)

Lemma 4.4. Suppose that the Chern class of L is good modulo all powers of p.
Then the restriction to Zp(1) ⊆ Ẑ(1) of the morphism Ẑ(1) → π1(L×) is injective,
so the above exact sequence defines an extension class ∈ H2(π1(XK),Zp(1)). If,
moreover, the Chern class of L is Q-good modulo all powers of p, then (for all
integers n ≥ 1) the reduction modulo pn of this extension class arises from an
element ∈ H2(Q, (Z/pnZ)(1)).

Proof. Indeed, let

Y → XK

be a finite étale covering such that the Chern class of L modulo pn vanishes upon
restriction to Y . Going back to the definition of the Chern class using the Kummer
exact sequence, one thus sees that there exists a line bundle P on Y such that
P⊗pn ∼= L|Y . Let us write P× → Y for the complement of the zero section in the
geometric line bundle corresponding to P . Thus, P× → Y is a Gm-torsor with the
property that, if we execute the change of structure group Gm → Gm given by
raising to the pn-th power, we obtain the Gm-torsor L×|Y def= L× ×XK Y → Y . In
particular, we obtain a finite étale covering

P× → L×|Y

whose restriction to the geometric fibers of L×|Y → Y is (isomorphic to) the
covering of Gm given by raising to the pn-th power. Sorting through the def-
initions of the various fundamental groups involved, one thus sees that the ex-
istence of such coverings implies that Zp(1) → π1(L×) is injective, and, more-
over, that if the covering Y → XK arises from a quotient of Q, then the ex-
tension class ∈ H2(π1(XK), (Z/pnZ)(1)) defined by π1(L×) arises from a class
∈ H2(Q, (Z/pnZ)(1)), as desired. ©
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Remark. In the Q-good portion of Lemma 4.4, it was necessary to use finite coeffi-
cients Z/pnZ (i.e., rather than Zp) since it is not clear that the various group exten-
sions of Q by (Z/pnZ)(1) form a compatible system as n varies. (When Q = π1(XK),
one need not worry about this since one already has a natural group extension,
namely, that arising from π1(L×).)

Lemma 4.5. Suppose that the Chern class of L is good modulo all powers of p.
Write

cgp
1 (L) ∈ H2(π1(XK),Zp(1))

for the extension class of Lemma 4.4. Then the image of cgp
1 (L) under the natural

map
H2(π1(XK),Zp(1)) → H2

et(XK , Zp(1))

is equal to the (p-adic portion of the) first Chern class c1(L) of Definition 4.1.
If, moreover, the Chern class of L is Q-good modulo all powers of p, then (for
all integers n ≥ 1) there exists a class ∈ H2(Q, (Z/pnZ)(1)) whose image in
H2

et(XK , (Z/pnZ)(1)) is equal to c1(L) mod pn.

Proof. If Γ is a profinite group, then let us denote by B(Γ) the “classifying site of
Γ,” i.e., the site defined by considering the category of finite sets with continuous
Γ-action (and coverings given by surjections of such sets). Thus, if M is a finite
abelian group with continuous Γ-action, then M defines a sheaf of abelian groups
on this site whose cohomology may be identified with the usual group cohomology
of Γ with coefficients in M .

Next, let us note that relative to this notation, there is a tautological morphism

(XK)et → B(π1(XK))

determined by the well-known equivalence between finite étale coverings of XK

and finite sets with continuous π1(XK )-action. Put another way, this morphism
is the étale analogue of the well-known tautological morphism (determined up to
homotopy equivalence) in topology from a topological space to the classifying space
of its fundamental group. By functoriality, we thus obtain a commutative diagram:

(L×)et −→ B(π1(L×))⏐⏐� ⏐⏐�
(XK)et −→ B(π1(XK))

(where the horizontal morphisms are the tautological morphisms just discussed,
and the vertical morphisms are those induced by functoriality from L× → XK).

Next, let us observe that both vertical morphisms of the above commutative
diagram give rise to Leray-Serre spectral sequences on cohomology with coefficients
in Zp(1). (Here, we note that the fact that the vertical morphism on the right gives
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rise to such a spectral sequence follows from the injectivity assertion of Lemma
4.4.) In particular, if we consider the differential on the “E2-term” of these spectral
sequences we obtain a commutative diagram:

Zp = H0(π1(XK),H1(Ẑ(1),Zp(1))) −→ Zp = H0
et(XK ,H1

et((Gm)K , Zp(1)))⏐⏐� ⏐⏐�
H2(π1(XK),Zp(1)) −→ H2

et(XK , Zp(1))

(where the vertical morphisms are the differentials of the spectral sequence, and the
horizontal morphisms are induced by the morphisms of sites just discussed). On
the other hand, sorting through the definitions, one sees that it is a tautology that
the image of 1 ∈ Zp under the vertical morphism on the right (respectively, left) is
the Chern class c1(L) (respectively, cgp

