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Abstract. The present paper, which forms the second part of a three-part series

in which we study absolute anabelian geometry from an algorithmic point of
view, focuses on the study of the closely related notions of decomposition groups
and endomorphisms in this anabelian context. We begin by studying an abstract
combinatorial analogue of the algebro-geometric notion of a stable polycurve [i.e., a

“successive extension of families of stable curves”] and showing that the “geometry
of log divisors on stable polycurves” may be extended, in a purely group-theoretic
fashion, to this abstract combinatorial analogue; this leads to various anabelian
results concerning configuration spaces. We then turn to the study of the absolute

pro-Σ anabelian geometry of hyperbolic curves over mixed-characteristic local fields,
for Σ a set of primes of cardinality ≥ 2 that contains the residue characteristic of the
base field. In particular, we prove a certain “pro-p resolution of nonsingularities”

type result, which implies a “conditional” anabelian result to the effect that the
condition, on an isomorphism of arithmetic fundamental groups, of preservation of
decomposition groups of “most” closed points implies that the isomorphism arises
from an isomorphism of schemes — i.e., in a word, “point-theoreticity implies

geometricity”; a “non-conditional” version of this result is then obtained for “pro-
curves” obtained by removing from a proper curve some set of closed points which
is “p-adically dense in a Galois-compatible fashion”. Finally, we study, from an
algorithmic point of view, the theory of Belyi and elliptic cuspidalizations, i.e.,

group-theoretic reconstruction algorithms for the arithmetic fundamental group of
an open subscheme of a hyperbolic curve that arise from consideration of certain
endomorphisms determined by Belyi maps and endomorphisms of elliptic curves.
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Introduction

In the present paper, which forms the second part of a three-part series, we
continue our discussion of various topics in absolute anabelian geometry from
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a “group-theoretic algorithmic” point of view, as discussed in the Introduction
to [Mzk15]. The topics presented in the present paper center around the following
two themes:

(A) [the subgroups of arithmetic fundamental groups constituted by] de-
composition groups of subvarieties of a given variety [such as closed
points, divisors] as a crucial tool that leads to absolute anabelian results;

(B) “hidden endomorphisms” — which may be thought of as “hidden
symmetries” — of hyperbolic curves that give rise to various absolute
anabelian results.

In fact, “decomposition groups” and “endomorphisms” are, in a certain sense, re-
lated notions — that is to say, the monoid of “endomorphisms” of a variety may
be thought of as a sort of “decomposition group of the generic point”!

With regard to the theme (B), we recall that the endomorphisms of an abelian
variety play a fundamental role in the theory of abelian varieties [e.g., elliptic
curves!]. Unlike abelian varieties, hyperbolic curves [say, in characteristic zero]
do not have sufficient “endomorphisms” in the literal, scheme-theoretic sense to
form the basis for an interesting theory. This difference between abelian varieties
and hyperbolic curves may be thought of, at a certain level, as reflecting the dif-
ference between linear Euclidean geometries and non-linear hyperbolic geometries.
From this point of view, it is natural to search for “hidden endomorphisms” that
are, in some way, related to the intrinsic non-linear hyperbolic geometry of a hy-
perbolic curve. Examples [that appear in previous papers of the author] of such
“hidden endomorphisms” — which exhibit a remarkable tendency to be related [for
instance, via some induced action on the arithmetic fundamental group] to some
sort of “anabelian result” — are the following:

(i) the interpretation of the automorphism group PSL2(R) of the uni-
versal covering of a hyperbolic Riemann surface as an object that gives
rise to a certain “Grothendieck Conjecture-type result” in the “geometry
of categories” [cf. [Mzk11], Theorem 1.12];

(ii) the interpretation of the theory of Teichmüller mappings [a sort of
endomorphism — cf. (iii) below] between hyperbolic Riemann surfaces as
a “Grothendieck Conjecture-type result” in the “geometry of categories”
[cf. [Mzk11], Theorem 2.3];

(iii) the use of the endomorphisms constituted by Frobenius liftings — in
the form of p-adic Teichmüller theory — to obtain the absolute anabelian
result constituted by [Mzk6], Corollary 3.8;

(iv) the use of the endomorphism rings of Lubin-Tate groups to obtain the
absolute anabelian result constituted by [Mzk15], Corollaries 3.8, 3.9.

The main results of the present paper — in which both themes (A) and (B)
play a central role — are the following:

(1) In §1, we develop a purely combinatorial approach to the algebro-geometric
notion of a stable polycurve [cf. [Mzk2], Definition 4.5]. This approach may
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be thought of as being motivated by the purely combinatorial approach to
the notion of a stable curve given in [Mzk13]. Moreover, in §1, we apply
the theory of [Mzk13] to give, in effect, “group-theoretic algorithms”
for reconstructing the “abstract combinatorial analogue” of the geome-
try of the various divisors — in the form of inertia and decomposition
groups — associated to the canonical log structure of a stable polycurve
[cf. Theorem 1.7]. These techniques, together with the theory of [MT],
give rise to

various relative and absolute anabelian results concerning
configuration spaces associated to hyperbolic curves

[cf. Corollaries 1.10, 1.11]. Relative to the discussion above of “hidden en-
domorphisms”, we observe that such configuration spaces may be thought
of as representing a sort of “tautological endomorphism/correspondence”
of the hyperbolic curve in question.

(2) In §2, we study the absolute pro-Σ anabelian geometry of hyperbolic
curves over mixed-characteristic local fields, for Σ a set of primes of car-
dinality ≥ 2 that contains the residue characteristic of the base field. In
particular, we show that the condition, on an isomorphism of arithmetic
fundamental groups, of preservation of decomposition groups of “most”
closed points implies that the isomorphism arises from an isomorphism of
schemes — i.e., in a word,

“point-theoreticity implies geometricity”

[cf. Corollary 2.9]. This condition may be removed if one works with “pro-
curves” obtained by removing from a proper curve some set of closed points
which is “p-adically dense in a Galois-compatible fashion” [cf. Corollary
2.10]. The key technical result that underlies these anabelian results is a
certain “pro-p resolution of nonsingularities” type result [cf. Lemma
2.6; Remark 2.6.1; Corollary 2.11] — i.e., a result reminiscent of the main
[profinite] results of [Tama2]. This technical result allows one to apply
the theory of uniformly toral neighborhoods developed in [Mzk15],
§3. Relative to the discussion above of “hidden endomorphisms”, this
technical result is interesting [cf., e.g., (iii) above] in that one central
step of the proof of the technical result is quite similar to the well-known
classical argument that implies the nonexistence of a Frobenius lifting
for stable curves over the ring of Witt vectors of a finite field [cf. Remark
2.6.2].

(3) In §3, we re-examine the theory of [Mzk8], §2, for reconstructing the
decomposition groups of closed points from the point of view of the present
series of developing “group-theoretic algorithms”. In particular, we observe
that these group-theoretic algorithms allow one to use

Belyi maps and endomorphisms of elliptic curves to con-
struct [not only decomposition groups of closed points, but also]
“cuspidalizations”
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[i.e., the full arithmetic fundamental groups of the open subschemes ob-
tained by removing various closed points — cf. the theory of [Mzk14]] as-
sociated to various types of closed points [cf. Corollaries 3.3, 3.4, 3.7, 3.8].
Relative to the discussion above of “hidden endomorphisms”, the theory
of Belyi and elliptic cuspidalizations given in §3 illustrates quite explicitly
how endomorphisms [arising from Belyi maps or endomorphisms of elliptic
curves] can give rise to group-theoretic reconstruction algorithms.

Finally, we remark that although the “algorithmic approach” to stating anabelian
results is not carried out very explicitly in §1, §2 [by comparison to §3 or [Mzk15]],
the translation into “algorithmic language” of the more traditional “Grothendieck
Conjecture-type” statements of the main results of §1, §2 is quite routine. [Here,
it should be noted that the results of §1 that depend on “Uchida’s theorem” —
i.e., Theorem 1.8, (ii); Corollary 1.11, (iv) — constitute a notatable exception to
this “remark”, an exception that will be discussed in more detail in [Mzk16] — cf.,
e.g., [Mzk16], Remark 1.9.5.] That is to say, this translation was not carried out
explicitly by the author solely because of the complexity of the algorithms implicit
in §1, §2, i.e., not as a result of any substantive mathematical obstacles.
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discussions concerning the material presented in this paper and Emmanuel Lepage
for a suggestion that led to Remark 2.11.1, (i).
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Section 0: Notations and Conventions

We shall continue to use the “Notations and Conventions” of [Mzk15], §0. In
addition, we shall use the following notation and conventions:

Topological Groups:

Let G be a topologically finitely generated, slim profinite group. Thus, G admits
a basis of characteristic open subgroups. Any such basis determines a profinite
topology on the groups Aut(G), Out(G). If ρ : H → Out(G) is any continuous
homomorphism of profinite groups, then we denote by

G
out
� H

the profinite group obtained by pulling back the natural exact sequence of profinite
groups 1 → G → Aut(G) → Out(G) → 1 via ρ. Thus, we have a natural exact

sequence of profinite groups 1 → G → G
out
� H → H → 1.

Semi-graphs:

Let Γ be a connected semi-graph [cf., e.g., [Mzk9], §1, for a review of the theory
of semi-graphs]. We shall refer to the [possibly infinite] dimension over Q of the
singular homology module H1(Γ,Q) as the loop-rank lp-rk(Γ) of Γ. We shall say
that Γ is loop-ample if, for any edge e of Γ, the semi-graph obtained from Γ by
removing e remains connected. We shall say that Γ is untangled if every closed
edge of Γ abuts to two distinct vertices [cf. [Mzk9], §1]. We shall say that Γ is
edge-paired (respectively, edge-even) if Γ is untangled, and, moreover, for any two
[not necessarily distinct!] vertices v, v′ of Γ, the set of edges e of Γ such that e
abuts to a vertex w of Γ if and only if w ∈ {v, v′} is either empty or of cardinality
≥ 2 (respectively, empty or of even cardinality). [Thus, one verifies immediately
that if Γ is edge-paired (respectively, edge-even), then it is loop-ample (respectively,
edge-paired).] We shall refer to as a simple path in Γ any connected subgraph γ ⊆ Γ
such that the following conditions are satisfied: (a) γ is a finite tree that has at least
one edge; (b) given any vertex v of γ, there exist at most two branches of edges of
γ that abut to v. Thus, [one verifies easily that] a simple path γ has precisely two
vertices v such that there exists precisely one branch of an edge of γ that abuts to
v; we shall refer to these two vertices as the terminal vertices of the simple path γ.
If γ, γ′ are simple paths in Γ such that the terminal vertices of γ, γ′ coincide, then
we shall say that γ, γ′ are co-terminal.

Log Schemes:

We shall often regard a scheme as a log scheme equipped the trivial log struc-
ture. Any fiber product of fs [i.e., fine, saturated] log schemes is to be taken in the
category of fs log schemes. In particular, the underlying scheme of such a product
is finite over, but not necessarily isomorphic to, the fiber product of the underlying
schemes.
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Curves:

We shall refer to a hyperbolic orbicurveX as semi-elliptic [i.e., “of type (1, 1)±”
in the terminology of [Mzk12], §0] if there exists a finite étale double covering
Y → X, where Y is a once-punctured elliptic curve, and the covering is given by
the stack-theoretic quotient of Y by the “action of ±1” [i.e., relative to the group
operation on the elliptic curve given by the canonical compactification of Y ].

For i = 1, 2, let Xi be a hyperbolic orbicurve over a field ki. Then we shall say
that X1, X2 are isogenous [cf. [Mzk14], §0] if there exists a hyperbolic orbicurve
X over a field k, together with finite étale morphisms X → Xi, for i = 1, 2. Note
that in this situation, the morphisms X → Xi induce finite separable inclusions of
fields ki ↪→ k. [Indeed, this follows immediately from the easily verified fact that
every subgroup G ⊆ Γ(X,O×

X) such that G
⋃{0} determines a field is necessarily

contained in k×.]

We shall use the term stable log curve as it was defined in [Mzk9], §0. Let

X log → Slog

be a stable log curve over an fs log scheme Slog, where S = Spec(k) for some field
k; k a separable closure of k. Then we shall refer to as the loop-rank lp-rk(X log) [or
lp-rk(X)] of X log [or X] the loop-rank of the dual graph of X log ×k k [or X ×k k].
We shall say that X log [or X] is loop-ample (respectively, untangled; edge-paired;
edge-even) if the dual semi-graph with compact structure [cf. [Mzk5], Appendix]
of X log ×k k is loop-ample (respectively, untangled; edge-paired; edge-even) [as a
connected semi-graph]. We shall say that X log [or X] is sturdy if the normalization
of every irreducible component of X is of genus ≥ 2 [cf. [Mzk13], Remark 1.1.5].

Observe that for any prime number l invertible on S, there exist an fs log
scheme T log over Slog, where T = Spec(k′), for some finite separable extension k′

of k, and a connected Galois log admissible covering Y log → X log ×Slog T log [cf.
[Mzk1], §3] of degree a power of l such that Y log is sturdy and edge-paired [hence,
in particular, untangled and loop-ample]; if, moreover, l = 2, then one may also
take Y log to be edge-even. [Indeed, to verify this observation, we may assume
that k = k. Then note that any hyperbolic curve U over k admits a connected
finite étale Galois covering V → U of degree a power of l such that V is of genus
≥ 2 and ramified with ramification index l2 at each of the cusps of V — cf. the
discussion at the end of the present §0. Thus, by gluing together such coverings at
the nodes of X, one concludes that there exists a connected Galois log admissible

covering Z log
1 → X log×Slog T log of degree a power of l which is totally ramified over

every node of X with ramification index l2 such that every irreducible component

of Z1 is of genus ≥ 2 — i.e., Z log
1 is sturdy. Next, observe that there exists a

connected Galois log admissible covering Z log
2 → Z log

1 of degree a power of l that

arises from a covering of the dual graph of Z1 such that Z log
2 is untangled [and

still sturdy]. Finally, observe that there exists a connected Galois log admissible

covering Z log
3 → Z log

2 of degree a positive power of l which restricts to a connected
finite étale covering over every irreducible component of Z2 [hence is unramified at

the nodes] such that Z log
3 is edge-paired [and still sturdy and untangled] for arbitrary

l and edge-even when l = 2. Thus, we may take Y log def
= Z log

3 .]
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Observe that if X is loop-ample, then for every point x ∈ X(k) which is not
a unique cusp of X [i.e., either x is not a cusp or if x is a cusp, then it is not the
unique cusp of X], the evaluation map

H0(X,ωXlog/Slog) → ωXlog/Slog |x

is surjective. Indeed, by considering the long exact sequence associated to the short
exact sequence 0 → ωXlog/Slog ⊗OX

Ix → ωXlog/Slog → ωXlog/Slog |x → 0, where
Ix ⊆ OX is the sheaf of ideals corresponding to x, one verifies immediately that it
suffices to show that the surjection

Hx
def
= H1(X,ωXlog/Slog ⊗OX

Ix) � H def
= H1(X,ωXlog/Slog)

is injective. If x is a node, then the fact that X is loop-ample implies [by computing
via Serre duality] that either dimk(Hx) = dimk(H) = 1 [if X has no cusps] or
dimk(Hx) = dimk(H) = 0 [if X has cusps]. Thus, we may assume that x is not a
node, so the surjection Hx � H is dual to the injection

M def
= H0(X,OX(−D)) ↪→ Mx

def
= H0(X,OX(x−D)) (⊆ Nx

def
= H0(X,OX(x)))

— where we write D ⊆ X for the divisor of cusps of X. If x is a cusp, then it follows
that D is of degree ≥ 2, and one computes easily that dimk(M) = dimk(Mx) = 0.
Thus, we may assume that x is not a cusp. Write C for the irreducible component
of X containing x. Now suppose that the injection M ↪→ Mx is not surjective.
Then it follows that dimk(Nx) = 2, and that Nx determines a basepoint-free linear
system on X. In particular, Nx determines a morphism φ : X → P1

k that is of

degree 1 on C — i.e., determines an isomorphism C
∼→ P1

k — and constant on the
other irreducible components of X. Since X is loop-ample, it follows that the dual
graph Γ of X either has no edges or admits a loop containing the vertex determined
by C. On the other hand, the existence of such a loop contradicts the fact that φ
determines an isomorphism C

∼→ P1
k. Thus, we conclude that X = C ∼= P1

k, so D is
of degree ≥ 3. But this implies that Mx = 0, a contradiction.

Finally, let U be a hyperbolic curve over an algebraically closed field k and l a
prime number invertible in k. Suppose that the cardinality r of the set of cusps of
U is ≥ 2, and, moreover, that, if l = 2, then r is even. Then observe that it follows
immediately from the well-known structure of the maximal pro-l quotient of the
abelianization of the étale fundamental group of U that

for every power ln of l, where n is a positive integer, there exists a cyclic
covering V → U of degree ln that is totally ramified over the cusps of U .

Indeed, this observation is an immediate consequence of the elementary fact that,
in light of our assumptions on r, there always exist r− 1 integers prime to l whose
sum is also prime to l. We shall often make use of the assumption that a stable
log curve is edge-paired — or, when l = 2, edge-even — by applying the above
observation to the various connected components of the complement of the cusps
and nodes of the stable log curve.
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Section 1: A Combinatorial Analogue of Stable Polycurves

In the present §1, we apply the theory of [Mzk13] to study a sort of purely
group-theoretic, combinatorial analogue [cf. Definition 1.5 below] of the notion of a
stable polycurve introduced in [Mzk2], Definition 4.5. This allows one to reconstruct
the “abstract combinatorial analogue” of the “geometry of log divisors” [i.e., divisors
associated to the log structure of a stable polycurve] of such a combinatorial object
via group theory [cf. Theorem 1.7]. Finally, we apply the theory of [MT] to obtain
various consequences of the theory of the present §1 [cf. Corollaries 1.10, 1.11]
concerning the absolute anabelian geometry of configuration spaces.

We begin by recalling the discussion of [Mzk13], Example 2.5.

Example 1.1. Stable Log Curves over a Logarithmic Point (Revisited).

(i) Let k be a separably closed field; Σ a nonempty set of prime numbers in-
vertible in k; M ⊆ Q the monoid of positive rational numbers with denomina-
tors invertible in k; Slog (respectively, T log) the log scheme obtained by equipping

S
def
= Spec(k) (respectively, T

def
= Spec(k)) with the log structure determined by the

chart N � 1 	→ 0 ∈ k (respectively, M � 1 	→ 0 ∈ k); T log → Slog the morphism
determined by the natural inclusion N ↪→ M;

X log → Slog

a stable log curve over Slog. Thus, the profinite group ISlog
def
= Aut(T log/Slog)

admits a natural isomorphism ISlog
∼→ Hom(Q/Z, k×) and fits into an natural exact

sequence

1 → ΔXlog
def
= π1(X

log ×Slog T log) → ΠXlog
def
= π1(X

log) → ISlog → 1

— where we write “π1(−)” for the “log fundamental group” of the log scheme in
parentheses [which amounts, in this case, to the fundamental group arising from
the admissible coverings of X log], relative to an appropriate choice of basepoint [cf.
[Ill] for a survey of the theory of log fundamental groups]. In particular, if we write
IΣSlog for the maximal pro-Σ quotient of ISlog , then as abstract profinite groups,

IΣSlog
∼= ẐΣ, where we write ẐΣ for the maximal pro-Σ quotient of Ẑ.

(ii) On the other hand, X log determines a semi-graph of anabelioids [cf. [Mzk9],
Definition 2.1] of pro-Σ PSC-type [cf. [Mzk13], Definition 1.1, (i)], whose underlying
semi-graph we denote by G. Thus, for each vertex v [corresponding to an irreducible
component of X log] (respectively, edge e [corresponding to a node or cusp of X log])
of G, we have a connected anabelioid [i.e., a Galois category] Gv (respectively, Ge),
and for each branch b of an edge e abutting to a vertex v, we are given a morphism
of anabelioids Ge → Gv. Then the maximal pro-Σ completion of ΔXlog may be
identified with the “PSC-fundamental group” ΠG associated to G. Also, we recall
that ΠG is slim [cf., e.g., [Mzk13], Remark 1.1.3], and that the groups Aut(G),
Out(ΠG) may be equipped with profinite topologies in such a way that the natural
morphism

Aut(G) → Out(ΠG)
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is a continuous injection [cf. the discussion at the beginning of [Mzk13], §2], which
we shall use to identify Aut(G) with its image in Out(ΠG). In particular, we obtain
a natural continuous homomorphism ISlog → Aut(G). Moreover, it follows imme-
diately from the well-known structure of admissible coverings at nodes [cf., e.g.,
[Mzk1], §3.23] that this homomorphism factors through IΣSlog , hence determines a

natural continuous homomorphism ρI : IΣSlog → Aut(G). Also, we recall that each
vertex v (respectively, edge e) of G determines a(n) verticial subgroup Πv ⊆ ΠG
(respectively, edge-like subgroup Πe ⊆ ΠG), which is well-defined up to conjugation
— cf. [Mzk13], Definition 1.1, (ii). Here, the edge-like subgroups Πe may be either
nodal or cuspidal, depending on whether e corresponds to a node or to a cusp. If
an edge e corresponds to a node (respectively, cusp), then we shall simply say that
e “is” a node (respectively, cusp).

(iii) Let e be a node of X. Write Me for the stalk of the characteristic sheaf
of the log scheme X log at e; MS for the stalk of the characteristic sheaf of the
log scheme Slog at the tautological S-valued point of S. Thus, MS

∼= N; we have
a natural inclusion MS ↪→ Me, with respect to which we shall often [by abuse of
notation] identify MS with its image in Me. Write σ ∈ Me for the unique generator
of [the image of] MS . Then there exist elements ξ, η ∈ Me satisfying the relation

ξ + η = ie · σ

for some positive integer ie, which we shall refer to as the index of the node e, such
that Me is generated by ξ, η, σ. Also, we shall write iΣe for the largest positive
integer j such that ie/j is a product of primes 
∈ Σ and refer to iΣe as the Σ-index
of the node e. One verifies easily that the set of elements {ξ, η} of Me may be
characterized intrisically as the set of elements θ ∈ Me\MS such that any relation
θ = n · θ′ + θ′′ for n a positive integer, θ′ ∈ Me\MS , θ

′′ ∈ MS implies that n = 1,
θ′′ = 0. In particular, ie, i

Σ
e are well-defined and depend only on the isomorphism

class of the pair consisting of the monoid Me and the submonoid ⊆ Me given by
the image of MS .

Remark 1.1.1. Of course, in Example 1.1, it is not necessary to assume that k
is separably closed [cf. [Mzk13], Example 2.5]. If k is not separably closed, then
one must also contend with the action of the absolute Galois group of k. More
generally, for the theory of the present §1, it is not even necessary to assume that
an “additional profinite group” acting on G arises “from scheme theory”. It is this
point of view that formed the motivation for Definition 1.2 below.

Definition 1.2. In the notation of Example 1.1:

(i) Let ρH : H → Aut(G) (⊆ Out(ΠG)) be a continuous homomorphism of
profinite groups; suppose that X log is nonsingular [i.e., has no nodes]. Then we
shall refer to as a [pro-Σ] PSC-extension [i.e., “pointed stable curve extension”]
any extension of profinite groups that is isomorphic — via an isomorphism which
we shall refer to as the “structure of [pro-Σ] PSC-extension” — to an extension of
the form

1 → ΠG → ΠH
def
= (ΠG

out
� H) → H → 1
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[cf. §0 for more on the notation “
out
� ”], which we shall refer to as the PSC-

extension associated to the construction data (X log → Slog,Σ,G, ρH). In this sit-
uation, each [necessarily cuspidal] edge e of G determines [up to conjugation in

ΠG ] a subgroup Πe ⊆ ΠG , whose normalizer De
def
= NΠH (Πe) in ΠH we shall

refer to as the decomposition group associated to the cusp e; we shall refer to

Ie
def
= Πe = De

⋂
ΠG ⊆ De [cf. [Mzk13], Proposition 1.2, (ii)] as the inertia group

associated to the cusp e. Finally, we shall apply the terminology applied to objects
associated to 1 → ΠG → ΠH → H → 1 to the objects associated to an arbitrary
PSC-extension via its “structure of PSC-extension” isomorphism.

(ii) Let ρH : H → Aut(G) (⊆ Out(ΠG)) be a continuous homomorphism of
profinite groups; ι : IΣSlog ↪→ H a continuous injection of profinite groups with

normal image such that ρH ◦ ι = ρI . Suppose that X
log is arbitrary [i.e., X may be

singular or nonsingular]. Then we shall refer to as a [pro-Σ] DPSC-extension [i.e.,
“degenerating pointed stable curve extension”] any extension of profinite groups
that is isomorphic — via an isomorphism which we shall refer to as the “structure
of [pro-Σ] DPSC-extension” — to an extension of the form

1 → ΠG → ΠH
def
= (ΠG

out
� H) → H → 1

— which we shall refer to as the DPSC-extension associated to the construction
data (X log → Slog,Σ,G, ρH , ι). In this situation, we shall refer to the image I ⊆ H
of ι as the inertia subgroup of H and to the extension

1 → ΠG → ΠI
def
= (ΠG

out
� I) → I → 1

[so ΠI = ΠH×HI ⊆ ΠH ] as the [pro-Σ] IPSC-extension [i.e., “inertial pointed stable
curve extension”] associated to the construction data (X log → Slog,Σ,G, ρH , ι);
each vertex v (respectively, edge e) of G determines [up to conjugation in ΠG ] a
subgroup Πv ⊆ ΠG (respectively, Πe ⊆ ΠG), whose normalizer

Dv
def
= NΠH

(Πv) (respectively, De
def
= NΠH

(Πe))

in ΠH we shall refer to as the decomposition group associated to v (respectively, e);
for v arbitrary (respectively, e a node), we shall refer to the centralizer

Iv
def
= ZΠI

(Πv) ⊆ Dv (respectively, Ie
def
= ZΠI

(Πe) ⊆ De)

as the inertia group associated to v (respectively, e). If e is a cusp of G, then we shall

refer to Ie
def
= Πe = De

⋂
ΠG ⊆ De [cf. [Mzk13], Proposition 1.2, (ii)] as the inertia

group associated to the cusp e. Finally, we shall apply the terminology applied to
objects associated to 1 → ΠG → ΠH → H → 1 to the objects associated to an
arbitrary DPSC-extension via its “structure of DPSC-extension” isomorphism.

Remark 1.2.1. Note that in the situation of Definition 1.2, (i) (respectively, (ii)),
any open subgroup of ΠH [equipped with the induced extension structure] admits a
structure of [pro-Σ] PSC-extension (respectively, DPSC-extension) for appropriate
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construction data that may be derived from the original construction data. On
the other hand, in the situation of Definition 1.2, (ii), given an open subgroup of
ΠI [equipped with the induced extension structure], in order to endow this open
subgroup with a structure of IPSC-extension, it may be necessary — even if, for
instance, this open subgroup of ΠI surjects onto I — to replace the inertia subgroup
I ofH by some open subgroup of I [i.e., in effect, to replace the given open subgroup
of ΠI with the intersection of this given open subgroup with the inverse image in
ΠI of some open subgroup of I]. Such replacements may be regarded as a sort of
abstract group-theoretic analogue of the operation of passing to a finite extension of
a discretely valued field in order to achieve a situation in which a given hyperbolic
curve over the original field has stable reduction.

Remark 1.2.2. Note that in the situation of Definition 1.2, (ii), the inertia
subgroup I ⊆ H is not intrinsically determined in the sense that any open subgroup
of I may also serve as the inertia subgroup of H — cf. the replacement operation
discussed in Remark 1.2.1.

Remark 1.2.3. Recall that for l ∈ Σ, one may construct directly from G a pro-l
cyclotomic character χl : Aut(G) → Z×

l [cf. [Mzk13], Lemma 2.1]. In particular,
any ρH as in Definition 1.2, (i), (ii), determines a pro-l cyclotomic character χl|H :
H → Z×

l . The action ρH is called l-cyclotomically full [cf. [Mzk13], Definition
2.3, (ii)] if the image of χl|H is open. We shall also apply this terminology “l-
cyclotomically full” to the corresponding PSC-, DPSC-extensions. In fact, it follows
immediately from the first portion of [Mzk13], Proposition 2.4, (iv), that the issue of
whether or not ρH is l-cyclotomically full depends only on the outer representation
H → Out(ΠG) of H on ΠG determined by ρH .

Proposition 1.3. (Basic Properties of Inertia and Decomposition Groups)
In the notation of Definition 1.2, (ii):

(i) If e is a cusp of G, then as abstract profinite groups, Ie ∼= ẐΣ.

(ii) If e is a node of G, then we have a natural exact sequence 1 → Πe →
Ie → I → 1; as abstract profinite groups, Ie ∼= ẐΣ× ẐΣ. If e abuts to vertices v, v′,
then [for appropriate choices of conjugates of the various inertia groups involved]
we have inclusions Iv, Iv′ ⊆ Ie, and the natural morphism Iv× Iv′ → Ie is an open
injective homomorphism, with image of index equal to iΣe .

(iii) If v is a vertex of G, then we have a natural isomorphism Iv
∼→ I;

Dv

⋂
ΠI = Iv × Πv; as abstract profinite groups, Iv ∼= ẐΣ. If e is a cusp that

abuts to v, then [for appropriate choices of conjugates of the various inertia and
decomposition groups involved] we have inclusions Ie, Iv ⊆ De

⋂
ΠI , and the nat-

ural morphism Ie × Iv → De

⋂
ΠI is an isomorphism; in particular, as abstract

profinite groups, De

⋂
ΠI ∼= ẐΣ × ẐΣ, and we have a natural exact sequence

1 → Ie → De

⋂
ΠI → I → 1.

(iv) Let v, v′ be vertices of G. If Dv

⋂
Dv′

⋂
ΠI 
= {1}, then one of the

following three [mutually exclusive] properties holds: (1) v = v′; (2) v and v′ are
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distinct, but adjacent [i.e., there exists a node e that abuts to v, v′]; (3) v and
v′ are distinct and non-adjacent, but there exists a vertex v′′ 
= v, v′ of G such that
v′′ is adjacent to v and v′. Moreover, in the situation of (2), we have Iv

⋂
Iv′ =

{1}, [for appropriate choices of conjugates of the various inertia and decomposition
groups involved] Dv

⋂
Dv′

⋂
ΠI = Ie; in the situation of (3), we have Πv

⋂
Πv′ =

Iv
⋂

Iv′ = Iv
⋂

Iv′′ = Iv′
⋂

Iv′′ = {1}, [for appropriate choices of conjugates of
the various inertia and decomposition groups involved] Dv

⋂
Dv′

⋂
ΠI = Iv′′ . In

particular, Iv
⋂
Iv′ 
= {1} implies that v = v′.

(v) Let v be a vertex of G. Then Dv = CΠH
(Iv) = NΠH

(Iv) is commen-
surably terminal in ΠH ; Dv

⋂
ΠI = CΠI

(Iv) = NΠI
(Iv) = ZΠI

(Iv) is com-
mensurably terminal in ΠI ; Dv

⋂
ΠG = Πv is commensurably terminal in

ΠG.

(vi) Let v be a vertex of G. Then the image of Dv in H is open; on the other
hand, if G has more than one vertex [i.e., the curve X is singular], then Dv

is not open in ΠH .

(vii) Let e be an edge of G. Then De = CΠH (Πe) = NΠH (Πe) is commensu-
rably terminal in ΠH . If e is a node, then Ie = De

⋂
ΠI .

(viii) Let e, e′ be edges of G. If De

⋂
De′

⋂
ΠI 
= {1}, then one of the following

two [mutually exclusive] properties holds: (1) e = e′; (2) e and e′ are distinct,
but abut to the same vertex v, and De

⋂
De′

⋂
ΠG = {1}. Moreover, in the

situation of (2), [for appropriate choices of conjugates of the various inertia and
decomposition groups involved] we have Iv = De

⋂
De′

⋂
ΠI .

(ix) Let e be an edge of G. Then the image of De in H is open, but De is
not open in ΠH .

(x) Let τI : I → ΠI be the [outer] homomorphism that arises [by functoriality!]
from a “log point” τS ∈ X log(Slog). Let us call τI non-verticial (respectively,
non-edge-like) if τI(I) is not contained in Iv (respectively, Ie) for any vertex
v (respectively, edge e) of G. Then if τI is non-verticial and non-edge-like, then
the image of τS is the unique cusp eτ of X such that [for an appropriate choice
of conjugate of Deτ ] τI(I) ⊆ Deτ . Now suppose that the image of τS is not a
cusp. Then τI satisfies the condition τI(I) = Ivτ for some vertex vτ of G [and an
appropriate choice of conjugate of Ivτ ] if and only if the image of τS is a non-nodal
point of the irreducible component of X corresponding to vτ ; τI is non-verticial and
satisfies the condition τI(I) ⊆ Ieτ for some node eτ of G [and an appropriate choice
of conjugate of Ieτ ] if and only if the image of τS is the node of X corresponding
to eτ .

Proof. Assertion (i) follows immediately from the definitions. Next, we consider
assertion (ii). Write ν (∼= S) for the closed subscheme of X determined by the node
of X corresponding to e; νlog for the result of equipping ν with the log structure

pulled back from X log. Thus, we obtain a natural [outer] homomorphism Πν
def
=

π1(ν
log) → π1(X

log) = ΠXlog � ΠI . Now [in the notation of Example 1.1, (iii)] one
computes easily [by considering the Galois groups of the various Kummer log étale

coverings of νlog] that we have natural isomorphisms Πν
∼→ Hom(Mgp

e ⊗Q/Z, k×),
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ISlog
∼→ Hom(Mgp

S ⊗Q/Z, k×) [where “gp” denotes the groupification of a monoid].
Moreover, if we write Πν � ΠΣ

ν for the maximal pro-Σ quotient of Πν , then one
verifies immediately that the isomorphisms induced on maximal pro-Σ quotients by
these natural isomorphisms are compatible, relative to the surjection

(ΠΣ
ν

∼→ ) Hom(Mgp
e ⊗Q/Z, k×)⊗ ẐΣ � Hom(Mgp

S ⊗Q/Z, k×)⊗ ẐΣ (
∼→ IΣSlog)

induced by the inclusion MS ↪→ Me, with the morphism ΠΣ
ν → IΣSlog induced by

the composite morphism Πν → ΠI � I
∼→ IΣSlog

∼= Hom(Mgp
S ⊗ Q/Z, k×) ⊗ ẐΣ.

The kernel of this surjection ΠΣ
ν � IΣSlog may be identified with the profinite group

Hom(Mgp
e /Mgp

S ⊗Q/Z, k×)⊗ ẐΣ, and one verifies immediately [from the definition
of G] that this kernel maps isomorphically onto Πe ⊆ ΠI . In particular, it follows
that we obtain an injection ΠΣ

ν ↪→ ΠI whose image contains Πe and surjects onto I.
Since ΠΣ

ν is abelian, it follows that the image Im(ΠΣ
ν ) of this injection is contained

in Ie; since Ie
⋂
ΠG = Πe [cf. [Mzk13], Proposition 1.2, (ii)], we thus conclude that

Im(ΠΣ
ν ) = Ie. Now it follows immediately from the definitions that Iv, Iv′ ⊆ Ie;

moreover, one computes immediately that [in the notation of Example 1.1, (iii)] the

subgroups Iv, Iv′ ⊆ Ie correspond to the subgroups of Hom(Mgp
e ⊗Q/Z, k×)⊗ ẐΣ

consisting of homomorphisms that vanish on ξ, η, respectively. Now the various
assertions contained in the statement of assertion (ii) follow immediately. This
completes the proof of assertion (ii).

Next, we consider assertion (iii). Since Πv is slim [cf., e.g., [Mzk13], Remark
1.1.3] and commensurably terminal in ΠG [cf. [Mzk13], Proposition 1.2, (ii)], it
follows that Dv

⋂
ΠG = Πv and Iv

⋂
ΠG = {1}, so we obtain a natural injection

Iv ↪→ I. The fact that this injection is, in fact, surjective is immediate from the
definitions when X is smooth over k and follows from the computation of “Iv”
performed in the proof of assertion (ii) when X is singular. Next, let us observe
that since Iv commutes [by definition!] with Πv, we obtain a natural morphism
Iv × Πv → Dv

⋂
ΠI , which is both injective [since Iv

⋂
Πv = {1}] and surjective

[cf. the isomorphism Iv
∼→ I; the fact that Dv

⋂
ΠG = Πv]. Now suppose that e

is a cusp that abuts to v. Then [for appropriate choices of conjugates] it follows
immediately from the definitions that we have inclusions Ie, Iv ⊆ De

⋂
ΠI , and that

Ie commutes with Iv. Note, moreover, that De

⋂
ΠG = Ie [cf. [Mzk13], Proposition

1.2, (ii)]. Thus, the fact that the natural projection Iv → I is an isomorphism
implies that we have a natural exact sequence 1 → Ie → De

⋂
ΠI → I → 1, and

that the natural morphism Ie × Iv → De

⋂
ΠI is an isomorphism. This completes

the proof of assertion (iii).