1 (L)). Thus, the assertion that the image of
cgp
1 (L) in H2

et(XK , Zp(1)) is equal to c1(L) follows from the commutativity of the
above diagram. The corresponding assertion in the Q-good case follows by replacing
π1(XK), Zp in the above argument by Q, Z/pnZ, respectively, and applying the
Q-good portion of Lemma 4.4. ©

Lemma 4.6. Suppose that XK is equipped with a smooth, proper morphism

XK → ZK

(where ZK is a smooth, geometrically connected variety over K) which admits a
section σ : ZK → XK. Also, let us assume that K may be embedded as a subfield
of C, and that if z is any geometric point of ZK such that k(z) may be embedded as
a subfield of C, then the geometric fiber Xz

def= XK ×ZK z satisfies the hypotheses
of Lemma 4.3 (i.e., its complex valued points form a “K(π,1)” space with good
topological fundamental group). Then the Chern class of any line bundle L on XK

for which the pull-back σ∗(L) is trivial (as a line bundle on ZK) is good modulo
all integers N ≥ 1.

Proof. First, let us observe that we may always replace ZK (respectively, XK)
by a finite étale covering of ZK (respectively, XK , possibly at the expense of also
replacing ZK by some new finite étale covering of ZK) without affecting the validity
of either the hypotheses or the conclusion of the lemma. Next, fix a geometric point
z of Z as in the statement of Lemma 4.6, and write Xz for the resulting geometric
fiber. Then the existence of the section σ implies that we obtain an exact sequence
of fundamental groups:

1 → π1(Xz) → π1(XK) → π1(ZK) → 1

Indeed, in general (i.e., in the absence of hypothesis that σ exist) the morphism
π1(Xz) → π1(XK) need not be injective. That is to say, its kernel is naturally iso-
morphic to the cokernel of the morphism (induced by XK → ZK via functoriality)
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between certain étale-theoretic second homotopy groups of XK and ZK (cf. [Frdl],
p. 107, Theorem 11.5). On the other hand, since XK → ZK admits a section, it
thus follows (by functoriality) that this morphism between second homotopy groups
also admits a section, hence that it is surjective (i.e., its cokernel is trivial). This
implies the injectivity of the morphism π1(Xz) → π1(XK). Note that, stated in
words, the injectivity of this morphism implies that (after possible base-change to
a finite étale covering of ZK) any finite étale covering of Xz may be realized as the
restriction to the fiber Xz of a finite étale covering of XK .

Next, let us consider the Leray-Serre spectral sequence associated to the mor-
phism XK → ZK for étale cohomology with coefficients in (Z/pnZ)(1) (for some p,
n as in Definition 4.1). If we consider the “E2-term”of this spectral sequence, we
see that the cohomology group H2

et(XK , (Z/pnZ)(1)) gets a natural filtration whose
“highest subquotient” (i.e., the subquotient which is, in fact, a quotient) is a sub-
module of H0

et(ZK ,H2
et(Xz , (Z/pnZ)(1))). On the other hand, by the assumptions

placed on Xz, it follows that all the classes of H2
et(Xz , (Z/pnZ)(1)) vanish upon

restriction to some finite étale covering of Xz . Moreover, by the discussion of the
preceding paragraph, it follows that this covering may be realized as the restriction
to Xz of a finite étale covering of XK . Thus, in conclusion, by replacing XK and
ZK by appropriate finite étale coverings, we may assume that the image of the class
c1(L) mod pn in the highest subquotient of H2

et(XK , (Z/pnZ)(1)) vanishes.

The next highest subquotient of the natural filtration on H2
et(XK , (Z/pnZ)(1))

induced by the Leray-Serre spectral sequence may be regarded naturally as a sub-
module of H1

et(ZK ,H1
et(Xz , (Z/pnZ)(1))). Thus, by an argument similar to that of

the preceding paragraph, we conclude that we may assume that the image of the
class c1(L) mod pn in the next highest subquotient of H2

et(XK , (Z/pnZ)(1)) also
vanishes.

The next subquotient (i.e., the subquotient which is, in fact, a submodule) of
the natural filtration on H2

et(XK , (Z/pnZ)(1)) induced by the Leray-Serre spec-
tral sequence is given by the submodule of H2

et(XK , (Z/pnZ)(1)) which is the
image of H2

et(ZK , (Z/pnZ)(1)) in H2
et(XK , (Z/pnZ)(1)) (via pull-back relative to

XK → ZK). Note that the existence of the section σ implies that this pull-back
morphism H2

et(ZK , (Z/pnZ)(1)) → H2
et(XK , (Z/pnZ)(1)) is injective. Thus, we

conclude that the class c1(L) mod pn arises as the pull-back to XK of a class in
H2

et(ZK , (Z/pnZ)(1)). On the other hand, by pulling back via σ (and applying the
functoriality of the formation of the Chern class of a line bundle), we thus see that
this class in H2

et(ZK , (Z/pnZ)(1)) is simply c1(σ∗(L)) mod pn, which is = 0 (since
σ∗(L) is assumed to be trivial). This completes the proof of Lemma 4.6. ©

§4.2. The Group-Theoreticity of a Certain Chern Class

In this §, we let K be a field of characteristic 0 (until further notice). Also, we
fix a prime number p and an integer g ≥ 2.

Let us denote by A the moduli stack of principally polarized abelian varieties
of dimension g. Write
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G → A

for the tautological abelian scheme over A, and ε : A → G for its identity section.
Also, let us denote by LG the tautological line bundle on G that defines the principal
polarization. Thus, LG is relatively ample over A, and we assume that it is rigidified
by some isomorphism ε∗(LG) ∼= OA. Also, we fix a geometric point a ∈ A(K), and
denote the fundamental group π1(Ga) of the geometric fiber Ga by π1(G/A). Thus,
we obtain an exact sequence of fundamental groups

1 → π1(G/A) → π1(G) → π1(A) → 1

equipped with a section π1(ε) : π1(A) → π1(G) which allows us to identify π1(G)
with the semi-direct product π1(G/A) � π1(A). Next, observe that since π1(G/A)
is a free Ẑ-module of rank 2g, we may write

π1(G/A) = Π(p)
G/A × Π( �=p)

G/A

for the natural decomposition of π1(G/A) as a product of a Zp-free module — i.e.,
Π(p)

G/A — and a module Π( �=p)
G/A which is free over the product of all Zp′ , where p′ ranges

over the prime numbers not equal to p. Moreover, the above exact sequence shows
that π1(A) acts naturally on π1(G/A) in a way that respects this decomposition.
In particular, we may push forward the above exact sequence via the quotient
π1(G/A) � Π(p)

G/A to obtain exact sequences (where Π(p/A)
G is defined by the first

exact sequence)

1 → Π( �=p)
G/A → π1(G) → Π(p/A)

G → 1

1 → Π(p)
G/A → Π(p/A)

G → π1(A) → 1

— of which the second exact sequence admits a section that allows us to identify
Π(p/A)

G with the semi-direct product Π(p)
G/A � π1(A).

Now let us consider π1(A) in greater detail. First, let us recall that the action of
π1(A) on Π(p)

G/A preserves the symplectic form defined by the tautological principal
polarization on the family of abelian varieties G → A up to multiplication by a
scalar. Let us denote by

GSp(Π(p)
G/A)

the group of Zp-linear automorphisms of Π(p)
G/A which preserve this symplectic form

up to multiplication by a scalar. Thus, we obtain a natural commutative diagram
(in which the rows are exact):
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1 −→ Sp(π1(G/A)) −→ π1(A) −→ ΓK −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ Sp(Π(p)

G/A) −→ GSp(Π(p)
G/A) −→ Zp

× −→ 1

Here, “Sp” denotes the group of Ẑ-linear automorphisms of π1(G/A) that preserve
the symplectic form in question precisely; the homomorphism GSp(Π(p)

G/A) → Zp
× is

the map that assigns to an element of the domain the scalar by which this element
acts on the symplectic form in question. (Also, we note that here, we apply the
well-known facts that: (i.) when K = C, the topological fundamental group of A is
equal to Sp(2g, Z); (ii.) for g ≥ 2, the congruence subgroup problem for Sp(2g, Z)
has been resolved affirmatively (cf. the proof of Lemma 3.16; [BMS]).) Finally,
we observe that the vertical morphism (on the right) ΓK → Zp

× is simply the
cyclotomic character of K.

In particular, by applying the identification of Π(p/A)
G with the semi-direct

product Π(p)
G/A � π1(A), we obtain a continuous homomorphism

Π(p/A)
G → Π(p)

G
def= Π(p)

G/A � GSp(Π(p)
G/A)

which is surjective whenever the cyclotomic character ΓK → Zp
× is surjective. As

is well-known (cf., e.g., [Ser3], Chapter XIV, §7), this is the case, for instance, when
K = Q, Qp.

In the present discussion, we would like to concentrate our attention on the
prime p, in the case K = Q. Thus, we have surjections:

π1(G) � Π(p/A)
G � Π(p)

G

Let us denote (by abuse of notation relative to Definition 4.1) the p-adic component
of the first Chern class of LG by:

c1(LG) ∈ H2
et(G, Zp(1))

Then we have the following:

Lemma 4.7. Suppose that K = Q. Then relative to the tautological morphisms

Get → B(π1(G)) → B(Π(p)
G )

(cf. the proof of Lemma 4.5), the class c1(LG) mod pn ∈ H2
et(G, (Z/pnZ)(1)) arises

from a class ∈ H2(Π(p)
G , (Z/pnZ)(1)), for all integers n ≥ 1.
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Proof. Indeed, Lemma 4.7 follows from Lemmas 4.4, 4.5, together with the proof
of Lemma 4.6 (where, in Lemma 4.6, we take “G → A” as our smooth, proper
morphism “XK → ZK”). In fact, if we apply Lemmas 4.4, 4.5, 4.6, literally as
stated, we already obtain that c1(LG) arises from a class ∈ H2(π1(G),Zp(1)). Since
the kernel of the surjection π1(G) � Π(p/A)