Next, we consider assertion (vii). Since De

⋂
ΠG = Πe [cf. [Mzk13], Proposi-

tion 1.2, (ii)], it follows that De ⊆ CΠH
(De) ⊆ CΠH

(Πe); on the other hand, by
[Mzk13], Proposition 1.2, (i), it follows that CΠH (Πe) = NΠH (Πe) (= De); thus,
De = CΠH

(De) = CΠH
(Πe) = NΠH

(Πe), as desired. Now it remains only to con-
sider the case where e is a node. In this case, since Ie is abelian [cf. assertion (ii)],
it follows that Ie ⊆ ZΠI

(Ie) ⊆ CΠI
(Ie) ⊆ CΠI

(Ie
⋂
ΠG) = CΠI

(Πe); thus, the fact
that De

⋂
ΠI = CΠI (Πe) = CΠI (Ie) = Ie follows from the fact that Ie surjects onto

I [cf. assertion (ii)], together with the commensurable terminality of Πe in ΠG [cf.
[Mzk13], Proposition 1.2, (ii)]. This completes the proof of assertion (vii).

Next, we consider assertion (iv). Suppose that (2) holds. Then it follows
from assertions (ii), (iii) [and the definitions] that Iv

⋂
Iv′ = {1}, Ie = Πe · Iv =
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Πe · Iv′ ⊆ Dv

⋂
Dv′

⋂
ΠI ⊆ ZΠI

(Iv × Iv′) ⊆ CΠI
(Ie). On the other hand, by

assertion (vii), we have CΠI (Ie) = Ie. But this implies that Dv

⋂
Dv′

⋂
ΠI = Ie.

Next, suppose that (3) holds, and that Πv
⋂
Πv′ = {1}. Then it follows immediately

from our discussion of the situation in which (2) holds [cf. also assertion (iii)] that

(ẐΣ ∼=) Iv′′ ⊆ Dv

⋂
Dv′

⋂
ΠI ↪→ I [so Iv′′ = Dv

⋂
Dv′

⋂
ΠI ], Iv

⋂
Iv′ ⊆ Iv

⋂
Iv′′ =

Iv′
⋂
Iv′′ = {1}. Thus, to complete the proof of assertion (iv), it suffices to verify

— under the assumption that (1) and (2) are false! — that we have an equality
(Dv

⋂
Dv′

⋂
ΠI ⊇) Πv

⋂
Πv′ = {1}, and that (3) holds.

Write Cv, Cv′ for the irreducible components of X corresponding to v, v′.
Suppose that both (1) and (2) are false. Recall that ΠG [cf. [MT], Remark 1.2.2]

and I (∼= ẐΣ), hence also ΠI , are torsion-free. Thus, Iv × Πv = Dv

⋂
ΠI [cf.

assertion (iii)] is torsion-free, so by replacing ΠH by an open subgroup of ΠH [cf.
Remark 1.2.1], we may assume without loss of generality that G [i.e., X log] is sturdy
[cf. §0], and that G is edge-paired [cf. §0]. Also, by projecting to the maximal
pro-l quotients, for some l ∈ Σ, of suitable open subgroups [cf. Remark 1.2.1] of
the various pro-Σ groups involved, one verifies immediately that we may assume
without loss of generality [for the remainder of the proof of assertion (iv)] that
Σ = {l}. When l = 2, we may also assume without loss of generality [by replacing
ΠH by an open subgroup of ΠH ] that G is edge-even [cf. §0].

Now I claim that Dv

⋂
Dv′

⋂
ΠG = Πv

⋂
Πv′ = {1}. Indeed, suppose that

Πv
⋂
Πv′ 
= {1}. Then one verifies immediately that there exist log admissible

coverings [cf. [Mzk1], §3] Y log → X log ×Slog T log, corresponding to open subgroups
J ⊆ ΠG , which are split over Cv′ [so Πv′ ⊆ J , Πv

⋂
Πv′ ⊆ Πv

⋂
J ], but determine

arbitrarily small neighborhoods Πv
⋂
J of the identity element in Πv. [Here, we

note that the existence of such coverings follows immediately from the fact that
X log is edge-paired for arbitrary l and edge-even when l = 2. That is to say, one
starts by constructing the covering over Cv in such a way that the ramification
indices at the nodes and cusps of Cv are all equal; one then extends the covering
over the irreducible components of X adjacent to v [by applying the fact that X log

is edge-paired for arbitrary l and edge-even when l = 2 — cf. the discussion of §0]
in such a way that the covering is unramified over the nodes of these irreducible
components that do not abut to Cv; finally, one extends the covering to a split
covering over the remaining portion of X [which includes Cv′ !].] But the existence
of such J implies that Πv

⋂
Πv′ = {1}, a contradiction. This completes the proof

of the claim. Thus, the natural projection Dv

⋂
Dv′

⋂
ΠI → I has nontrivial open

image [since Σ = {l}], which we denote by Iv,v′ ⊆ I. Moreover, to complete the
proof of assertion (iv), it suffices to derive a contradiction under the assumption
that (1), (2), and (3) are false. Thus, for the remainder of the proof of assertion
(iv), we assume that (1), (2), and (3) are false.

Write C+
v ⊆ X for the union of Cv and the irreducible components of X that

are adjacent to Cv. We shall refer to a vertex of G as a C+
v -vertex if it corresponds

to an irreducible component of C+
v . We shall say that a node e is a bridge node

if it abuts both to a C+
v -vertex and to a non-C+

v -vertex. Thus, no bridge node
abuts to v. Now let us write iv for the least common multiple of the indices ie
of the bridge nodes e; iΣv for the largest nonnegative power of l dividing iv. Let

d
def
= l · iv · [I : Iv,v′ ]; d

Σ def
= l · iΣv · [I : Iv,v′ ] [so dΣ is the largest positive power

of l dividing d]. Here, we observe that for any open subgroup J0 ⊆ ΠI such that
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Dv

⋂
J0 surjects onto I [cf. assertion (iii)], and Dv′

⋂
ΠI ⊆ J0, it holds that

[I : Iv,v′ ] = [(Dv

⋂
J0) : (Πv

⋂
J0) · (Dv

⋂
Dv′

⋂
ΠI)]

[where we note that Dv

⋂
Dv′

⋂
ΠI ⊆ Dv

⋂
J0]. Thus, it suffices to construct

open subgroups J ⊆ J0 ⊆ ΠI such that Dv

⋂
J0 surjects onto I, Πv

⋂
J0 ⊆ J ,

and Dv′
⋂
ΠI ⊆ J [which implies that (Πv

⋂
J0) · (Dv

⋂
Dv′

⋂
ΠI) ⊆ Dv

⋂
J ], but

[Dv

⋂
J0 : Dv

⋂
J ] > [I : Iv,v′ ].

To this end, let us first observe that the characteristic sheaf of the log scheme
X log admits a section ζ over X satisfying the following properties:

(a) ζ vanishes on the open subscheme of X given by the complement of C+
v

[hence, in particular, on Cv′ ];

(b) ζ coincides with iv · σ ∈ MS [cf. the notation of Example 1.1, (iii)] at
the generic points of C+

v ;

(c) ζ coincides with either (iv/ie)·ξ ∈ Me or (iv/ie)·η ∈ Me [cf. the notation
of Example 1.1, (iii)] at each bridge node e.

[Indeed, the existence of such a section ζ follows immediately from the discussion of
Example 1.1, (iii), together with our definition of iv.] Thus, by taking the inverse
image of ζ in the monoid that defines the log structure of X log, we obtain a line
bundle L on X. Let Y → X be a finite étale cyclic covering of order a positive
power of l such that L|Y has degree divisible by dΣ on every irreducible component
of Y , and Y → X restricts to a connected covering over every irreducible component

of X that is 
= Cv′ [e.g., Cv], but splits over Cv′ ; Y
log def

= X log×XY ; Cw
def
= Cv×XY ;

C+
w

def
= C+

v ×XY . [Note that the fact that such a covering exists follows immediately
from our assumption that G is sturdy.] Now let

Z log → Y log

be a log étale cyclic covering of degree dΣ satisfying the following properties:

(d) Z log → Y log restricts to an étale covering of schemes over the complement
of C+

w and splits over the irreducible components of Y that lie over Cv′
[cf. (a); the fact that (1), (2), and (3) are assumed to be false!];

(e) Z log → Y log is ramified, with ramification index dΣ/iΣv , over the generic
points of C+

w , but induces the trivial extension of the function field of Cw
[cf. (b)];

(f) for each node f of Y that lies over a bridge node e of X, the restriction
of Z log → Y log to the branch of f that does not abut to an irreducible
component of C+

w is ramified, with ramification index dΣ · iΣe /iΣv [cf. (c)].

Indeed, to construct such a covering Z log → Y log, it suffices to construct a covering
satisfying (d), (f) over the complement of C+

w [which is always possible, by the
conditions imposed on Y , together with the fact that (1), (2), and (3) are assumed



16 SHINICHI MOCHIZUKI

to be false], and then to glue this covering to a suitable [i.e., such that (e) is

satisfied!] Kummer log étale covering of (C+
w )

log def
= Y log ×Y C+

w [by an fs log
scheme!] obtained by extracting a dΣ-th root of L|C+

w
[cf. the divisibility condition

on the degrees of L over the irreducible components of C+
w ]. [Here, we regard the

Gm-torsor determined by L|C+
w
as a subsheaf of the monoid defining the log structure

of (C+
w )

log.] Now if we write JZ ⊆ JY ⊆ ΠI for the open subgroups defined by the
coverings Z log → Y log → X log, then Dv

⋂
JY surjects onto I; Dv′

⋂
ΠI ⊆ JY . On

the other hand, Πv
⋂
JY ⊆ JZ [cf. (e)] and Dv′

⋂
ΠI ⊆ JZ [cf. (d)], while [cf. (e)]

[Dv

⋂
JY : Dv

⋂
JZ ] = dΣ/iΣv > [I : Iv,v′ ]

[since dΣ = l · iΣv · [I : Iv,v′ ]]. Thus, it suffices to take J0
def
= JY , J

def
= JZ . This

completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that it follows from
assertion (iv) [i.e., by applying assertion (iv) to various open subgroups of ΠH , ΠI
— cf. also Remark 1.2.1] that if, for γ ∈ ΠH , Iv

⋂
(γ · Iv · γ−1) 
= {1}, then Πv =

γ · Πv · γ−1. Thus, we conclude that NΠH
(Iv) ⊆ CΠH

(Iv) ⊆ NΠH
(Πv) = Dv. On

the other hand, since [by definition] Iv = ZΠI
(Πv), and I is normal in H, it follows

that Dv = NΠH
(Πv) ⊆ NΠH

(Iv), so NΠH
(Iv) = CΠH

(Iv) = Dv, as desired. In
particular, Dv

⋂
ΠI = NΠI

(Iv) = CΠI
(Iv). Next, let us observe that Dv

⋂
ΠG = Πv

[cf. [Mzk13], Proposition 1.2, (ii)]. Thus, Dv ⊆ CΠH
(Dv) ⊆ CΠH

(Πv). Moreover,
by [Mzk13], Proposition 1.2, (i), it follows that CΠH (Πv) = NΠH (Πv) = Dv; thus,
we conclude thatDv (respectively,Dv

⋂
ΠI ; Dv

⋂
ΠG) is commensurably terminal in

ΠH (respectively, ΠI ; ΠG). Finally, by assertion (iii), we have Dv

⋂
ΠI = Iv×Πv ⊆

ZΠI
(Iv) ⊆ NΠI

(Iv) = Dv

⋂
ΠI , so Dv

⋂
ΠI = ZΠI

(Iv), as desired. This completes
the proof of assertion (v).

Next, we consider assertion (vi). The fact that the image of Dv in H is open
follows immediately from the fact that since the semi-graph G is finite, some open
subgroup of H necessarily fixes v. On the other hand, if G admits a vertex v′ 
= v,
then Πv′

⋂
Πv is not open in Πv′ [cf. [Mzk13], Proposition 1.2, (i)]; since Dv

⋂
ΠG =

Πv [cf. [Mzk13], Proposition 1.2, (ii)], this implies that Dv is not open in ΠH . This
completes the proof of assertion (vi).

Next, we consider assertion (viii). First, we observe that if property (2) holds,

then by assertions (ii), (iii), [for appropriate choices of conjugates] (ẐΣ ∼=) Iv ⊆
De

⋂
De′

⋂
ΠI ↪→ I, so Iv = De

⋂
De′

⋂
ΠI . Thus, it suffices to verify that ei-

ther (1) or (2) holds. Next, let us observe that, since, as observed above, ΠI ,
hence also De

⋂
De′

⋂
ΠI , is torsion-free, by projecting to the maximal pro-l quo-

tients, for some l ∈ Σ, of suitable open subgroups [cf. Remark 1.2.1] of the var-
ious pro-Σ groups involved, one verifies immediately we may assume without loss
of generality [for the remainder of the proof of assertion (viii)] that Σ = {l}.
Now if De

⋂
De′

⋂
ΠG 
= {1}, then [since Σ = {l}] De

⋂
De′

⋂
ΠG is open in

De

⋂
ΠG (∼= ẐΣ), De′

⋂
ΠG (∼= ẐΣ) [cf. assertions (ii), (iii), (vii)], so we con-

clude from [Mzk13], Proposition 1.2, (i), that e = e′. Thus, to complete the proof
of assertion (viii), it suffices to derive a contradiction under the further assump-
tion that De

⋂
De′

⋂
ΠG = {1}, and e and e′ do not abut to a common vertex.

Moreover, by replacing ΠH by an open subgroup of ΠH [cf. Remark 1.2.1], we may
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assume without loss of generality that G [i.e., X log] is sturdy [cf. §0], and that G is
edge-paired [cf. §0] for arbitrary l and edge-even [cf. §0] when l = 2.

Now if, say, e is a cusp that abuts to a vertex v, then one verifies immediately
that there exist log étale cyclic coverings Y log → X log of degree an arbitrarily large
power of l which are totally ramified over e, but unramified over the nodes of X, as
well as over the cusps of X that abut to vertices 
= v. [Indeed, the existence of such
coverings follows immediately from the fact that X log is edge-paired for arbitrary l
and edge-even when l = 2 — cf. the discussion of §0.] In particular, such coverings
are unramified over e′, as well as over the generic point of the irreducible component
of X corresponding to v, hence correspond to open subgroups J ⊆ ΠI such that
De′

⋂
ΠI ⊆ J [so De

⋂
De′

⋂
ΠI ⊆ J

⋂
De

⋂
ΠI ], and, moreover, J may be chosen

so that the subgroup J
⋂

De

⋂
ΠI ⊆ De

⋂
ΠI = Ie× Iv [cf. assertion (iii)] forms an

arbitrarily small neighborhood of Iv. Thus, we conclude that De

⋂
De′

⋂
ΠI ⊆ Iv.

On the other hand, if e′ is also a cusp that abuts to a vertex v′, then [by symmetry]
we conclude that De

⋂
De′

⋂
ΠI ⊆ Iv′ , hence that Iv

⋂
Iv′ 
= {1}. But, by assertion

(iv), this implies that v = v′, a contradiction. Thus, we may assume that, say, e is
a node, so Ie = De

⋂
ΠI [cf. assertion (vii)].

Write v1, v2 for the two distinct vertices to which e abuts; C1, C2 for the

irreducible components of X corresponding to v1, v2; C
def
= C1

⋃
C2 ⊆ X; UC ⊆

C for the open subscheme obtained by removing the nodes that abut to vertices

= v1, v2. Let us refer to the nodes and cusps of UC as inner, to the nodes of
X that were removed from C to obtain UC as bridge nodes, and to the nodes
and cusps of X which are neither inner nodes/cusps nor bridge nodes as external.
[Thus, e is inner; e′ is external.] Observe that the natural projection to I yields an
inclusion De

⋂
De′

⋂
ΠI ↪→ I with open image [since Σ = {l}]; denote the image

of this inclusion by IC . Write iC for the least common multiple of the indices if
of the bridge nodes f ; iΣC for the largest nonnegative power of l dividing iC . Let

d
def
= l · iC · [I : IC ]; d

Σ def
= l · iΣC · [I : IC ] [so dΣ is the largest positive power of l

dividing d]. Here, we observe that

[I : IC ] = [Ie : Πe · (De

⋂
De′

⋂
ΠI)]

[cf. assertion (ii)]. Then it suffices to construct an open subgroup J ⊆ ΠI such that
Πe ⊆ J and De′

⋂
ΠI ⊆ J [which implies that Πe · (De

⋂
De′

⋂
ΠI) ⊆ Ie

⋂
J ], but

[Ie : Ie
⋂

J ] > [I : IC ].

To this end, let us first observe that the characteristic sheaf of the log scheme
X log admits a section ζ over X satisfying the following properties:

(a) ζ vanishes on the open subscheme of X given by the complement of C;

(b) ζ coincides with iC · σ ∈ MS [cf. the notation of Example 1.1, (iii)] at

the generic points of C
def
= C1

⋃
C2;

(c) ζ coincides with either (iC/if ) · ξ ∈ Mf or (iC/if ) · η ∈ Mf [cf. the
notation of Example 1.1, (iii), where we take “e” to be f ] at each bridge
node f .
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[Indeed, the existence of such a section ζ follows immediately from the discussion
of Example 1.1, (iii), together with our definition of iC .] Thus, by taking the
inverse image of ζ in the monoid that defines the log structure of X log, we obtain
a line bundle L on X. Let Y → X be a finite étale Galois covering of order
a positive power of l such that L|Y has degree divisible by dΣ on every irreducible
component of Y , and Y → X restricts to a connected covering over every irreducible

component of X; Y log def
= X log×X Y . [Note that the fact that such a covering exists

follows immediately from our assumption that G is sturdy.] Write CY
1 , CY

2 for the
irreducible components of Y lying over C1, C2, respectively; we shall apply the
terms “internal”, “external”, and “bridge” to nodes/cusps of Y that lie over such
nodes/cusps of X. Now let

Z log → Y log

be a log étale cyclic covering of degree dΣ satisfying the following properties:

(d) Z log → Y log restricts to an étale covering of schemes over the comple-

ment of CY def
= CY

1

⋃
CY

2 [cf. (a)], hence, in particular, over the external
nodes/cusps of Y ;

(e) Z log → Y log is ramified, with ramification index dΣ/iΣC , over the generic
points of CY

1 , CY
2 , and, at each internal node of Y lying over e, determines

a covering corresponding to an open subgroup of Ie that contains Πe [cf.
(b)];

(f) for each bridge node f of Y , the restriction of Z log → Y log to the branch
of f that does not abut to CY is ramified, with ramification index dΣ·iΣf /iΣC
[cf. (c)].