G is equal to Π( �=p)
G/A , which is a profinite

group of order prime to p, it thus follows immediately that this class arises from
a class ∈ H2(Π(p/A)

G , Zp(1)). To see that, in fact, c1(LG) mod pn arises from a
class ∈ H2(Π(p)

G , (Z/pnZ)(1)), it suffices to observe that, in the proof of Lemma
4.6, the only coverings of G that were necessary to annihilate c1(LG ) modulo pn

were coverings of G that restricted to arbitrary p-power coverings of the abelian
variety Ga. But it is clear from the definition of Π(p)

G (cf. the discussion above) that
such coverings may be constructed from quotients of Π(p/A)

G that factor through
the quotient Π(p/A)

G � Π(p)
G . Thus, we conclude by taking “Q” to be the quotient

π1(G) � Π(p)
G in Lemmas 4.4, 4.5. This completes the proof of Lemma 4.7. ©

Next, let us denote by

Δ

a copy of the maximal pro-p quotient of the profinite completion of the fundamental
group of a (Riemann) surface of genus g. Since, as is well-known (cf., e.g., [Tama1],
Proposition 1.11), Δ is center-free, we have an exact sequence of profinite groups:

1 → Δ → AΔ
def= Aut(Δ) → OΔ

def= Out(Δ) → 1

If we form the quotient A′
Δ of AΔ by the kernel of the quotient Δ � Δab (to the

maximal abelian quotient of Δ), then we obtain a natural commutative diagram (in
which the rows are exact):

1 −→ Δ −→ AΔ −→ OΔ −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ Δab −→ A′

Δ −→ OΔ −→ 1

In particular, we obtain a natural action of OΔ on Δab which preserves the natural
symplectic form on Δab — i.e., the symplectic form determined by the cup product
on group cohomology H1(Δ, Zp) × H1(Δ, Zp) → H2(Δ, Zp) ∼= Zp (where we think
of H1(Δ, Zp) as the Zp-linear dual to Δab) — up to multiplication by a scalar. Let
us denote by

GSp(Δab)

the group of Zp-linear automorphisms of Δab which preserve this symplectic form
up to multiplication by a scalar. Thus, we obtain a natural homomorphism
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OΔ → GSp(Δab)

together with an OΔ-equivariant action of Δab on A′
Δ (via the inclusion Δab ↪→

A′
Δ), which determines an isomorphism of profinite groups

(Δab � OΔ) ×OΔ A′
Δ
∼= A′

Δ ×OΔ A′
Δ

— i.e., in more “geometric language,” A′
Δ is a “Δab-torsor” over OΔ. In particular,

by applying this isomorphism, we obtain a natural projection:

A′
Δ ×OΔ A′

Δ → (Δab � OΔ) → (Δab � GSp(Δab))

Moreover, any choice of symplectic isomorphism Δab ∼= Π(p)
G/A determines an iso-

morphism

(Δab � GSp(Δab)) ∼= Π(p)
G

which, up to composition with an inner automorphism, is independent of our choice
of symplectic isomorphism.

In a similar vein, let us write M for the moduli stack of smooth, proper curves
of genus g over K, and

C → M

for the tautological curve over M. Also, let us write J → M for the Jacobian of
C → M and (for d ∈ Z) Jd → M for the J -torsor over M that parametrizes line
bundles on C of relative degree d over M. By assigning to a point of the curve C the
line bundle on C defined by that point (regarded as an effective divisor), we obtain
a natural morphism:

C → J1

Moreover, the action of J on J1 determines an isomorphism

J ×M J1
∼= J1 ×M J1

hence also a projection J1 ×M J1 → J . In particular, by composition, we obtain a
morphism

C ×M C → J1 ×M J1 → J
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(over M), which may be thought of, in terms of S-valued points (where S is a
scheme), as the morphism that maps a pair of points (x, y) ∈ C(S) ×M(S) C(S) to
the line bundle of degree 0 on C determined by the divisor x−y. Finally, if we write
M → A for the Torelli morphism — i.e., the classifying morphism of the abelian
scheme J → M (equipped with its natural principal “theta polarization”) — we
thus obtain a natural commutative diagram

J −→ G⏐⏐� ⏐⏐�
M −→ A

which is, in fact, cartesian, and, moreover, (by composition) induces a commutative
diagram:

C ×M C −→ G⏐⏐� ⏐⏐�
M −→ A

Denote by LC×MC the pull-back of LG to C ×M C.

Next, we consider fundamental groups. Fix a geometric point m ∈ M(K),
and a set Σ of prime numbers such that p ∈ Σ. Write π1(C/M) for π1(Cm), and
π1(C/M) � ΠC/M for the maximal pro-Σ quotient of π1(C/M). Since this quotient
is characteristic, its kernel is also normal when regarded as a subgroup of π1(C);
denote the quotient of π1(C) by this kernel by ΠC . Thus, if we write ΠM

def= π1(M),
then we obtain an exact sequence:

1 → ΠC/M → ΠC → ΠM → 1

Moreover, the morphism C×MC → G considered in the preceding paragraph induces
a morphism on fundamental groups:

ΠC ×ΠM ΠC → Π(p)
G

Finally, it is an immediate formal consequence of our definitions that the diagram

ΠC ×ΠM ΠC −→ Π(p)
G⏐⏐� ⏐⏐�

AΔ ×OΔ AΔ −→ (Δab � GSp(Δab))

— where the lower horizontal morphism is the morphism constructed above; the
vertical morphism on the left arises from the natural action by conjugation of ΠC on
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ΠC/M (a profinite group whose maximal pro-p quotient is isomorphic to Δ); and the
vertical morphism on the right is the isomorphism (well-defined up to composition
with an inner automorphism) discussed above — commutes up to composition with
an inner automorphism. In particular, by pulling back along the morphisms in this
commutative diagram the group cohomology classes discussed in Lemma 4.7, it thus
follows formally from Lemma 4.7 that:

Corollary 4.8. Suppose that K = Q. Then relative to the tautological morphisms

(C ×M C)et → B(ΠC ×ΠM ΠC) → B(AΔ ×OΔ AΔ)

(cf. Lemma 4.7), the class c1(LC×MC) mod pn ∈ H2
et(C ×M C, (Z/pnZ)(1)) arises

from a class ∈ H2(AΔ ×OΔ AΔ, (Z/pnZ)(1)), for all integers n ≥ 1.

§4.3. A Generalization of the Main Result of [Mzk2]

In this §, we maintain the notation of §4.2, except that we again allow K to
be an arbitrary field of characteristic 0 (until further notice).

Let us assume that we are given two hyperbolic curves X1, X2 of type (g, r)
over K. For i = 1, 2, let us write π1((Xi)K) � Π(Xi)K

for the maximal pro-Σ
quotient of π1((Xi)K), and π1(Xi) � ΠXi

for the quotient of π1(Xi) by the kernel
of π1((Xi)K) � Π(Xi)K

. Thus, for i = 1, 2, we obtain exact sequences:

1 → Π(Xi)K
→ ΠXi

→ ΓK → 1

Next, let us assume that we are given an isomorphism

α : ΠX1
∼= ΠX2

which preserves and induces the identity on the quotients ΠXi
� ΓK . Thus, α

induces isomorphisms:

Πα
K

: Π(X1)K

∼= Π(X2)K

αH2
et

: H2
et(X1, Zp(1)) ∼= H2(ΠX1

, Zp(1)) ∼= H2(ΠX2
, Zp(1)) ∼= H2

et(X2, Zp(1))

Lemma 4.9. Let X be a proper hyperbolic curve over K equipped with a non-
trivial automorphism σ : X ∼= X over K. Denote the Jacobian of X by JX.
Then the morphism

δσ : X → JX

that maps an S-valued point x ∈ X(S) (where S is a scheme) to the degree 0 line
bundle determined by the divisor x − σ(x) is nonconstant.
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Proof. Assume (without loss of generality) that X(K) is nonempty. Then we
may think of JX as the Albanese variety associated to X. Write λ : X → JX for
the morphism exhibiting JX as the Albanese variety of X. Then (by the univer-
sal property of the Albanese variety) δσ necessarily factors through λ, inducing a
morphism δλ

σ : JX → JX which is nonconstant if and only if δσ is nonconstant. On
the other hand, δλ

σ is easily computed to be (up to composition with a translation)
equal to the morphism 1 − Jσ, where Jσ is the automorphism induced on JX by
σ. Thus, it suffices to verify that Jσ is not equal to the identity. But this follows
again (formally) from the universal property of the Albanese variety. ©

Corollary 4.10. Suppose that r = 0. Then for i = 1, 2, there exist ample
line bundles Pi on Xi with the property that c1(P1) ∈ H2

et(X1, Zp(1)) maps to
c1(P2) ∈ H2

et(X2, Zp(1)) under αH2
et
.

Proof. First, let us observe that by replacing the Xi by finite étale Galois coverings
that correspond via α, we may assume (without loss of generality) that Xi admits a
K-automorphism σi such that σ1, σ2 correspond via α. Indeed, once the necessary
line bundles are defined over these coverings, one obtains line bundles on the original
curves with the desired properties by simply “taking the norm” of the line bundles
on the coverings.

Since Xi defines a classifying morphism κi : Spec(K) → M, we let P ′
i be the

pull-back (where we note that Xi = C ×M,κi Spec(K)) of the line bundle LC×MC of
Corollary 4.8 to Xi ×K Xi. Moreover, by Lemma 4.9, it follows that the pull-back
Pi of P ′

i via the morphism (1, σi) : Xi → Xi ×K Xi given by the product of the
identity and the automorphism σ is ample on Xi.