Indeed, to construct such a covering Z log → Y log, it suffices to construct a covering
satisfying (d), (f) over the complement of CY [which is always possible, by the
conditions imposed on Y ], and then to glue this covering to a suitable [i.e., such

that (e) is satisfied!] Kummer log étale covering of (CY )log
def
= Y log ×Y CY [by

an fs log scheme!] obtained by extracting a dΣ-th root of L|CY [cf. the divisibility
condition on the degrees of L|CY

1
, L|CY

2
]. [Here, we regard the Gm-torsor determined

by L|CY as a subsheaf of the monoid defining the log structure of (CY )log.] Now if
we write JZ ⊆ JY ⊆ ΠI for the open subgroups defined by the coverings Z log →
Y log → X log, then Ie, De′

⋂
ΠI ⊆ JY . On the other hand, Πe ⊆ JZ [cf. (e)] and

De′
⋂
ΠI ⊆ JZ [cf. (d)], while [cf. (e)]

[Ie : Ie
⋂

JZ ] = dΣ/iΣC > [I : IC ]

[since dΣ = l · iΣC · [I : IC ]]. Thus, it suffices to take J
def
= JZ . This completes the

proof of assertion (viii).

Next, we consider assertion (ix). The fact that the image of De in H is open fol-
lows immediately from the fact that since the semi-graph G is finite, some open sub-
group of H necessarily fixes e. On the other hand, since De

⋂
ΠG = NΠG (Πe) = Πe

[cf. [Mzk13], Proposition 1.2, (ii)] is abelian, hence not open in the slim, nontrivial
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profinite group ΠG , it follows that De is not open in ΠH . This completes the proof
of assertion (ix).

Finally, we consider assertion (x). First, let us observe that an easy com-
putation reveals that if the image of τS is a non-nodal, non-cuspidal point of the
irreducible component of X corresponding to a vertex vτ of G, then τI(I) = Ivτ .
Next, let us suppose that the image of τS is the node of X corresponding to some
node eτ of G. Then an easy computation [cf. the computations performed in the
proof of assertion (ii)] reveals that τI(I) ⊆ Ieτ , but that τI(I) is not contained in
Iv′ for any vertex v′ to which eτ abuts. If, moreover, τI(I) ⊆ Iv for some vertex v
to which eτ does not abut, then [since the very existence of the node eτ implies that
X is singular] there exists a node e 
= eτ that abuts to v, so τI(I) ⊆ Iv ⊆ Ie [cf. as-
sertion (ii)]; but this implies that τI(I) ⊆ Ie

⋂
Ieτ , so, by assertion (viii), it follows

that τI(I) ⊆ Iv′ for some vertex to which both e and eτ abut — a contradiction.
Thus, in summary, we conclude that in this case, τI is non-verticial.

Now suppose that τI is non-verticial and non-edge-like. Then the observations
of the preceding paragraph imply that the image of τS is a cusp of X. Write eτ
for the corresponding cusp of G. Thus, one verifies immediately that τI(I) ⊆ Deτ .
The uniqueness of eτ then follows from assertion (viii) [and the fact that τI is non-
verticial]. Thus, for the remainder of the proof of assertion (x), we may assume that
the image of τS is not a cusp. Now the remainder of assertion (x) follows formally,
in light of what of we have done so far, from assertions (iv), (viii). This completes
the proof of assertion (x). ©

Corollary 1.4. (Graphicity of Isomorphisms of (D)PSC-Extensions)
Let l be a prime number. For i = 1, 2, let 1 → ΠGi → ΠHi → Hi → 1 be an
l-cyclotomically full [cf. Remark 1.2.3] DPSC-extension (respectively, PSC-

extension), associated to construction data (X log
i → Slog

i ,Σi,Gi, ρHi , ιi) (re-

spectively, (X log
i → Slog

i ,Σi,Gi, ρHi)) such that l ∈ Σi; in the non-resp’d case, write
Ii ⊆ Hi for the inertia subgroup. Let

φH : H1
∼→ H2; φΠ : ΠG1

∼→ ΠG2

be compatible [i.e., with the respective outer actions of Hi on ΠGi
] isomorphisms

of profinite groups; in the non-resp’d case, suppose further that φH(I1) = I2.
Then Σ1 = Σ2; φΠ is graphic [cf. [Mzk13], Definition 1.4, (i)], i.e., arises from

an isomorphism of semi-graphs of anabelioids G1
∼→ G2.

Proof. This follows immediately from [Mzk13], Corollary 2.7, (i), (iii). Here, as
in the proof of [Mzk13], Corollary 2.8, we first apply [Mzk13], Corollary 2.7, (i)
[which suffices to complete the proof of Corollary 1.4 in the resp’d case and allows
one to reduce to the noncuspidal case in the non-resp’d case], then apply [Mzk13],
Corollary 2.7, (iii), to the compactifications of corresponding sturdy finite étale
coverings of the Gi. ©

We are now ready to define a purely group-theoretic, combinatorial analogue of
the notion of a stable polycurve given in [Mzk2], Definition 4.5.
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Definition 1.5. We shall refer to an extension of profinite groups as a PPSC-
extension [i.e., “poly-PSC-extension”] if, for some positive integer n and some
nonempty set of primes Σ, it admits a “structure of pro-Σ PPSC-extension of
dimension n”. Here, for n a positive integer, Σ a nonempty set of primes, and

1 → Δ → Π → H → 1

an extension of profinite groups, we define the notion of a structure of pro-Σ PPSC-
extension of dimension n as follows [inductively on n]:

(i) A structure of pro-Σ PPSC-extension of dimension 1 on the extension 1 →
Δ → Π → H → 1 is defined to be a structure of pro-Σ PSC-extension. Suppose that
the extension 1 → Δ → Π → H → 1 is equipped with a structure of pro-Σ PPSC-
extension of dimension 1. Thus, we have an associated semi-graph of anabelioids
G, together with a continuous action of H on G, and a compatible isomorphism
Δ

∼→ ΠG . We define the [horizontal] divisors of this PPSC-extension to be the
cusps of the PSC-extension 1 → Δ → Π → H → 1. Thus, each divisor c of the
PPSC-extension 1 → Δ → Π → H → 1 has associated inertia and decomposition
groups Ic ⊆ Dc ⊆ Π [cf. Definition 1.2, (i)]. Moreover, by [Mzk13], Proposition 1.2,
(i), a divisor is completely determined by [the conjugacy class of] its inertia group,
as well as by [the conjugacy class of] its decomposition group. Finally, we shall refer
to the extension 1 → Δ → Π → H → 1 [itself] as the fiber extension associated to
the PPSC-extension 1 → Δ → Π → H → 1 of dimension 1.

(ii) A structure of pro-Σ PPSC-extension of dimension n+ 1 on the extension
1 → Δ → Π → H → 1 is defined to be a collection of data as follows:

(a) a quotient Π � Π∗ such that Δ† def
= Ker(Π � Π∗) ⊆ Δ; thus, the image

Δ∗ ⊆ Π∗ of Δ in Π∗ determines an extension

1 → Δ∗ → Π∗ → H → 1

— which we shall refer to as the associated base extension; the subgroup
Δ† ⊆ Π determines an extension

1 → Δ† → Π → Π∗ → 1

— which we shall refer to as the associated fiber extension;

(b) a structure of pro-Σ PPSC-extension of dimension n on the base extension
1 → Δ∗ → Π∗ → H → 1;

(c) a structure of pro-Σ PPSC-extension of dimension 1 on the fiber extension
1 → Δ† → Π → Π∗ → 1;

(d) for each base divisor [i.e., divisor of the base extension] c∗, a structure
of DPSC-extension on the extension

1 → Δ† → Πc∗
def
= Π×Π∗ Dc∗ → Dc∗ → 1

— which we shall refer to as the extension at c∗ — which is compatible
with the PSC-extension structure on the fiber extension [cf. (c)], in the
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sense that both structures yield the same cuspidal inertia subgroups ⊆ Δ†;
also, we require that the inertia subgroup of Dc∗ [i.e., that arises from this
structure of DPSC-extension] be equal to Ic∗ .

In this situation, we shall refer to Σ as the fiber prime set of the PPSC-extension
1 → Δ → Π → H → 1; we shall refer to as a divisor of the PPSC-extension
1 → Δ → Π → H → 1 any element of the union of the set of cusps — which we
shall refer to as horizontal divisors — of the PSC-extension 1 → Δ† → Π → Π∗ → 1
and, for each base divisor c∗, the set of vertices of the DPSC-extension 1 → Δ† →
Πc∗ → Dc∗ → 1 — which we shall refer to as vertical divisors [lying over c∗]. Thus,
each divisor c of the PPSC-extension 1 → Δ → Π → H → 1 has associated inertia
and decomposition groups Ic ⊆ Dc ⊆ Π. In particular, whenever c is vertical and
lies over a base divisor c∗, we have Ic ⊆ Dc ⊆ Πc∗ .

Remark 1.5.1. Thus, [the collection of fiber extensions arising from] any struc-
ture of PPSC-extension of dimension n on an extension 1 → Δ → Π → H → 1
determine two compatible sequences of surjections

Δn
def
= Δ � Δn−1 � . . . � Δ1 � Δ0

def
= {1}

Πn
def
= Π � Πn−1 � . . . � Π1 � Π0

def
= H

such that each [extension determined by a] surjection Πm � Πm−1, for m =
1, . . . , n, is a fiber extension [hence equipped with a structure of PSC-extension];
Δm = Ker(Πm � H). If c = cn is a divisor of [the extension determined by]
Π = Πn, then [cf. Definition 1.5, (ii)] there exists a uniquely determined sequence
of divisors

cn 	→ cn−1 	→ . . . 	→ cnc−1 	→ cnc

— where nc ≤ n is a positive integer; for m = nc, . . . , n, cm is a divisor of Πm;
cnc is a horizontal divisor; the notation “ 	→” denotes the relation of “lying over”
[so cm+1 is a vertical divisor that lies over cm, for nc ≤ m < n] — together with
sequences of [conjugacies classes of ] inertia and decomposition groups

Icn → Icn−1 → . . . → Icnc−1 → Icnc

Dcn → Dcn−1 → . . . → Dcnc−1 → Dcnc

[i.e., for nc ≤ m < n, Icm+1 ⊆ Πm+1 maps into Icm ⊆ Πm, and Dcm+1 ⊆ Πm+1

maps into Dcm ⊆ Πm].

Remark 1.5.2. Let 1 → Δ → Π → H → 1 be a PPSC-extension of dimension
n [where n is a positive integer]. Then one verifies immediately that if Π• ⊆ Π
is any open subgroup of Π, then there exists an open subgroup Π•• of Π• that
[when equipped with the induced extension structure] admits a structure of PPSC-
extension of dimension n — cf. Remark 1.2.1. Here, we note that one must, in
general, pass to “some open subgroup” Π•• of Π• in order to achieve a situation in
which all of the fiber [PSC-]extensions have “stable reduction” [cf. Remark 1.2.1;
Definition 1.5, (ii), (d)].
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Remark 1.5.3. For l a prime number, we shall say that a PPSC-extension 1 →
Δ → Π → H → 1 of dimension n is l-cyclotomically full if each of its n associated
fiber extensions [cf. Remark 1.5.1] is l-cyclotomically full as a PSC-extension [cf.
Remark 1.2.3]. Thus, it follows immediately from the final portion of Remark 1.2.3
that the issue of whether or not the PPSC-extension 1 → Δ → Π → H → 1 is
l-cyclotomically full depends only on the sequence of surjections of profinite groups
Πn � Πn−1 � . . . � Π1 � Π0 [cf. Remark 1.5.1].

Remark 1.5.4. Let k be a field; k a separable closure of k; Gk
def
= Gal(k/k);

S
def
= Spec(k);

Z log → S

the log scheme determined by a stable polycurve over S — i.e., Z log admits a
successive fibration by generically smooth stable log curves [cf. [Mzk2], Definition

4.5, for more details]; UZ ⊆ Z the interior of Z log; DZ
def
= Z\UZ [with the reduced

induced structure]; n the dimension of the scheme Z;

1 → ΔZ
def
= π1(UZ ×k k) → ΠZ

def
= π1(UZ) → Gk → 1

the exact sequence of étale fundamental groups [well-defined up to inner automor-
phism] associated to the structure morphism UZ → S. Then by repeated appli-
cation of the discussion of Example 1.1 to the fibers of the successive fibration
[mentioned above] of Z log by stable log curves, one verifies immediately that:

(i) If k is of characteristic zero, then the structure of stable polycurve on
Z log determines a structure of profinite PPSC-extension of dimension n
on the extension 1 → ΔZ → ΠZ → Gk → 1.

Moreover, one verifies immediately that:

(ii) In the situation of (i), the divisors of ΠZ [in the sense of Definition 1.5]
are in natural bijective correspondence with the irreducible divisors of DZ

in a fashion that is compatible with the inertia and decomposition groups
of divisors of ΠZ [in the sense of Definition 1.5] and of irreducible divisors
of DZ [in the usual sense].

Finally, whether or not k is of characteristic zero, depending on the structure of
Z log [cf., e.g., Corollary 1.10 below], various quotients of the extension 1 → ΔZ →
ΠZ → Gk → 1 may be equipped with a structure of pro-Σ PPSC-extension [induced
by the structure of stable polycurve on Z], for various nonempty sets of prime
numbers Σ that are not equal to the set of all prime numbers; a similar observation
to (ii) concerning a natural bijective correspondence of “divisors” then applies to
such quotients. When considering such quotients 1 → Δ → Π → H → 1 of the
extension 1 → ΔZ → ΠZ → Gk → 1, it is useful to observe that the slimness of Δ
[cf. Proposition 1.6, (i), below] implies that such a quotient ΠZ � Π is completely
determined by the induced quotients ΔZ � Δ, Gk � H [cf. the discussion of the

notation “
out
� ” in §0]; we shall refer to such a quotient 1 → Δ → Π → H → 1 as
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a PPSC-extension arising from Z log, k̃ — where we write k̃ ⊆ k for the subfield
fixed by Ker(Gk � H).

Proposition 1.6. (Basic Properties of PPSC-Extensions) Let

1 → Δ → Π → H → 1

be a pro-Σ PPSC-extension of dimension n [where n is a positive integer]; 1 →
Δ† → Π → Π∗ → 1 the associated fiber extension; c, c′ divisors of Π. Then:

(i) Δ is slim. In particular, if H is slim, then so is Π.

(ii) Dc is commensurably terminal in Π.

(iii) We have: CΠ(Ic) = Dc. As abstract profinite groups, Ic ∼= ẐΣ.

(iv) Dc is not open in Π. The divisor c is horizontal if and only if Dc

projects to an open subgroup of Π∗. If c is vertical and lies over a base divisor
c∗, then Dc projects onto an open subgroup of Dc∗ .

(v) If Dc

⋂
Dc′ is open in Dc, Dc′ , then c = c′. In particular, a divisor of Π

is completely determined by its associated decomposition group.

(vi) If Ic
⋂

Ic′ is open in Ic, Ic′ , then c = c′. In particular, a divisor of Π is
completely determined by its associated inertia group.

Proof. Assertion (i) follows immediately from the “slimness of ΠG” discussed in
Example 1.1, (ii) [cf. Definition 1.5, (i); Definition 1.5, (ii), (c)]. Next, we consider
assertion (ii). We apply induction on n. If c is horizontal, then assertion (ii)
follows from [the argument applied in] Proposition 1.3, (vii) [cf. also Definition 1.5,
(ii), (c)]. If c is vertical, then c lies over some base divisor c∗, and we are in the
situation of Definition 1.5, (ii), (d). By Proposition 1.3, (vi), it follows that Dc

surjects onto some open subgroup of Dc∗ , hence that CΠ(Dc) maps into CΠ∗(Dc∗);
by the induction hypothesis, CΠ∗(Dc∗) = Dc∗ , so CΠ(Dc) ⊆ Πc∗ . Thus, the fact
that CΠ(Dc) = Dc follows from Proposition 1.3, (v). This completes the proof of
assertion (ii).

Next, we consider assertion (iii). Again we apply induction on n. If c is
horizontal, then assertion (iii) follows from [the argument applied in] Proposition
1.3, (i), (vii). If c is vertical, then c lies over some base divisor c∗, and we are in
the situation of Definition 1.5, (ii), (d). By Proposition 1.3, (iii) [cf. Definition 1.5,

(ii), (d)], we have isomorphisms Ic
∼→ Ic∗ ∼= ẐΣ. In particular, CΠ(Ic) maps into

CΠ∗(Ic∗); by the induction hypothesis, CΠ∗(Ic∗) = Dc∗ . Thus, CΠ(Ic) ⊆ Πc∗ , so
the fact that CΠ(Ic) = Dc follows from Proposition 1.3, (v). This completes the
proof of assertion (iii).

Next, we consider assertion (iv). Again we apply induction on n. If c is
horizontal, then by [the argument applied in] Proposition 1.3, (ix), Dc is not open
in Π, butDc projects to an open subgroup of Π∗. If c is vertical, then c lies over some
base divisor c∗, and we are in the situation of Definition 1.5, (ii), (d); Dc ⊆ Πc∗ . By
Proposition 1.3, (vi), Dc projects onto an open subgroup of Dc∗ . By the induction
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hypothesis, Dc∗ is not open in Π∗, so Πc∗ is not open in Π; thus, Dc is not open
in Π, and its image in Π∗ is not open in Π∗. This completes the proof of assertion
(iv).

Next, we consider assertion (v). Again we apply induction on n. By assertion
(iv), c is horizontal if and only if c′ is. If c, c′ are horizontal, then the fact that
c = c′ follows from [Mzk13], Proposition 1.2, (i), (ii). Thus, we may suppose that
c, c′ are vertical and lie over respective base divisors c∗, (c′)∗. By assertion (iv), it
follows that Dc∗

⋂
D(c′)∗ is open in Dc∗ , D(c′)∗ ; by the induction hypothesis, this

implies that c∗ = (c′)∗. Thus, by intersecting with “ΠG” [cf. Proposition 1.3, (v)]
and applying [Mzk13], Proposition 1.2, (i), we conclude that c = c′. This completes
the proof of assertion (v). Finally, we observe that assertion (vi) is an immediate
consequence of assertions (iii), (v). ©

We are now ready to state and prove the main result of the present §1.

Theorem 1.7. (Graphicity of Isomorphisms of PPSC-Extensions) Let l
be a prime number; n a positive integer. For � = α, β, let Σ� be a nonempty set of
primes; 1 → Δ� → Π� → H� → 1 an l-cyclotomically full [cf. Remark 1.5.3]
pro-Σ� PPSC-extension of dimension n;

Π�
n

def
= Π� � Π�

n−1 � . . . � Π�
1 � Π�

0
def
= H�

the sequence of successive fiber extensions associated to Π� [cf. Remark 1.5.1].
Let

φ : Πα
∼→ Πβ

be an isomorphism of profinite groups that induces isomorphisms φm : Παm
∼→ Πβm,

for m = 0, 1, . . . , n [so φ = φn]. Then:

(i) We have Σα = Σβ.

(ii) For m ∈ {1, . . . , n}, φm induces a bijection between the set of divisors
of Παm and the set of divisors of Πβm.

(iii) For m ∈ {1, . . . , n}, suppose that cα, cβ are divisors of Παm, Πβm, respec-
tively, that correspond via the bijection of (ii). Then φm(Icα) = Icβ , φm(Dcα) =
Dcβ . That is to say, φm is compatible with the inertia and decomposition
groups of divisors.

(iv) For m ∈ {0, . . . , n− 1}, the isomorphism

Ker(Παm+1 � Παm)
∼→ Ker(Πβm+1 � Πβm)

induced by φm+1 is graphic [i.e., compatible with the semi-graphs of anabelioids
that appear in the respective collections of construction data of the PSC-extensions
Π�
m+1 � Π�

m, for � = α, β].

(v) For m ∈ {1, . . . , n − 1}, cα, cβ corresponding divisors of Παm, Παm, the
isomorphism

Ker((Παm+1)cα � Dcα)
∼→ Ker((Πβm+1)cβ � Dcβ )
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induced by φm+1 is graphic [i.e., compatible with the semi-graphs of anabelioids
that appear in the respective collections of construction data of the DPSC-extensions
(Π�

m+1)c� � Dc� , for � = α, β].

Proof. All of the assertions of Theorem 1.7 follow immediately from [the various
definitions involved, together with] repeated application of Corollary 1.4 to the PSC-
extensions Π�

m+1 � Π�
m [cf. Definition 1.5, (ii), (c)] and the DPSC-extensions

(Π�
m+1)c� � Dc� [cf. Definition 1.5, (ii), (d)], for � = α, β. ©

Remark 1.7.1. In Theorem 1.7, instead of phrasing the result as an asser-
tion concerning the preservation of structures via some isomorphism between two
PPSC-extensions, one may instead phrase the result as an assertion concerning the
existence of an explicit “group-theoretic algorithm” for reconstructing, from a single
given PPSC-extension, the various structures corresponding to graphicity, divisors,
and inertia and decomposition groups of divisors — i.e., in the fashion of [Mzk15],
Lemma 4.5, for cuspidal decomposition groups; a similar remark may be made
concerning Corollary 1.4. [We leave the routine details to the interested reader.]
Indeed, both Corollary 1.4 and Theorem 1.7 are, in essence, formal consequences
of the “graphicity theory” of [Mzk13], which [just as in the case of [Mzk15], Lemma
4.5] consists precisely of such explicit “group-theoretic algorithms” for reconstruct-
ing the various structures corresponding to graphicity in the case of semi-graphs of
anabelioids of PSC-type.

Before proceeding, we observe the following result, which is, in essence, inde-
pendent of the theory of the present §1.

Theorem 1.8. (PPSC-Extensions over Galois Groups of Arithmetic

Fields) For � = α, β, let k� be a field of characteristic zero; k̃� a solvably

closed [cf. [Mzk15], Definition 1.4] Galois extension of k�; H� def
= Gal(k̃�/k�);

(Z�)log the log scheme determined by a stable polycurve over k�; Σ� a nonempty
set of primes; n a positive integer; 1 → Δ� → Π� � H� → 1 a pro-Σ� PPSC-

extension of dimension n associated to (Z�)log, k̃� [cf. Remark 1.5.4];

Π�
n

def
= Π� � Π�

n−1 � . . . � Π�
1 � Π�

0
def
= H�

the sequence of successive fiber extensions associated to Π� [cf. Remark 1.5.1].
Let

φ : Πα
∼→ Πβ

be an isomorphism of profinite groups that induces isomorphisms φm : Παm
∼→ Πβm,

for m = 0, 1, . . . , n [so φ = φn]. Then:

(i) (Relative Version of the Grothendieck Conjecture for Stable Poly-
curves over Generalized Sub-p-adic Fields) Suppose that for � = α, β, k�
is generalized sub-p-adic [cf. [Mzk4], Definition 4.11] for some prime number

p ∈ Σα
⋂
Σβ, and that the isomorphism of Galois groups φ0 : Hα ∼→ Hβ arises

from a pair of isomorphisms of fields k̃α
∼→ k̃β, kα

∼→ kβ. Then Σα = Σβ; there
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exists a unique isomorphism of log schemes (Zα)
log ∼→ (Zβ)

log that gives rise
to φ.

(ii) (Absolute Version of the Grothendieck Conjecture for Stable
Polycurves over Number Fields) Suppose that for � = α, β, k� is a number
field. Then Σα = Σβ; there exists a unique isomorphism of log schemes
(Zα)

log ∼→ (Zβ)
log that gives rise to φ.

Proof. Assertions (i), (ii) follow immediately from repeated application of [Mzk4],
Theorem 4.12 [cf. also [Mzk2], Corollary 7.4], together with [in the case of assertion
(ii)] “Uchida’s theorem” [cf., e.g., [Mzk10], Theorem 3.1]. ©

Finally, we study the consequences of the theory of the present §1 in the case
of configuration spaces. We refer to [MT] for more details on the theory of config-
uration spaces.

Definition 1.9. Let l be a prime number; Σ a set of primes which is either of
cardinality one or equal to the set of all primes; X a hyperbolic curve of type (g, r)
over a field k of characteristic 
∈ Σ; k a separable closure of k; n ≥ 1 an integer; Xn

the n-th configuration space associated to X [cf. [MT], Definition 2.1, (i)]; E the
index set [i.e., the set of factors — cf. [MT], Definition 2.1, (i)] of Xn;

π1(Xn ×k k) � Θ

themaximal pro-Σ quotient of π1(Xn×kk); Δ ⊆ Θ a product-theoretic open subgroup
[cf. [MT], Definition 2.3, (ii)]; 1 → Δ → Π → H → 1 an extension of profinite
groups.

(i) We shall refer to as a labeling on E a bijection Λ : {1, 2, . . . , n} ∼→ E.
Thus, for each labeling Λ on E, we obtain a structure of hyperbolic polycurve [i.e., a
collection of data exhibiting Xn as a hyperbolic polycurve — cf. [Mzk2], Definition
4.6] on Xn, arising from the various natural projection morphisms associated to
Xn [cf. [MT], Definition 2.1, (ii)], by projecting in the order specified by Λ. In
particular, for each labeling Λ on E, we obtain a structure of PPSC-extension on
[the extension 1 → ΔΛ → ΔΛ → {1} → 1 associated to] some open subgroup
ΔΛ ⊆ Δ [which may be taken to be arbitrarily small — cf. Remark 1.5.2].

(ii) Let Λ be a labeling on E. Then we shall refer to a structure of PPSC-
extension on [the extension 1 → ΔΛ → ΠΛ → HΛ → 1 arising from 1 → Δ →
Π → H → 1 by intersecting with] an open subgroup ΠΛ ⊆ Π as Λ-admissible if it
induces the structure of PPSC-extension on ΔΛ discussed in (i).

(iii) We shall refer to as a structure of [pro-Σ] CPSC-extension [of type (g, r)
and dimension n, with index set E] [i.e., “configuration (space) pointed stable curve
extension”] on the extension 1 → Δ → Π → H → 1 any collection of data as follows:
for each labeling Λ on E, a Λ-admissible structure of PPSC-extension on some
open subgroup ΠΛ ⊆ Π [which may be taken to be arbitrarily small — cf. Remark
1.5.2]. We shall refer to a structure of CPSC-extension on Π as l-cyclotomically
full if, for each labeling Λ on E, the Λ-admissible structure of PPSC-extension that
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constitutes the given structure of CPSC-extension is l-cyclotomically full. We shall
refer to a structure of CPSC-extension on Π as strict if one may take Δ to be
Θ, and, for each labeling Λ on E, one may take ΠΛ to be Π. We shall refer to
1 → Δ → Π → H → 1 as a [pro-Σ] CPSC-extension [of type (g, r) and dimension
n, with index set E] if it admits a structure of CPSC-extension; if this structure of
CPSC-extension may be taken to be l-cyclotomically full (respectively, strict), then
we shall refer to the CPSC-extension itself as l-cyclotomically full (respectively,
strict). If 1 → Δ → Π → H → 1 is a CPSC-extension, then we shall refer to
(Σ, X, k,Θ) as construction data for this CPSC-extension.

(iv) Let k̃ ⊆ k be a solvably closed [cf. [Mzk15], Definition 1.4] Galois extension
of k; suppose that

Z → Xn

is a finite étale covering such that Z ×k k → Xn ×k k is the [connected] covering
determined by the open subgroup Δ ⊆ Θ [so we have a natural surjection π1(Z ×k
k) � Δ]. Then [cf. the discussion of Remark 1.5.4] we shall refer to a [structure of]

CPSC-extension [on] 1 → Δ → Π → H → 1 as arising from Z, k̃/k if there exist

a surjection π1(Z) � Π and an isomorphism Gal(k̃/k)
∼→ H that are compatible

with one another as well as with the natural surjections π1(Z ×k k) � Δ, π1(Z) �
Gal(k/k) � Gal(k̃/k) and, moreover, satisfy the property that the structure of
CPSC-extension on 1 → Δ → Π → H → 1 is induced by the various structures of
hyperbolic polycurve on Z, Xn, associated to a suitable labeling of E [cf. (i)].

Corollary 1.10. (Cominatorial Configuration Spaces) Let l be a prime
number. For � = α, β, let

1 → Δ� → Π� → H� → 1

be an extension of profinite groups equipped with some [fixed!] l-cyclotomically
full structure of CPSC-extension of type (g�, r�) /∈ {(0, 3), (1, 1)} and dimen-
sion n�, with index set E�. If this fixed structure of CPSC-extension is not strict
for either � = α or � = β, then we assume that both gα, gβ are ≥ 2. Let

φ : Πα
∼→ Πβ

be an isomorphism of profinite groups such that φ(Δα) = Δβ. Then:

(i) The isomorphism φ determines a bijection Eα
∼→ Eβ of index sets. In

particular, nα = nβ, so we write n
def
= nα = nβ.

(ii) For each pair of compatible [i.e., relative to the bijection of (i)] labelings
Λ = (Λα,Λβ) of Eα, Eβ, there exist open subgroups Π�

Λ ⊆ Π� [for � = α, β]

such that the following properties hold: (a) φ(ΠαΛ) = ΠβΛ; (b) for � = α, β, the open

subgroup Π�
Λ admits an Λ�-admissible structure of PPSC-extension; (c) if

we write

(Π�
Λ )n

def
= (Π�

Λ ) � (Π�
Λ )n−1 � . . . � (Π�

Λ )1 � (Π�
Λ )0

def
= H�

Λ
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for the sequence of successive fiber extensions associated to the structures of
PPSC-extension of (b) [cf. Remark 1.5.1], then φ induces isomorphisms

(ΠαΛ)m
∼→ (ΠβΛ)m

[for m = 0, . . . , n]. In particular, φ satisfies the hypotheses of Theorem 1.7.

Proof. By [MT], Corollaries 4.8, 6.3 [cf. our hypotheses on (g�, r�)], φ induces

a bijection Eα
∼→ Eβ between the respective index sets, together with compatible

isomorphisms between the various fiber subgroups of Δα, Δβ . [Note that even
though these results of [MT] are stated only in the case where the field appearing
in the construction data is of characteristic zero, the results generalize immediately
to the case where this field is of characteristic invertible in Σ�, since any hyperbolic
curve in positive characteristic may be lifted to a hyperbolic curve in characteristic
zero in a fashion that is compatible with the maximal pro-Σ� quotients of the
étale fundamental groups of the associated configuration spaces — cf., e.g., [MT],
Proposition 2.2, (v).] To obtain open subgroups Π�

Λ ⊆ Π� satisfying the desired
properties, it suffices to argue by induction on n, by applying Remark 1.5.2. ©

Remark 1.10.1. A similar remark to Remark 1.7.1 may be made for Corollary
1.10.

Corollary 1.11. (Configuration Spaces over Arithmetic Fields) For � =

α, β, let k� be a perfect field; k̃� a solvably closed [cf. [Mzk15], Definition 1.4]
Galois extension of k�; X� a hyperbolic curve of type (g�, r�) /∈ {(0, 3), (1, 1)}
over k�; n� a positive integer;

Z� → (X�)n�

a geometrically connected [over k�] finite étale covering of the n�-th configu-
ration space (X�)n� of X�; Σ� a nonempty set of primes;

1 → Δ� → Π� → H� → 1

an extension of profinite groups equipped with some [fixed!] structure of

pro-Σ� CPSC-extension arising from Z�, k̃� [cf. Definition 1.9, (iv)]. If this
fixed structure of CPSC-extension is not strict for either � = α or � = β, then
we assume that both gα, gβ are ≥ 2. Let

φ : Πα
∼→ Πβ

be an isomorphism of profinite groups. Then:

(i) (Relative Version of the Grothendieck Conjecture for Configura-
tion Spaces over Generalized Sub-p-adic Fields) Suppose, for � = α, β, that
k� is generalized sub-p-adic [cf. [Mzk4], Definition 4.11] for some prime number

p ∈ Σα
⋂
Σβ, and that φ lies over an isomorphism of Galois groups φ0 : Hα ∼→ Hβ

that arises from a pair of isomorphisms of fields k̃α
∼→ k̃β, kα

∼→ kβ. Then
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Σα = Σβ; there exists a unique isomorphism of schemes Zα
∼→ Zβ that gives

rise to φ.

(ii) (Strict Semi-absoluteness) Suppose, for � = α, β, that k� is either an
FF, an MLF, or an NF [cf. [Mzk15], §0]. Then φ(Δα) = Δβ [i.e., φ is “strictly
semi-absolute”].

(iii) (Absolute Version of the Grothendieck Conjecture for Configu-
ration Spaces over MLF’s) Suppose, for � = α, β, that k� is an MLF, that
n� ≥ 2, that n� ≥ 3 if X� is proper, and that Σ� is the set of all primes. Then
there exists a unique isomorphism of schemes Zα

∼→ Zβ that gives rise to φ.

(iv) (Absolute Version of the Grothendieck Conjecture for Config-
uration Spaces over NF’s) Suppose, for � = α, β, that k� is an NF. Then

Σα = Σβ; there exists a unique isomorphism of schemes Zα
∼→ Zβ that gives

rise to φ.

Proof. Assertion (i) (respectively, (iv)) follows immediately from Corollary 1.10,
(ii), and Theorem 1.8, (i) (respectively, Theorem 1.8, (ii)) [applied to the coverings
of Zα, Zβ determined by the open subgroups of Corollary 1.10, (ii)]. Assertion (ii)
follows immediately from [Mzk15], Corollary 2.8, (ii). Note that in the situation of
assertion (ii), assertion (ii) implies that Σα = Σβ [since Σ� may be characterized
as the unique minimal set of primes Σ′ such that Δ� is a pro-Σ′ group]; moreover,
in light of our assumptions on k�, it follows immediately that Π� is l-cyclotomically
full for any l ∈ Σα

⋂
Σβ = Σα = Σβ .

Finally, we consider assertion (iii). First, let us observe that by Corollary
1.10, (ii), and Theorem 1.8, (i) [applied to the coverings of Zα, Zβ determined by
the open subgroups of Corollary 1.10, (ii)], it suffices to verify that the isomorphism

φH : Hα ∼→ Hβ induced by φ [cf. assertion (ii)] arises from an isomorphism of fields

kα
∼→ kβ . To this end, let us observe that by Corollary 1.10, (ii), we may apply

Theorem 1.7 to the present situation. Also, by Corollary 1.10, (i), n = nα = nβ
is always ≥ 2; moreover, if either of the X� is proper, then n ≥ 3. Next, let
us observe that if X� is proper (respectively, affine), then the stable log curve
that appears in the logarithmic compactification of the fibration (X�)3 → (X�)2
(respectively, (X�)2 → (X�)1) over the generic point of the diagonal divisor of
(X�)2 (respectively, over any cusp of X�) contains an irreducible component whose
interior is a tripod [i.e., a copy of the projective line minus three marked points]. In
particular, if we apply Theorem 1.7, (iii), to the vertical divisor determined by such
an irreducible component, then we may conclude that φ induces an isomorphism
between the decomposition groups of these vertical divisors. In particular, [after
possibly replacing the given kα, kβ by corresponding finite extensions of kα, kβ ] we
obtain, for � = α, β, a hyperbolic curve C� over k�, together with an isomorphism
of profinite groups

φC : π1(Cα ×kα k̃α)
∼→ π1(Cβ ×kβ k̃β)

induced by φ [so the π1(C� ×k� k̃�) correspond to the respective “Πv’s” of the
vertical divisors under consideration] that is compatible with the outer action of
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H� on π1(C� ×k� k̃�) and the isomorphism φH ; moreover, here we may assume
that, say, Cα is a finite étale covering of a tripod. [In particular, we observe that

the existence of the natural outer action of H� on π1(C�×k� k̃�) implies — cf. the

argument given in the proof of [Mzk10], Proposition 3.3 — that k̃� is necessarily
an algebraic closure of k�.] On the other hand, since the “absolute p-adic version
of the Grothendieck Conjecture” is known to hold in this situation [cf. [Mzk14],
Corollary 2.3], we thus conclude that φH does indeed arise from an isomorphism of

fields kα
∼→ kβ , as desired. This completes the proof of assertion (iii). ©

Remark 1.11.1. At the time of writing Corollary 1.11, (iii), constitutes the only
absolute isomorphism version of the Grothendieck Conjecture over MLF’s [to the
knowledge of the author] that may be applied to arbitrary hyperbolic curves.
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Section 2: Geometric Uniformly Toral Neighborhoods

In the present §2, we prove a certain “resolution of nonsingularities” type re-
sult [cf. Lemma 2.6; Remark 2.6.1; Corollary 2.11] — i.e., a result reminiscent of
the main results of [Tama2] [cf. also the techniques applied in the verification of
“observation (iv)” given in the proof of [Mzk9], Corollary 3.11] — that allows us
to apply the theory of uniformly toral neighborhoods developed in [Mzk15], §3, to
prove a certain “conditional absolute p-adic version of the Grothendieck Conjec-
ture” — namely, that “point-theoreticity implies geometricity” [cf. Corollary 2.9].
This condition of point-theoreticity may be removed if, instead of starting with a
hyperbolic curve, one starts with a “pro-curve” obtained by removing from a proper
curve some [necessarily infinite] set of closed points which is “p-adically dense in a
Galois-compatible fashion” [cf. Corollary 2.10].

First, we recall the following “positive slope version of Hensel’s lemma” [cf.
[Serre], Chapter II, §2.2, Theorem 1, for a discussion of a similar result].