Now let us consider the homomorphism on fundamental groups (well-defined
up to composition with an inner automorphism)

ΠXi
→ ΠC

induced by κi. Note that the composite

ΠXi
→ AΔ

of this homomorphism with the natural homomorphism ΠC → AΔ of §4.2 may be
constructed entirely group-theoretically (from the action by conjugation of ΠXi

on
its normal subgroup Π(Xi)K

). Thus, in particular, it follows that (for i = 1, 2) these
composites are compatible with α.

This compatibility implies that the composite of the homomorphism

ΠXi
×ΓK ΠXi

→ ΠC ×ΠM ΠC

(induced by κi) with the homomorphism ΠC ×ΠM ΠC → AΔ ×OΔ AΔ of §4.2 is a
homomorphism
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ΠXi
×ΓK ΠXi

→ AΔ ×OΔ AΔ

which is compatible with α. Thus, it follows formally from Corollary 4.8 that the
Chern classes of the P ′

i correspond via α. Since the pull-back via “(1, σi)” may also
be defined entirely group-theoretically, we thus conclude that the Chern classes of
the P ′

i correspond via α, as desired. This completes the proof of Corollary 4.10. ©

We are now ready to state and prove the main result of the present §4:

Definition 4.11. We shall say that K is generalized sub-p-adic if K may be
embedded as a subfield of a finitely generated extension of the quotient field of
W (Fp) (the ring of Witt vectors with coefficients in the algebraic closure of Fp).

Remark. Note that sub-p-adic fields are always generalized sub-p-adic. On the other
hand, fields such as the maximal algebraic extension of Q which is unramified over
p are generalized sub-p-adic, but not sub-p-adic.

Remark. Suppose that K is generalized sub-p-adic, where p ∈ Σ. Then note that
even if we do not know a priori that the hyperbolic curves X1, X2 are of the same
type (g, r), the mere existence of an isomorphism

α : ΠX1
∼= ΠX2

(which preserves and induces the identity on the quotients ΠXi
� ΓK) already

implies that X1 and X2 are of the same type. Indeed, to see this, we reduce im-
mediately to the case where K is finite over the quotient field of W (Fp) and then
consider the dimension of the weight 0 portion of the Hodge-Tate decomposition
of the maximal pro-p abelian quotient of Π(Xi)K

. This dimension gives back the
genus g; then r may be recovered from the fact that Π(Xi)K

is free on 2g + r − 1
generators (respectively, not free) if r > 0 (respectively, r = 0). Thus, there is no
loss of generality in assuming (as we did in the above discussion) that the Xi are
of the same “type” (g, r).

Theorem 4.12. (Isomorphism Version of the Grothendieck Conjec-
ture over Generalized Sub-p-adic Fields) Suppose that K is a generalized
sub-p-adic field, where p ∈ Σ. Let X1, X2 be hyperbolic curves over K. Let
us write Isom(X1,X2) for the set of K-isomorphisms between X1 and X2, and
IsomΓK (ΠX1

,ΠX2
) for the set of continuous group isomorphisms ΠX1

∼= ΠX2
over

ΓK , considered up to composition with an inner automorphism arising from Π(X1)K

or Π(X2)K
. Then the natural map

Isom(X1,X2) → IsomΓK (ΠX1
,ΠX2

)
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is bijective.

Remark. One formal consequence of Theorem 4.12 (cf. [Mzk2], Theorem C) is the
following:

If K is generalized sub-p-adic, and M denotes the moduli stack of hyper-
bolic curves of type (g, r) over K, then the natural morphism

M(K) → SectΓK (ΓK ,ΠM)

is injective.

(Here, ΠM is as defined in §4.2 (where we note that the same formal definition can
be made even in the case r > 0), and “SectΓK(ΓK ,ΠM)” is the set of sections of the
projection ΠM � ΓK considered up to composition with an inner automorphism
of ΠM arising from ΠM

K
.)

Proof. In a word, once one has Corollary 4.10, the proof of Theorem 4.12 is entirely
similar to the proof of Theorem A in [Mzk2], so we will only sketch details.

First, we reduce immediately to the case where K is a finite extension of the
quotient field of W (Fp) (cf. Lemmas 4.13, 4.14, below; [Mzk2], §15), and X1, X2

are proper of genus g (cf. [Mzk2], proof of Theorem 14.1).