Lemma 2.1. (Positive Slope Version of Hensel’s Lemma) Let k be a
complete discretely valued field; Ok ⊆ k the ring of integers of k [equipped with
the topology determined by the valuation]; mk the maximal ideal of Ok; π ∈ mk a

uniformizer of Ok; A
def
= Ok[[X1, . . . , Xm]]; B

def
= Ok[[Y1, . . . , Yn]]. Let us suppose

that A (respectively, B) is equipped with the topology determined by its maximal

ideal; write X def
= Spf(A) (respectively, Y def

= Spf(B)), KA (respectively, KB) for the
quotient field of A (respectively, B), and ΩA (respectively, ΩB) for the module of
continuous differentials of A (respectively, B) over Ok [so ΩA (respectively, ΩB) is
a free A- (respectively, B-) module of rank m (respectively, n)]. Let φ : B → A be
the continuous Ok-algebra homomorphism induced by an assignment

B � Yj 	→ fj(X1, . . . , Xm) ∈ A

[where j = 1, . . . , n]; let us suppose that the induced morphism dφ : ΩB⊗BA → ΩA
satisfies the property that the image of dφ ⊗A KA is a KA-subspace of rank n in
ΩA⊗AKA [so n ≤ m]. Then there exists a point β0 ∈ Y(Ok) and a positive integer
r satisfying the following property: Let k′ be a finite extension of k, with ring of
integers Ok′ ; write B(β0, k

′, r) for the “ball” of points β′ ∈ Y(Ok′) such that β′, β0

map to the same point of Y(Ok′/(π
r)). Then the image of the map

X (Ok′) → Y(Ok′)

induced by φ contains the “ball” B(β0, k
′, r).

Proof. First, let us observe that by Lemma 2.2 below, after possibly re-ordering
the Xi’s, we may assume that the differentials dXi ∈ ΩA, where i = n+ 1, . . . ,m,
together with the differentials dfj ∈ ΩA, where j = 1, . . . , n, form a KA-basis of
ΩA ⊗A KA. Thus, by adding indeterminates Yn+1, . . . , Ym to B and extending φ
by sending Yi 	→ Xi for i = n+1, . . . ,m, we may assume without loss of generality
that n = m, A = B, X = Y, i.e., that the morphism Spf(φ) : X → Y = X is
“generically formally étale”.
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WriteM for the n by nmatrix with coefficients ∈ A given by {dfi/dXj}i,j=1,... ,n;
g ∈ A for the determinant of M . Thus, by elementary linear algebra, it follows that
there exists an n by nmatrix N with coefficients ∈ A such that M ·N = N ·M = g ·I
[where we write I for the n by n identity matrix]. By our assumption concerning
the image of dφ⊗AKA, it follows that g 
= 0, hence, by Lemma 2.3 below, that there

exist elements xi ∈ mk, where i = 1, . . . , n, such that g0
def
= g(x1, . . . , xn) ∈ mk is

nonzero. By applying appropriate “affine translations” to the domain and codomain
of φ, we may assume without loss of generality that, for i = 1, . . . , n, we have

xi = fi(0, . . . , 0) = 0 ∈ Ok. Write M0
def
= M(0, . . . , 0), N0

def
= N(0, . . . , 0) [so M0,

N0 are n by n matrices with coefficients ∈ Ok].

Next, suppose that g0 ∈ msk\ms+1
k . In the remainder of the present proof, all

“vectors” are to be understood as column vectors with coefficients ∈ Ok′ , where
k′ is as in the statement of Lemma 2.1. Then I claim that for every vector �y =
(y1, . . . , yn) ≡ 0 (mod π3s), there exists a vector �x = (x1, . . . , xn) ≡ 0 (mod π2s)

such that �f(�x)
def
= (f1(�x), . . . , fn(�x)) = �y. Indeed, since Ok′ is complete and xi =

fi(0, . . . , 0) = 0, it suffices [by taking �x{2} to be (0, . . . , 0)] to show, for each integer

l ≥ 2, that the existence of a vector �x{l} ≡ 0 (mod π2s) such that �f(�x{l}) ≡ �y
(mod π(l+1)s) implies the existence of a vector �x{l + 1} such that �x{l + 1} ≡ �x{l}
(mod πls), �f(�x{l + 1}) ≡ �y (mod π(l+2)s). To this end, we compute: Set �ε

def
=

�y− �f(�x{l}), �η def
= g−1

0 ·�ε, �δ def
= N0 ·�η, �x{l + 1} def

= �x{l}+�δ. Thus, �ε ≡ 0 (mod π(l+1)s),

�η ≡ 0 (mod πls), �δ ≡ 0 (mod πls), �x{l + 1} ≡ �x{l} (mod πls). In particular, the

squares of the elements of �δ all belong to π(l+2)s · Ok′ [since l ≥ 2], so we obtain
that

�f(�x{l + 1}) ≡ �f(�x{l}+ �δ) ≡ �f(�x{l}) +M0 · �δ (mod π(l+2)s)

≡ �y − �ε+M0 ·N0 · �η ≡ �y − �ε+ g0 · �η ≡ �y (mod π(l+2)s)

— as desired. This completes the proof of the claim. On the other hand, one
verifies immediately that the content of this claim is sufficient to complete the
proof of Lemma 2.1. ©

Remark 2.1.1. Thus, the usual “(slope zero version of) Hensel’s lemma” corre-
sponds, in the notation of Lemma 2.1, to the case where the image of the morphism
dφ is a direct summand of ΩA. In this case, we may take r = 1.

Remark 2.1.2. In fact, according to oral communication to the author by
F. Oort, it appears that the sort of “positive slope version” of “Hensel’s lemma”
given in Lemma 2.1 [i.e., where the derivative is only generically invertible] preceded
the “slope zero version” that is typically referred to “Hensel’s lemma” in modern
treatments of the subject.

Lemma 2.2. (Subspaces and Bases of a Vector Space) Let k be a field; V
a finite-dimensional k-vector space with basis {ei}i∈I ; W ⊆ V a k-subspace. Then
there exists a subset J ⊆ I such that if we write VJ ⊆ V for the k-subspace generated
by the ej, for j ∈ J , then the natural inclusions VJ ↪→ V , W ↪→ V determine an

isomorphism VJ ⊕W
∼→ V of k-vector spaces.
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Proof. This result is a matter of elementary linear algebra. ©

Lemma 2.3. (Nonzero Values of Functions Defined by Power Series)
Let k, Ok, A be as in Lemma 2.1; f = f(X1, . . . , Xm) ∈ A a nonzero element.
Then there exist elements xi ∈ mk, where i = 1, . . . ,m, such that f(x1, . . . , xm) ∈
mk is nonzero.

Proof. First, I claim that by induction on m, it suffices to verify Lemma 2.3 when
m = 1. Indeed, for arbitrary m ≥ 2, one may write

f =

∞∑
i=0

ci X
i
m

—where ci = ci(X1, . . . , Xm−1) ∈ Ok[[X1, . . . , Xm−1]]. Since f 
= 0, it follows that
there exists at least one nonzero cj . Thus, by the induction hypothesis, it follows
that there exist xi ∈ mk, where i = 1, . . . ,m−1, such that mk � cj(x1, . . . , xm−1) 
=
0. Thus, f(x1, . . . , xm−1, Xm) ∈ Ok[[Xm]] is nonzero, so, again by the induction
hypothesis, there exists an xm ∈ mk such that mk � f(x1, . . . , xm−1, xm) 
= 0. This
completes the proof of the claim.

Thus, for the remainder of the proof, we assume thatm = 1 and writeX
def
= X1,

f =
∞∑
i=0

ci X
i

— where ci ∈ Ok. Suppose that cj 
= 0, but that ci = 0 for i < j. Then there exists
a positive integer s such that cj 
∈ msk. Let x ∈ msk be any nonzero element. Then
cjx

j 
∈ xj ·msk, while cix
i ∈ xj · x · Ok ⊆ xj ·msk for any i > j. But this implies that

mk � f(x) 
= 0, as desired. ©

In the following, we shall often work with [two-dimensional] log regular log
schemes. For various basic facts on log regular log schemes, we refer to [Kato];
[Mzk2], §1. If X log is a log regular log scheme, then for integers j ≥ 0, we shall
write

U
[j]
X ⊆ X

for the j-interior of X log, i.e., the open subscheme of points at which the fiber
of the groupification of the characteristic sheaf of X log is of rank ≤ j [cf. [MT],

Definition 5.1, (i); [MT], Proposition 5.2, (i)]. Thus, the complement of U
[j]
X in X

is a closed subset of codimension > j [cf. [MT], Proposition 5.2, (ii)]; UX
def
= U

[0]
X is

the interior of X log [i.e., the maximal open subscheme over which the log structure
is trivial]. Also, we shall write

DX ⊆ X

for the closed subscheme X\UX with the reduced induced structure. Finally, we
remind the reader that in the following, all fiber products of fs log schemes are to
be taken in the category of fs log schemes [cf. §0].
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Next, let k be a complete discretely valued field with perfect residue field k;
Ok ⊆ k the ring of integers of k; k an algebraic closure of k; k the resulting
algebraic closure of k; mk the maximal ideal of Ok; π ∈ mk a uniformizer of Ok;

X → S
def
= Spec(Ok)

a stable curve over S whose generic fiberXη
def
= X×Sη, where we write η def

= Spec(k),
is smooth. Thus, Xη is a proper hyperbolic curve over k, whose genus we denote by
gX ; the open subschemes η ⊆ S, Xη ⊆ X determine log regular log structures on S,
X, respectively. We denote the resulting morphism of log schemes by X log → Slog.

Definition 2.4.

(i) We shall refer to a morphism of log schemes

φlog : V log → X log

[or to the log scheme V log] as a log-modification if φlog admits a factorization

V log → X log ×Slog Slog
V → X log

—where SV
def
= Spec(OkV ), OkV is the ring of integers of a finite separable extension

kV of k; Slog
V is the log regular log scheme determined by the open immersion ηV

def
=

Spec(kV ) ↪→ SV ; the morphism X log ×Slog Slog
V → X log is the projection morphism

[where we observe that the underlying morphism of schemes X ×S SV → SV is a

stable curve over SV ]; the morphism V log → X log×Slog Slog
V is a log étale morphism

whose underlying morphism of schemes is proper and birational; we shall refer to
kV as the base-field of the log-modification φlog.

(ii) For i = 1, 2, let φlog
i : V log

i → X log be a log-modification that admits a

factorization V log
i → X log ×Slog Slog

i → X log as in (i); ψlog : V log
2 → V log

1 an X log-

morphism. Then let us observe that the log scheme V log
i is always log regular of

dimension 2 [cf. Proposition 2.5, (iv), below]. We shall refer to the log-modification

φlog
i as regular if the log structure of V log

i is defined by a divisor with normal
crossings [which implies that Vi is a regular scheme]. We shall refer to the log-

modification φlog
i as unramified if U

[1]
Vi

is a smooth scheme over Si. We shall refer

to the morphism ψlog as a base-field-isomorphism [or base-field-isomorphic] if the
morphism S2 → S1 induced by ψlog is an isomorphism. We shall refer to the points
of V1 over which the underlying morphism ψ of ψlog fails to be finite as the critical
points of ψlog [or ψ]. We shall refer to the reduced divisor in V2 determined by the
closed set of points of V2 at which ψ fails to be quasi-finite as the exceptional divisor
of ψlog [or ψ]. We shall refer to the log scheme- (respectively, scheme-) theoretic

fiber of V log
i (respectively, Vi) over the unique closed point of Si as the log special

fiber (respectively, special fiber) of V log
i (respectively, Vi); we shall use the notation

V log
i (respectively, V i)
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to denote the log special fiber (respectively, special fiber) of V log
i (respectively, Vi).

Suppose that C is an irreducible component of V i. Then we shall say that C is

stable if it maps finitely to X via φi; we shall say that the log-modification φlog
i as

unramified at C if U
[1]
Vi

is smooth over Si at the generic point of C.

Remark 2.4.1. Recall that there exists a base-field isomorphic log-modification

V log → X log

which is uniquely determined up to unique isomorphism [over X] by the follow-
ing two properties: (a) V is regular; (b) V → S is a semi-stable curve. In fact,
it was this example that served as the primary motivating example for the au-
thor in developing the notion of a “log-modification”. Note, moreover, that unlike
property (a), however, the principal condition that defines a [base-field-isomorphic]
“log-modification” — i.e., the condition that the morphism V → X be a proper, bi-
rational morphism that extends to a log étale morphism V log → X log of log schemes
— is a condition on the morphism V → X that has the virtue of being manifestly
stable under base-change [i.e., via morphisms that satisfy suitable, relatively mild
conditions]. This property of stability under base-change will be applied repeatedly
in the remainder of the present §2.

Proposition 2.5. (First Properties of Log-modifications) For i = 1, 2, let

φlog
i : V log

i → X log

be a log-modification that admits a factorization V log
i → X log ×Slog Slog

i → X log

as in Definition 2.4, (i); ψlog : V log
2 → V log

1 an X log-morphism. Write Si =
Spec(Oki), where, for simplicity, we assume that the extension ki of k is a subfield
of k; ki for the residue field of ki; U

noncr
ψ ⊆ V1 for the open subscheme given by the

complement of the critical points of ψlog. Let • ∈ {1, 2}. Then:

(i) (The Noncriticality of the 1-Interior) We have: U
[1]
V1

⊆ Unoncr
ψ .

(ii) (Isomorphism over the Noncritical Locus) The morphism V log
2 →

V log
1 ×Slog

1
Slog
2 determined by ψlog is an isomorphism over Unoncr

ψ .

(iii) (Log Smoothness and Unramified Log-modifications) V log
• is log

smooth over Slog
• . In particular, the sheaf of relative logarithmic differentials of

the morphism V log
• → Slog

• is a line bundle, which we shall denote ωV log
• /Slog

•
;

we have a natural isomorphism ψ∗ωV log
1 /Slog

1

∼= ωV log
2 /Slog

2
. Finally, there exists a

finite extension k◦ of k• such that, if we write S◦
def
= Spec(Ok◦), then the mor-

phism V log
◦

def
= V log

• ×Slog
•

Slog
◦ → X log determined by φlog

• , is an unramified log-

modification.

(iv) (Regularity and Log Regularity) V log
• is log regular; U

[1]
V• is regu-

lar. Moreover, there exists a regular log-modification V log
◦ → X log that admits
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a base-field-isomorphic X log-morphism V log
◦ → V log

• such that every irreducible
component C of the special fiber V ◦ is smooth over the residue field k◦ of the

base-field k◦ of V log
◦ . Finally, if the log-modification V log

◦ → X log is unramified
at such an irreducible component C, and we write DC ⊆ C for the reduced divisor

determined by the complement of C
⋂
U

[1]
V◦ in C, then we have a natural isomor-

phism
ωC/k◦(DC)

∼→ ωV log
◦ /Slog

◦
|C

of line bundles on C.

(v) (Chains of Projective Lines) Suppose that φlog
2 is a regular log-

modification [so DV2 is a divisor with normal crossings]. Then, after possibly
replacing k2 by a finite unramified extension of the discretely valued field k2, ev-
ery irreducible component C of DV2 that lies in the exceptional divisor of ψlog

is isomorphic to the projective line over the residue field k(c) of the point c of

V log
1 ×Slog Slog

2 to which C maps. Moreover, C meets the other irreducible com-
ponents of DV2 at precisely two k(c)-valued points of C. That is to say, every
connected component of the exceptional divisor of ψlog is a “chain of P1’s”.

(vi) (Dual Graphs of Special Fibers) The spectrum V x of the local ring
obtained by completing the geometric special fiber V • ×k• k at any point x which
does not (respectively, does) belong to the 1-interior has precisely two (respec-
tively, precisely one) irreducible component(s). In particular, the special fiber
V • determines a dual graph ΓV • , whose vertices correspond bijectively to the

irreducible components of V • ×k• k, and whose edges correspond bijectively to the

points of (V•\U [1]
V• ) ×k• k [so each edge abuts to the vertices corresponding to the

irreducible components in which the point corresponding to the edge lies]. In dis-
cussions of ΓV • , we shall frequently identify the vertices and edges of ΓV • with the

corresponding irreducible components and points of V • ×k• k. If the natural Galois

action of Gal(k/k•) on ΓV • is trivial, then we shall say that V log
• is split. Finally,

the loop-rank lp-rk(V •)
def
= lp-rk(ΓV •) [cf. §0] is equal to the loop-rank lp-rk(X).

(vii) (Filtered Projective Systems) Given any log-modification V log
◦ →

X log, there exists a log-modification V log
•◦ → X log that admits X log-morphisms

V log
•◦ → V log

• , V log
•◦ → V log

◦ . That is to say, the log-modifications over X log form a
filtered projective system.

(viii) (Functoriality) Let Y → S be a stable curve, with smooth generic

fiber Yη
def
= Y ×S η; Y log the log regular log scheme determined by the open sub-

scheme Yη ⊆ Y . Then every finite morphism Yη → Xη extends to a commutative
diagram

W log
• −→ V log

•⏐⏐	
⏐⏐	

Y log −→ X log

— where W log
• → Y log is a log-modification. If lp-rk(Y ) = lp-rk(X), then we

shall say that the morphisms Yη → Xη, Y log → X log, W log
• → V log

• are loop-
preserving; if lp-rk(Y ) > lp-rk(X) [or, equivalently, lp-rk(Y ) 
= lp-rk(X)], then
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we shall say that the morphisms Yη → Xη, Y
log → X log, W log

• → V log
• are loop-

ifying. Let C be an irreducible component of W •. Then we shall refer to C as
base-stable [relative to Yη → Xη] (respectively, base-semi-stable [relative to

W log
• → V log

• ]) if it maps finitely to a(n) stable (respectively, arbitrary) irreducible

component of V •. If there exist log-modifications W log
◦ → Y log, V log

◦ → X log that
fit into a commutative diagram

W log
◦ −→ V log

◦⏐⏐	
⏐⏐	

W log
• −→ V log

•

[where the left-hand vertical arrow is a Y log-morphism; the right-hand vertical arrow
is an X log-morphism] such that C is the image of a base-semi-stable [relative to

W log
◦ → V log

◦ ] irreducible component of W ◦, then we shall say that C is potentially
base-semi-stable [relative to Yη → Xη].

(ix) (Centers in the 1-Interior) Let k◦ be a finite separable extension of k;
K◦ a discretely valued field containing k◦ which induces an inclusion Ok◦ ⊆ OK◦
between the respective rings of integers and a bijection k◦/O×

k◦
∼→ K◦/O×

K◦ between

the respective value groups; x◦ ∈ X(K◦) a K◦-valued point. Then there exists

an unramified log-modification V log
◦ → X log with base-field k◦ such that the

morphism V◦ → S◦
def
= Spec(Ok◦) is a semi-stable curve, and x◦ extends to a

point ∈ U
[1]
V◦ (OK◦).

(x) (Maps to the Jacobian) Suppose [for simplicity] that φlog
• is a base-

field-isomorphism. Let x• ∈ U
[1]
V• (Ok); C the [unique, by (vi)] irreducible compo-

nent of V • that meets [the image of] x•; Fx•
def
= V •\(C

⋂
U

[1]
V• ) ⊆ V • [regarded as a

closed subset]; Ux•
def
= V•\Fx• ⊆ V• [so the image of x• lies in Ux• ]. Write Jη → η

for the Jacobian of Xη; J → S for the uniquely determined semi-abelian
scheme over S that extends Jη; ιη : Xη → Jη for the morphism that sends a T -
valued point ξ [where T is a k-scheme] of Xη, regarded as a divisor on Xη ×k T , to
the point of Jη determined by the degree zero divisor ξ − (x•|T ). Then ιη extends
uniquely to a morphism Ux• → J . If, moreover, X is loop-ample [cf. §0], then
this morphism Ux• → J is unramified.

(xi) (Lifting Simple Paths) In the situation of (viii), suppose further that
the following conditions hold:

(a) the log-modifications W log
• → Y log, V log

• → X log are base-field-isomorphic
and split [cf. (vi)];

(b) the morphism W log
• → V log

• is finite.

Let γV be a simple path [cf. §0] in the dual graph ΓV • of V • [cf. (vi)]. Then
there exists a simple path γW in the dual graph ΓW• of W • that lifts γV in the

sense that the morphism W • → V • induces an isomorphism of graphs γW
∼→ γV .

Suppose further that the following condition holds:

(c) the morphism W log
• → V log

• is loop-preserving.
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Then γW is unique in the sense that if γ′
W is any simple path in ΓW• that lifts γV

and is co-terminal [cf. §0] with γW , then γW = γ′
W .

(xii) (Loop-preservation and Wild Ramification) In the situation of (xi),
suppose that, in addition to the conditions (a), (b), (c) of (xi), the following con-
ditions hold:

(d) there exists a prime number p such that k is of characteristic p, and
the morphism Yη → Xη is finite étale Galois and of degree p;

(e) the morphism Yη → Xη is wildly ramified over the terminal vertices
[cf. §0] of the simple path γV .

Let wexc be a vertex of ΓW• that corresponds to an irreducible component of the

exceptional divisor of W log
• → Y log [i.e., a non-stable irreducible component of

W •] and, moreover, maps to a vertex vexc of ΓV • lying in γV . Then the morphism
Yη → Xη is wildly ramified at wexc.

Proof. First, we consider assertion (i). We may assume without loss of generality
that ψ is a base-field-isomorphism. Then it follows from the simple structure of the

monoid N that any log étale birational morphism over U
[1]
V1

is, in fact, étale. This
completes the proof of assertion (i). Next, we consider assertion (iii). Since the

morphism X log → Slog is log smooth, and the morphism V log
• → X log ×Slog Slog

• is

log étale, we conclude that V log
• is log smooth over Slog

• ; the portion of assertion (iii)
concerning ωV log

• /Slog
•

then follows immediately. To verify the portion of assertion

(iii) concerning unramified log-modifications, it suffices to observe that, in light of

the well-known local structure of the nodes of the stable log curve X log×Slog Slog
• →

Slog
• , there exists a finite extension k◦ of k• such that, if we write S◦

def
= Spec(Ok◦),

then the morphism V log
◦

def
= V log

• ×Slog
•

Slog
◦ → Slog

◦ admits sections that intersect

with every irreducible component of V ◦
⋂

U
[1]
V◦ ; thus, the fact that V log

◦ → X log

is an unramified log-modification follows immediately from the log smoothness of

U
[1]
V• , in light of the simple structure of the monoid N. This completes the proof of

assertion (iii).

Next, we consider assertion (iv). The fact that V log
• is log regular follows

immediately from the log smoothness of V log
• over Slog

• [cf. assertion (iii)]; the fact

that U
[1]
V• is regular then follows from the log regularity of U

[1]
V• , in light of the simple

structure of the monoid N. To construct a regular log-modification V log
◦ → X log that

admits a base-field-isomorphic X log-morphism V log
◦ → V log

• , it suffices to “resolve

the singularities” at the finitely many points of V•\U [1]
V• . To give a “resolution

of singularities” of the sort desired, it suffices to construct, for each such v, a
“fan” arising from a “locally finite nonsingular subdivision of the strongly convex

rational polyhedral cone associated to the stalk of the characteristic sheaf of V log
•

at v that is equivariant with respect to the Galois action on the stalk” [cf., e.g.,
the discussion at the beginning of [Mzk2], §2]. Since this is always possible [cf.,
e.g., the references quoted in the discussion of loc. cit.], we thus obtain a regular

log-modification V log
◦ → X log that admits a base-field-isomorphic X log-morphism

V log
◦ → V log

• ; moreover, by replacing V log
◦ with the result of blowing up once more at

various points of V◦\U [1]
V◦ , we may assume that each irreducible component C of V ◦
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is smooth over k◦, as desired. Finally, the construction of the natural isomorphism

ωC/k◦(DC)
∼→ ωV log

◦ /Slog
◦

|C is immediate over C
⋂

U
[1]
V◦ [cf. our assumption that the

log-modification V log
◦ → X log is unramified at C!]; one may then extend this natural

isomorphism to C by means of an easy local calculation at the points of DC . This
completes the proof of assertion (iv). By assertions (iii) and (iv), the underlying

schemes of the domain and codomain of the morphism V log
2 → V log

1 ×Slog
1

Slog
2 of

assertion (ii) are normal. Thus, assertion (ii) follows immediately from Zariski’s
main theorem.

Next, we consider assertion (v). We may assume without loss of generality

that the φlog
i are base-field-isomorphic [so ψlog is log étale]. Also, by blowing up

once more at various points of V2\U [1]
V2

[cf. the proof of assertion (iv)], one verifies
immediately that we may assume without loss of generality that C is smooth over k2.
Let us write C log for the log scheme obtained by equipping C with the log structure
determined by the points of C that meet the other irreducible components of DV2 .
Thus, after possibly replacing k2 by a suitable finite unramified extension of k2, we
may assume that the interior UC ⊆ C of C log is the open subscheme of a smooth
proper curve of genus g over k(c) obtained by removing a divisor DC ⊆ C of degree
r > 0 over k(c). On the other hand, it follows immediately from the definition
of a log-modification [cf. Definition 2.4, (i)] and the well-known general theory of
toric varieties [cf. the discussion of “fans” in the proof of assertion (iv)] that the
pair (C,DC) determines a toric variety of dimension one, and hence that UC is
isomorphic to a copy of Gm over k(c), i.e., that g = 0, r = 2, as desired. Now the
remaining portions of assertion (v) follow immediately. This completes the proof
of assertion (v).

Next, we consider assertion (vi). First, we observe that if x belongs to the
1-interior, then it follows immediately from the simple structure of the monoid
N [and the definition of the 1-interior] that Vx is irreducible. Thus, it suffices to

consider the case where x does not belong to the 1-interior. Let V log
◦ → X log,

V log
◦ → V log

• be as in assertion (iv). We may assume without loss of generality

that the log-modifications V log
• → X log, V log

◦ → X log are base-field-isomorphisms.
Also, by replacing k be a finite unramified extension of k, we may assume that every
irreducible component of V • is geometrically irreducible over k, and that every point

of V•\U [1]
V• is defined over k. Then, since V log

◦ → V log
• is birational, and V log

• is log
regular, hence, in particular, normal [cf. assertion (iv)], it follows from Zariski’s

main theorem that the points of V•\U [1]
V• correspond precisely [via V log

◦ → V log
• ] to

the connected components of the inverse image of V•\U [1]
V• via V log

◦ → V log
• . Thus,

the remainder of assertion (vi) follows immediately from assertion (v), applied to

V log
◦ → V log

• , V log
◦ → X log. This completes the proof of assertion (vi).

Next, we consider assertion (vii). We may assume without loss of generality

that the log-modifications V log
• → X log, V log

◦ → X log are base-field-isomorphic.

Then to verify assertion (vii), it suffices to observe that one may take V log
•◦

def
=

V log
• ×Xlog V log

◦ . This completes the proof of assertion (vii). In a similar vein,
assertion (viii) follows by observing that the fact that Yη → Xη extends to a
morphism Y log → X log follows, for instance, from [Mzk2], Theorem A, (1); thus,

one may take W log
•

def
= V log

• ×Xlog Y log. This completes the proof of assertion (viii).
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Next, we consider assertion (ix). We may assume without loss of generality that

k = k◦. Let V log
◦ → X log be the base-field-isomorphic unramified log-modification

determined by the regular semi-stable model of X over S [cf. Remark 2.4.1]. Since
V◦ is proper over S, it follows that x◦ extends to a point ∈ V◦(OK◦); if this point

fails to lie in U
[1]
V◦ , then it follows that it meets one of the nodes of V◦. On the

other hand, since [after possibly replacing k◦ by a finite unramified extension of the
discretely valued field k◦] the completion of the regular scheme V◦ at such a node
is necessarily isomorphic over Ok◦ to a complete local ring of the form

Ok◦ [[s, t]]/(s · t− π◦)

[where s, t are indeterminates; π◦ is a uniformizer of Ok◦ ], this contradicts our

assumption that Ok◦ ⊆ OK◦ induces a bijection k◦/O×
k◦

∼→ K◦/O×
K◦ [i.e., by con-

sidering the images via pull-back by x◦ of s, t in these value groups, in light of the
relation “s · t− π◦”]. This completes the proof of assertion (ix).

Next, we consider assertion (x). Write N → S for the Néron model of Jη over
S. Thus, J may be regarded as an open subscheme of N . Note that the existence
of the rational point x• implies that Ux• is smooth over S [cf. the proof of assertion
(iii)]. Thus, it follows from the universal property of the Néron model [which is
typically used to define the Néron model] that ιη extends to a morphism Ux• → N .
Since C

⋂
Ux• is connected [cf. the definition of Ux• ], the fact that the image of this

morphism lies in J ⊆ N follows immediately from the fact that [by definition] it
maps x• to the identity element of J(Ok). Thus, we obtain a morphism Ux• → J .
To verify that this morphism is unramified, it suffices [by considering appropriate
translation automorphisms of J ] to show that it induces a surjection on Zariski
cotangent spaces at x•; but the induced map on Zariski cotangent spaces at x• is
easily computed [by considering the long exact sequence on cohomology associated
to the short exact sequence 0 → OV• → OV•(x•) → OV•(x•)|x• → 0 on V•, then
taking duals] to be the map

H0(X log, ωXlog/Slog)
∼→ H0(V log, ωV log

• /Slog) → ωV log
• /Slog |x•

[where we recall the natural isomorphism ωXlog/Slog |V log
•

∼→ ωV log
• /Slog , arising from

the fact that φlog
• : V log

• → X log is log étale — cf. assertion (iii)] given by evaluating
at x•, hence is surjective so long as X is loop-ample [cf. §0]. This completes the
proof of assertion (x).

Next, we consider assertion (xi). First, let us observe that it follows immedi-
ately from the surjectivity of W • → V • that every vertex of ΓV • may be lifted to
a vertex of ΓW• . Next, I claim that every edge of ΓV • may be lifted to an edge of
ΓW• . Indeed, let y ∈ W•(k), x ∈ V•(k) be such that y 	→ x; write Wy, Vx for the
respective spectra of the local rings obtained by completing W•, V• at y, x. Then
the morphism W log → V log induces a finite, dominant, hence surjective, morphism
Wy → Vx. In particular, this morphism Wy → Vx induces a surjection from the set
Iy of irreducible components of W • that pass through y to the set Ix of irreducible
components of V • that pass through x. Thus, if x corresponds to an edge of the
dual graph ΓV • , then this set Ix is of cardinality 2 [cf. assertion (vi)]; since Iy is

of cardinality ≤ 2 [cf. assertion (vi)], the existence of the surjection Iy � Ix thus
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implies that this surjection is, in fact, a bijection Iy
∼→ Ix, hence that y corresponds

to an edge of ΓW• [cf. assertion (vi)]. This completes the proof of the claim. Thus,
by starting at one of the terminal vertices of γV , and proceeding along γV from
vertex to edge to vertex, etc., one concludes immediately the existence of a simple
path γW lifting γV . To verify uniqueness when condition (c) holds, write v1, v2 for
the terminal vertices of γV ; e

′ for the edge of γV that is nearest to v1 among those
edges of γV that lift to different edges in γW , γ′

W ; v′1 (respectively, v
′
2) for the vertex

to which e′ abuts that lies in the same connected component of the complement of
e′ in γV as v1 (respectively, v2); v

+
1 for the vertex of γV that is nearest to v1 among

those vertices of γV lying between v′2 and v2 which lift to the same vertex in γW ,
γ′
W . Then by traveling along γW from the vertex w1 of γW lifting v1 to the vertex

w+
1 of γW lifting v+1 , then traveling back along γ′

W from w+
1 [which, by definition,

also belongs to γ′
W ] to w1 [which, by definition, also belongs to γ′

W ], one obtains
a “nontrivial loop” in ΓW• [i.e., a nonzero element of H1(ΓW• ,Q)] that maps to

a “trivial loop” in ΓV • [i.e., the zero element of H1(ΓV • ,Q)]. But this contradicts

the assumption that the morphism W log
• → V log

• is loop-preserving [cf. condition
(c)]. This completes the proof of assertion (xi).

Finally, we consider assertion (xii). First, we observe that the hypotheses of
assertion (xii) are stable with respect to base-change in S. In particular, we may
always replace S = Spec(Ok) by the normalization of S in some finite separable
extension of k. Next, by assertion (iv), we may assume that there exists a base-

field-isomorphic, regular, split log-modification V log
◦ → X log, together with an X log-

morphism V log
◦ → V log

• . Moreover, if we take W log
◦

def
= V log

◦ ×V log
•

W log
• , then

the composite morphism W log
◦ → W log

• → Y log forms a base-field-isomorphic log-

modification such that the projection W log
◦ → V log

◦ is finite [by condition (b); cf.
also the finiteness mentioned in the discussion entitled “Log Schemes” given in

§0]. In particular, by replacing W log
• → V log

• by W log
◦ → V log

◦ [cf. also assertion
(v), concerning the effect on the simple path γV ; assertion (vi), concerning the

effect on the loop-rank], we may assume that the log-modification V log
• → X log is

regular. Here, let us note that since W log
• → V log

• is finite, and W log
• is log regular

[cf. assertion (iv)], which implies, in particular, that W• is normal [so W• is the

normalization of V• in Yη], it follows that G
def
= Gal(Yη/Xη) (∼= Z/pZ) acts on W log

• .
Also, by assertion (iv), we may assume that there exists a base-field-isomorphic,

regular, split log-modification W log
� → Y log, together with a Y log-morphism W log

� →
W log

• ; moreover, it follows immediately from the proof of assertion (iv) that we

may choose W log
� so that the action of G extends to W log

� . Finally, we observe that

it follows from assertion (v) that every irreducible component of the exceptional

divisors of W�, V • [relative to the morphisms W log
� → Y log, V log

• → X log] is

isomorphic to P1
k.

Let EW be the irreducible component of W • corresponding to wexc. Thus,
there exists a unique irreducible component FW of W� that maps finitely to EW ;
moreover, EW maps finitely to an irreducible component EV of V • [corresponding

to vexc] that lies in the exceptional divisor of V log
• → X log. Thus, we have finite

morphisms

FW → EW → EV
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— where FW , EV are isomorphic to P1
k; the first morphism FW → EW is a mor-

phism between irreducible schemes that induces an isomorphism between the re-
spective function fields. Now to complete the proof of assertion (xii), it suffices to
assume that

the composite morphism FW → EV is generically étale

and derive a contradiction. Let us refer to the two k-valued points of FW (respec-

tively, EV ) [cf. assertion (v)] that lie outside U
[1]
W� (respectively, U

[1]
V• ) as the critical

points of FW (respectively, EV ). Then since the divisor on W log
• (respectively, V log

• )

at which the morphism W log
• → V log

• is [necessarily wildly] ramified does not, by our
assumption, contain EW (respectively, EV ), it follows that the divisor on FW (re-
spectively, EV ) at which FW → EV is ramified is supported in the divisor defined
by the two critical points of FW (respectively, EV ).

Next, let us write v1, v2 for the terminal vertices of γV . Note that by conditions
(d), (e), it follows that v1, v2 lift, respectively, to unique vertices w1, w2 of ΓW• . In
particular, it follows that any two simple paths in ΓW• lifting γV are co-terminal.
Now I claim that the morphism FW → EV is of degree p. Indeed, if this morphism
is of degree 1, then it follows that there exists a G-conjugate w′

exc of wexc such that
w′

exc 
= wexc. Thus, considering the G-conjugates of any simple path in ΓW• lifting

γV , it follows that we obtain two distinct [necessarily co-terminal!] simple paths
in ΓW• lifting γV . But this contradicts the uniqueness portion of assertion (xi).
This completes the proof of the claim. Note that this claim implies that we have
G-equivariant morphisms FW → EW → EV , where G acts trivially on EV .

Next, I claim that G fixes each of the critical points of FW . Indeed, it follows
immediately from the definitions that G preserves the divisor of critical points of
FW . Thus, if G fails to fix each of the critical points of FW , then it follows that G
permutes the two critical points of FW , hence that p = 2. But since FW → EV is
of degree p and unramified outside the divisor of critical points of FW , this implies
that P1

k
∼= FW → EV ∼= P1

k is finite étale, hence [since, as is well-known, the

étale fundamental group of P1
k is trivial!] that FW → EV is an isomorphism — in

contradiction to the fact that FW → EV is of degree p > 1. This completes the
proof of the claim. Note that this claim implies that the morphism FW → EV is
ramified at the critical points of FW , and that the set of two critical points of FW
maps bijectively to the set of two critical points of EV . In particular, it follows that
FW → EV determines a finite étale covering (Gm)k → (Gm)k of degree p. On the
other hand, any morphism (Gm)k → (Gm)k is determined by a unit on (Gm)k, i.e.,

by a k×-multiple of Un, where U is the standard coordinate on (Gm)k, and n is the

degree of the morphism. Since the morphism determined by a k×-multiple of Up

clearly fails to be generically étale, we thus obtain a contradiction. This completes
the proof of assertion (xii). ©

In the following, we shall write

“π1(−)”

for the “log fundamental group” of the log scheme in parentheses, relative to an
appropriate choice of basepoint [cf. [Ill] for a survey of the theory of log fundamental
groups]. Also, from now on, we shall assume, until further notice, that:
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The discrete valuation ring Ok is of mixed characteristic, with residue field
k perfect of characteristic p and of countable cardinality.