Now, the main idea of the proof is to replace the portion of the proof of [Mzk2]
given in [Mzk2], §1 – 6, by Corollary 4.10, by using the following argument. First,
(for i = 1, 2) let us write

Hi
def= H2

et(Xi, Qp(1))

and Gi ⊆ Hi for the geometric part of Hi, i.e., the Qp-subspace generated by first
Chern classes of line bundles on Xi. Also, let us write Ji for the Jacobian of Xi, and
T (Ji) for its associated p-adic Tate module. Note that α induces an isomorphism
αH : H1

∼= H2. Also, let us observe that since K has cohomological dimension
1 (cf. Lemma 4.13 below), applying the Leray-Serre spectral sequence (for Galois
cohomology with coefficients in Qp(1)) to the surjection Π(p)

Xi
� ΓK gives rise to an

exact sequence:

0 → H1(K,T (Ji) ⊗ Qp) → Hi → Qp → 0

(where the “T (Ji)” on the left should, strictly speaking, be the Cartier dual of
T (Ji), but we identify T (Ji) with its Cartier dual via the standard principal po-
larization on the Jacobian Ji; the “Qp” on the right arises from the isomorphism
H0(K,H2(Π(p)

(Xi)K
, Qp(1)) ∼= Qp defined by the “degree map”).
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Now I claim that αH(G1) = G2. Indeed, by Corollary 4.10, there exists a line
bundle Pi of nonzero degree on Xi such that αH(c1(P1)) = c1(P2). Thus, to show
that αH(G1) = G2, it suffices to show that αH preserves first Chern classes of line
bundles of degree 0. Since we are working over Qp, we may always replace K by
a finite extension of K without affecting the validity of the claim. In particular,
we may assume that the Xi have semi-stable reduction over K. Write Ji for
the unique semi-abelian scheme over OK whose generic fiber is Ji. Now if Li

is a line bundle of degree 0 on Xi, it defines a point [Li] ∈ Ji(K), hence, by
Kummer theory (i.e., considering the obstruction to the p-power divisibility of [Li]
— cf. [Mzk2], §6, the discussion following Definition 6.1), determines an element
κ(Li) ∈ H1(K,T (Ji)⊗Qp). If we regard this Galois cohomology group as a subspace
of Hi via the exact sequence of the preceding paragraph, then this class κ(Li)
coincides with the first Chern class c1(Li) of Li (cf. [Mzk2], the Remark preceding
Definition 6.2). On the other hand, if [L1] ∈ J1(K) arises from a point ∈ J1(OK)
which is equal to the zero section modulo mK , then κ(L1) corresponds, via α, to
κ(L2) for some degree 0 line bundle L2 on X2 defined by a point ∈ J2(OK) (which
will also be equal to the zero section modulo mK). Indeed, this follows by applying
“Tate’s theorem” (cf. [Tate], Theorem 4) as in the argument of the proof of [Mzk2],
Theorem 7.4, to the p-divisible groups defined by the formal groups associated to J1,
J2. Moreover, for any point ∈ J1(K) it follows from the fact that Fp = OK/mK

is a union of finite fields that some nonzero multiple of this point arises from a
point ∈ J1(OK) which is equal to the zero section modulo mK . Thus, since we are
working with Qp-coefficients, we thus conclude that αH maps the Qp-subspace of H1

generated by first Chern classes of line bundles of degree 0 onto the corresponding
subspace of H2. This completes the proof of the claim.

Before proceeding, we note here that the argument of the preceding paragraph
is the only place in this proof where we use that the original base field is a subfield
of a finitely generated extension of the quotient field of W (Fp) — i.e., as opposed
to W (k), where we permit k to be an arbitrary perfect field of characteristic p. The
arguments to be used in the remainder of the proof are valid for Fp replaced by an
arbitrary such k. Also, we remark here that (not surprisingly) the portion of the
argument of [Mzk2] that corresponds to what was done in the preceding paragraph
is given in [Mzk2], §1 – 6, where it was necessary, especially for the arguments
of [Mzk2], Lemma 4.1, §6, to assume that the residue field be finite (i.e., not an
arbitrary perfect field of characteristic p).

Now that we know that α preserves (up to Qp-coefficients) first Chern classes
of line bundles over finite extensions of K, the rest of the argument of [Mzk2] goes
through without much change. Namely, [Mzk2], Proposition 7.4, follows by the
same argument as that given in loc. cit. (except that instead of working over a
K which is finite over Qp as in loc. cit., we work over the present “K,” which is
finite over the quotient field of W (Fp)). We remark that in the present context, it
is not necessary to distinguish between “F -geometricity” and “FI-geometricity” as
was done in [Mzk2], since we are working with proper curves to begin with (cf. the
Remark at the end of [Mzk2], §7). Then [Mzk2], §8, goes through without change
(except that the finite field “k” is to be replaced by Fp). The convergence arguments
of [Mzk2], §9, 10, are entirely valid when k is any perfect field of characteristic p,
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so no changes are necessary in these two §’s. [Mzk2], §11, is unnecessary in the
present context since we are working with proper curves to begin with. Finally, the
arguments of [Mzk2], §12 – 14, go through without essential change (except that
they are much easier in the present context since we are working with proper curves
to begin with). This completes the proof of the bijectivity assertion of Theorem
4.12 (cf. [Mzk2], Corollary 14.2). ©

Remark. Thus, Theorem 4.12 states (roughly) that the isomorphism class of a
hyperbolic curve over a finite extension of the quotient field of W (Fp) may be
recovered from the outer action of the Galois group on its geometric fundamental
group. In particular, one need not make use of Gal(Fp/Fp) (as was done in [Mzk2]).
In this sense, Theorem 4.12 is reminiscent of the main results of [Tama2], which
state that in certain cases, the isomorphism class of a hyperbolic curve over Fp is
completely determined by the isomorphism class of its geometric fundamental group
(cf. the results of [Tama1], which make essential use of the action of Gal(Fp/Fp)).
It would be interesting to see if the relationship between Theorem 4.12 and [Tama2]
could be understood more explicitly.

Remark. Another interesting aspect of Theorem 4.12 is the following: Note that,
if K is a finite extension of the quotient field of W (Fp), then its absolute Galois
group ΓK has cohomological dimension 1 (cf. Lemma 4.13 below). On the other
hand, if X is a hyperbolic curve over K, then ΠX

K
has cohomological dimension 2.

Thus, the cohomological dimension of ΠX is equal to 3. Since, roughly speaking,
Theorem 4.12, states that the structure of X is determined by ΠX , Theorem 4.12
is reminiscent of the rigidity theorem of Mostow-Prasad for hyperbolic manifolds of
real dimension 3 (cf. the discussion of [Mzk4], Introduction, §0.10, 2.2.3, 2.2.6).

The following Lemma is, in essence, well-known:

Lemma 4.13. Let K be a finite extension of the quotient field of W (Fp). Then
ΓK is center-free and has cohomological dimension equal to 1.

Proof. First, write L for the quotient field of W (Fp), and L′ for the union (inside
L) of the quotient fields of the W (k), as k ranges over all finite extensions of Fp.
Then the ring of integers OL′ of L′ is the union of the W (k), hence stictly henselian.
Moreover, since OL = W (Fp) is the p-adic completion of OL′ , it follows immediately
from the general theory of henselian rings that ΓL = ΓL′ . In particular, since K is a
finite extension of L, it follows that there exists a finite extension K ′ of L′ such that
K = L ⊗L′ K ′. Moreover, since OK′ is strictly henselian, with completion equal
to OK , we have ΓK = ΓK′ . Thus, it suffices to prove that ΓK′ is center-free and
of cohomological dimension equal to 1. In the remainder of the proof, to simplify
notation, we shall simply write K for K ′.

Next, observe that by considering the maximal tamely ramified extension Ktm

of K, we obtain an exact sequence
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1 → ΓKtm → ΓK →
∏
l �=p

Zl(1) → 1

(where the product ranges over all prime numbers not equal to p). Moreover, let us
recall that ΓKtm is a pro-p-group which is center-free and of cohomological dimen-
sion 1 (cf., e.g., [Mzk2], the proof of Lemma 15.6). We thus obtain immediately
that ΓK is of cohomological dimension 1. To show that ΓK is center-free, it suf-
fices to show Gal(Ktm/K) acts faithfully on Γab

Ktm ⊗ Qp (where “ab” denotes the
maximal abelian quotient). But this may be done as follows: Let K0 ⊆ K be a
finite extension of Qp such that K/K0 is unramified. Thus, it follows that Ktm is
also the maximal unramified extension of K0, so Gal(Ktm/K) ↪→ Gal(Ktm/K0).
Now let L0/K0 be a finite, Galois, totally tamely ramified extension of K0. Then
L0 ⊆ Ktm, so we obtain a surjection:

Γab
Ktm ⊗ Qp � (Γab

L0
)wild ⊗ Qp

(where the superscript “wild” denotes the wild inertia subgroup). But by the class
field theory of finite extensions of Qp, one knows that (Γab

L0
)wild ⊗ Qp is naturally

isomorphic (via the p-adic logarithm — cf., e.g., [Mzk5], §2) to L0, so the action
of Gal(L0/K0) on (Γab

L0
)wild ⊗ Qp is faithful. Since arbitrary finite quotients of

Gal(Ktm/K) may be realized as “Gal(L0/K0)’s” for appropriate choices of K0, L0,
it thus follows that Gal(Ktm/K) acts faithfully on Γab

Ktm ⊗ Qp, as desired. This
completes the proof of Lemma 4.13. ©

Lemma 4.14. Let K be generalized sub-p-adic. Then ΓK is center-free.

Proof. Let K be an arbitrary generalized sub-p-adic field. If XL is any hyperbolic
curve of type (g, r) over a finite extension L of K, and σ ∈ Z(ΓK) (i.e., the center
of ΓK), then we have an isomorphism

Π(XL)
K

∼= Π(XL)σ

K

(induced by conjugating by σ) which is compatible with the outer actions of ΓL on
both sides.

With this observation in hand, it follows that Lemma 4.14 may be derived
from Lemma 4.13 by means of Theorem 4.12 using exactly the same argument as
that used to derive [Mzk2], Lemma 15.8, from [Mzk2], Lemma 15.6, by means of
[Mzk2], Corollary 15.3. ©
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