Recall that by “Krasner’s lemma” [cf. [Kobl], pp. 69-70, as well as the proof
given above of Lemma 2.1], given a splitting field k′ over k of a monic polynomial
f(T ) [where T is an indeterminate] of degree n with coefficients in k, every monic
polynomial h(T ) of degree n with coefficients in k that are sufficiently close [in the
topology of k] to the coefficients of f(T ) also splits in k′. Thus, it follows from our
assumption that k is of countable cardinality that k admits a countable collection F
of subfields which are finite and Galois over k such that every finite Galois extension
of k contained in k is contained in a subfield that belongs to the collection F .

In some sense, themain technical result of the present §2 is the following lemma.

Lemma 2.6. (Prime-power Cyclic Coverings and Log-modifications)
Suppose that X is loop-ample [cf. §0]. Then:

(i) (Existence of Wild Ramification) Let

X+
η → Xη

be a finite étale Galois covering of hyperbolic curves over η with stable reduction
over S such that Gal(X+

η /Xη) is isomorphic to a product of 2gX copies of Z/pZ [so
such a covering always exists after possibly replacing k by a finite extension of k];
V log → X log a split, base-field-isomorphic log-modification. Then X+

η → Xη

is wildly ramified over every irreducible component C of V .

(ii) (Loopification vs. Component Crushing) After possibly replacing k
by a finite extension of k, there exist data as follows: a stable curve Y → S with

smooth generic fiber Yη
def
= Y ×S η and associated log scheme Y log; a cyclic finite

étale covering Yη → Xη of degree a positive power of p — which determines
a morphism

Y log → X log

— such that at least one of the following two conditions is satisfied:

(a) Yη → Xη is loopifying and wildly ramified at some [necessarily]
stable irreducible component C of Y which is potentially base-semi-
stable relative to Yη → Xη;

(b) there exists a [necessarily] stable irreducible component C of Y which
is not potentially base-semi-stable relative to Yη → Xη.

(iii) (Components Crushed to the 1-Interior) In the situation of (ii),
there exists a commutative diagram

W log −→ Qlog

⏐⏐	
⏐⏐	

Y log −→ X log

— where the vertical morphisms are split, base-field-isomorphic log-modifications;
the horizontal morphism in the bottom line is the morphism already referred to; the
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natural action of Gal(Yη/Xη) on Y log extends to W log — such that the following
property is satisfied: If condition (a) (respectively, (b)) of (ii) is satisfied, then the
unique irreducible component CW of W that maps finitely to the irreducible compo-
nent C of condition (a) (respectively, (b)) maps finitely to Q (respectively, maps

to a closed point of U
[1]
Q ).

(iv) (Group-theoretic Characterization of Crushing) In the situation
of (ii), let C be a [necessarily] stable irreducible component of Y ; l a prime

= p. Write Gal(k/k) � Gklog for the maximal tamely ramified quotient;

ΔY log (respectively, ΔXlog) for the maximal pro-l quotient of the kernel of

the natural [outer] surjection π1(Y
log) � Gklog (respectively, π1(X

log) � Gklog);

ΔC ⊆ ΔY log for the decomposition group of C [well-defined up to conjuga-

tion by an element of π1(Y
log)]. [Thus, ΔY log (respectively, ΔXlog) may be identi-

fied with the maximal pro-l quotient of Ker(π1(Yη) � Gal(k/k)) (respectively,

Ker(π1(Xη) � Gal(k/k))) — cf., e.g., [MT], Proposition 2.2, (v).] Then the fol-
lowing two conditions are equivalent:

(a) the image of ΔC in ΔXlog is trivial;

(b) there exists a commutative diagram

W log −→ Qlog

⏐⏐	
⏐⏐	

Y log −→ X log

— where the vertical morphisms are split, base-field-isomorphic log-modi-
fications; the horizontal morphism in the bottom line is the morphism
already referred to — such that the unique irreducible component CW of

W that maps finitely to C maps to a closed point of U
[1]
Q .

(v) (Group-theoretic Characterization of Wild Ramification) In the
situation of (iv), the morphism Yη → Xη is wildly ramified at C if and only if
Gal(Yη/Xη) stabilizes [the conjugacy class of ] and induces the identity [outer
automorphism] on the [normally terminal — cf. [Mzk13], Proposition 1.2, (ii);
[Mzk17], Lemma 2.12] subgroup ΔC of ΔY log .

Proof. Let us write

TX
def
= π1(Xη ×k k)ab ⊗ Zp

for the maximal pro-p abelian quotient of the geometric fundamental group of Xη.
Thus, TX is a free Zp-module of rank 2gX .

Next, we consider assertion (i). Upon base-change to k, the covering X+
η → Xη

corresponds to the open subgroup p · TX ⊆ TX . Let us write J → S for the
uniquely determined semi-abelian scheme that extends the Jacobian Jη → η of
Xη. After possibly replacing k by a finite extension of k, there exists a rational

point x ∈ U
[1]
V (Ok) that meets C. Thus, for some Zariski open neighborhood Ux

of the image of x in V , we obtain a morphism ι : Ux → J , as in Proposition 2.5,
(x). Moreover, since we have assumed that X is loop-ample, it follows that this
morphism ι is unramified. Now if the morphism X+

η → Xη is tamely ramified over
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C, then it follows from our assumptions on the covering X+
η → Xη, together with

the interpretation of J in terms of Néron models [cf. the proof of Proposition 2.5,
(x)], that [after possibly replacing k by a finite extension of k] there exists some
finite separable extension L of the function field k(C) of C such that there exists a
commutative diagram

Spec(L)
ιL−→ J⏐⏐	ε

⏐⏐	[p]

Spec(k(C))
ιC−→ J

— where ε is the [étale] morphism determined by the given inclusion k(C) ↪→ L;
[p] is the morphism given by multiplication by p on the group scheme J ; ιC is the
restriction of ι to Spec(k(C)). On the other hand, since the restriction of [p] to
the special fiber J of J factors through the Frobenius morphism on J , it follows
that [p] ◦ ιL fails to be unramified. Thus, since ιC ◦ ε is unramified, we obtain a
contradiction to the commutativity of the diagram. This completes the proof of
assertion (i).

Next, we consider assertion (ii). If V log → X log is a split, base-field-isomorphic
log-modification, and C is an irreducible component of V , then let us write

DC ⊆ TX

for the decomposition group associated to C and

IC ⊆ DC

for the wild inertia group associated to C. Note that since TX is abelian, and
V log is split, it follows that the subgroups DC , IC are well-defined [and completely
determined by C]. Moreover, by assertion (i), it follows that IC has nontrivial
image in TX ⊗ Z/pZ.

Next, I claim that if V log
◦ → X log is a split, base-field-isomorphic log-modification,

then V log
◦ → X log is completely determined, as a log scheme over X log, up to count-

ably many possibilities, by X log. Indeed, the morphism V log
◦ → X log is an iso-

morphism over the 1-interior of X log [cf. Proposition 2.5, (i), (ii)]. Moreover, at
each of the finitely many points x of X log lying in the complement of the 1-interior,

V log
◦ → X log is determined by countably many choices of certain combinatorial data

involving the groupification of the stalk of the characteristic sheaf of X log at x [cf.
the proof of Proposition 2.5, (iv)]. This completes the proof of the claim. In partic-
ular, since k is assumed to be of countable cardinality [cf. the discussion preceding
the present Lemma 2.6], it follows that:

There exists a countable cofinal collection M of split log-modifications of
X log.

In particular, it follows that if we write C for the set of all irreducible components of
the special fibers of log-modifications belonging to M, then the collection of [non-
trivial] subgroups of TX of the form “IC”, where C ∈ C, is of countable cardinality.
Thus, we may, for instance, enumerate the elements of C via the natural numbers
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so as to obtain a sequence C1, C2, . . . [i.e., which includes all elements of C]. Since
Zp, on the other hand, is of uncountable cardinality, we thus conclude that there
exists a surjection

Λ : TX � ΛX

— where ΛX ∼= Zp — such that the following properties are satisfied:

(1) For every subgroup IC , where C ∈ C, we have ΛC
def
= Λ(IC) 
= {0}.

(2) There exists a stable component C0 of X such that ΛC0 = ΛX .

[For instance, by applying the fact that each ICn has nontrivial image in TX ⊗
Z/pZ, one may construct Λ by constructing inductively on n [a natural number]
an increasing sequence of natural numbers m1 < m2 < . . . such that ICn maps to
a nonzero subgroup of ΛX ⊗ Z/pmnZ.]

Let us refer to a connected finite étale Galois covering X ′
η → Xη [which may

only be defined after possibly replacing k by a finite extension of k] of hyperbolic
curves over η with stable reduction over S as a Λ-covering if the covering X ′

η×kk →
Xη×k k arises from an open subgroup of ΛX ; thus, Gal(X ′

η/Xη) may be thought of
as a finite quotient of ΛX by an open subgroup ΛX′ ⊆ ΛX . Note that since every
ΛC , where C ∈ C, is isomorphic to Zp, it follows that the following property also
holds:

(3) For any pair X ′′
η → X ′

η → Xη of Λ-coverings of Xη such that ΛC
has nontrivial image in Gal(X ′

η/Xη) ∼= ΛX/ΛX′ , it follows that ΛC
⋂
ΛX′

surjects onto ΛX′/ΛX′′ — i.e., that the covering X ′′
η → X ′

η is totally wildly
ramified over any valuation of the function field of X ′

η whose center on X
is equal to the generic point of C.

Now to complete the proof of assertion (ii), it suffices to derive a contradiction upon
making the following two further assumptions:

(4) Every Λ-covering is loop-preserving.

(5) For every Λ-covering X ′
η → Xη [which extends to a morphism (X ′)log →

X log of log stable curves], there exists [after possibly replacing k by a finite
extension of k] a split, base-field-isomorphic log-modification V log → X log

such that the morphism X ′
η → Xη

∼= Vη ⊆ V extends to a quasi-finite
morphism from some Zariski neighborhood in X ′ of the generic points of
X ′ to V .

[Indeed, if assumption (4) is false, then it follows immediately that condition (a) of
assertion (ii) holds [cf. property (2)]; if assumption (5) is false, then it follows imme-
diately that condition (b) of assertion (ii) holds.] Note, moreover, that assumption
(5) implies the following property:

(6) For every Λ-covering X ′
η → Xη [which extends to a morphism (X ′)log →

X log of log stable curves], there exist [after possibly replacing k by a finite
extension of k], split, base-field-isomorphic log-modifications (V ′)log →
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(X ′)log, V log → X log, together with a finite morphism (V ′)log → V log

lying over (X ′)log → X log.

[Indeed, if, in the notation of property (5), one takes (V ′)log def
= V log ×Xlog (X ′)log,

then the natural projection morphism (V ′)log → (X ′)log is a split, base-field-
isomorphic log-modification. Moreover, every irreducible component of V ′ maps
finitely either to some irreducible component of V or to some irreducible compo-
nent of X ′. Thus, by property (5), we conclude that every irreducible component
of V ′ maps finitely to some irreducible component of V , hence [by Zariski’s main
theorem] that the natural projection morphism (V ′)log → V log is finite, as desired.]

Next, let us observe that properties (4), (6) imply the following properties:

(7) There exists a Λ-covering X ′
η → Xη [after possibly replacing k by a finite

extension of k] such that every ΛC , where C ∈ C, has nontrivial image in
ΛX/ΛX′ .

(8) There exist Λ-coverings X ′′
η → X ′

η → Xη [after possibly replacing k by
a finite extension of k] such that ΛX′/ΛX′′ ∼= Z/pZ, and, moreover, for
every ΛC , where C ∈ C, the intersection ΛC

⋂
ΛX′ surjects onto ΛX′/ΛX′′ .

Indeed, by property (3), it follows that property (8) follows immediately from prop-
erty (7). To verify property (7), we reason as follows: First, let

X†
η → X∗

η → Xη

be Λ-coverings [which exist after possibly replacing k by a finite extension of k]
such that ΛX∗/ΛX† is of order p, and ΛC has nontrivial image in ΛX/ΛX∗ [which
implies that ΛC

⋂
ΛX∗ surjects onto ΛX∗/ΛX† — cf. property (3)] for every stable

irreducible component C of X; write X†,log → X∗,log → X log for the resulting
morphisms of log stable curves. [Note that such Λ-coverings exist, precisely because
there are only finitely many such stable C.] Let V †,log → X†,log, V ∗,log → X∗,log,
V log → X log be split, base-field-isomorphic log-modifications such that there exist
finite, loop-preserving morphisms

V †,log → V ∗,log → V log

lying over X†,log → X∗,log → X log [cf. properties (4), (6)]. [Thus, V †,log, V ∗,log are
completely determined by V log — i.e., by taking the normalization of V in X†

η , X
∗
η .]

Next, let us observe that every node ν of X determines a simple path γνV in the
dual graph ΓV [i.e., by taking the inverse image of ν in V — cf. Proposition 2.5,
(v)], whose terminal vertices are stable irreducible components of V [but whose non-
terminal vertices are non-stable irreducible components of V ]. Thus, by Proposition
2.5, (xi) [which is applicable, in light of properties (4), (6)], it follows that γνV lifts
[uniquely — i.e., once one fixes liftings of the terminal vertices] to simple paths γνV ∗

in ΓV ∗ , γνV † in ΓV † . Since, moreover, X†
η → X∗

η is totally wildly ramified over the

terminal vertices of γνV ∗ , it thus follows that we may apply Proposition 2.5, (xii), to
conclude that X†

η → X∗
η is wildly ramified at every non-stable vertex of γνV † . Write

B for the set of irreducible components of V [which we think of as valuations of the
function field of Xη ×k k] that are the images of stable vertices of γνV † , for nodes ν
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of X. Observe that if we keep the coverings X†
η → X∗

η → Xη fixed, but vary the

log-modification V log → X log [among, say, elements of M], then the set B remains
unchanged [if we think of B as a set of valuations of the function field of Xη ×k k]
and of finite cardinality [bounded by the cardinality of the set of stable irreducible

components of X†]. Thus, in summary, if we think of B as a subset of C, then we
may conclude the following:

ΛC
⋂

ΛX∗ surjects onto ΛX∗/ΛX† , for all C ∈ C\B.

Since B is finite, it thus follows that there exists a Λ-covering X ′
η → X†

η → Xη such
that ΛC

⋂
ΛX† has nontrivial image in ΛX†/ΛX′ , for all C ∈ C [cf. property (3)].

This completes the proof of property (7).

Next, let us consider Λ-coverings

X ′′
η → X ′

η → X

[which exist after possibly replacing k by a finite extension of k] such that ΛX′/ΛX′′

is of order p, and ΛC has nontrivial image in ΛX/ΛX′ [which implies that ΛC
⋂
ΛX′

surjects onto ΛX′/ΛX′′ — cf. property (3)] for all C ∈ C [cf. property (7)]; write
(X ′′)log → (X ′)log → X log for the resulting morphisms of log stable curves. Let
(V ′′)log → (X ′′)log, (V ′)log → (X ′)log be split, base-field-isomorphic, unramified
log-modifications such that there exists a finite, loop-preserving morphism

(V ′′)log → (V ′)log

lying over (X ′′)log → (X ′)log [which exist after possibly replacing k by a finite
extension of k — cf. properties (4), (6); Proposition 2.5, (iii)].

Next, let us consider the logarithmic derivative

δ : ω(V ′)log/Slog |V ′′ → ω(V ′′)log/Slog

of the morphism (V ′′)log → (V ′)log. Since this morphism is finite étale over η,
it follows that δ is an isomorphism over η. On the other hand, since X ′′

η → X ′
η

is totally wildly ramified over every irreducible component C of V ′ [i.e., induces a
purely inseparable extension of degree p of the function field of C], it follows that

δ vanishes on the special fiber V ′′. Write δ∗ def
= π−n · δ, for the maximal integer n

such that π−n · δ remains integral. Thus, we obtain a morphism

δ∗ : ω(V ′)log/Slog |V ′′ → ω(V ′′)log/Slog

of line bundles on V ′′ which is not identically zero on V ′′. Let C ′′ be an irreducible
component of V ′′ such that δ∗|C′′ 
≡ 0. Note that since V ′′ has at least one stable
irreducible component, it follows that we may choose C ′′ such that either C ′′ is
stable or C ′′ meets an irreducible component C∗ of V ′′ such that δ∗|C∗ ≡ 0. Thus,
if C ′′ is not stable, then it follows that δ∗|C′′ has at least one zero [i.e., is not an
isomorphism of line bundles]. Write C ′ for the irreducible component of V ′ which
is the image of C ′′; E′′ → C ′′, E′ → C ′ for the respective normalizations; gE′ , gE′′

for the respective genera of E′, E′′. Also, let us refer to the points of C ′′, E′′, C ′,
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E′ that do not map to the respective 1-interiors of (V ′′)log, (V ′)log as critical points.
Write DE′ ⊆ E′, DE′′ ⊆ E′′ for the respective divisors of critical points; rE′ , rE′′

for the respective degrees of DE′ , DE′′ .

Next, let us consider the morphism C ′′ → C ′. Since this morphism C ′′ → C ′

induces a purely inseparable extension of degree p on the respective function fields,
it follows that we have an isomorphism of k-schemes E′′×k k′ ∼→ E′ [so gE′ = gE′′ ],

where we write k ↪→ k′ ∼= k for the [degree one!] field extension determined by
the Frobenius morphism on k. Next, I claim that the critical points of C ′′ map to
critical points of C ′. Indeed, if a critical point of C ′′ maps to a non-critical point c
of C ′, then let us write C ′′

c , C
′
c for the spectra of the respective completions of the

local rings of C ′′, C ′ at [the fiber over] c. Then observe that since V ′ is regular [of
dimension two] at c [cf. Proposition 2.5, (iv)], while V ′′ is the normalization of V ′

in X ′′
η , it follows from elementary commutative algebra that V ′′ is finite and flat

over V ′ of degree p at c. Thus, if we write ηc for the spectrum of the residue field of
the unique generic point of the irreducible scheme C ′

c, then C ′′
c ×C′

c
ηc → ηc is finite,

flat of degree ≤ p; [since X ′′
η → X ′

η is totally wildly ramified over every irreducible

component of V ′, it follows that] the degree of each of the ≥ 2 [cf. Proposition 2.5,
(vi)] connected components of C ′′

c ×C′
c
ηc over ηc is equal to p — in contradiction

to the fact that the degree of C ′′
c ×C′

c
ηc over ηc is ≤ p. This completes the proof of

the claim. In particular, it follows that rE′′ ≤ rE′ .

Now recall that we have natural isomorphisms

ωE′/k(DE′)
∼→ ω(V ′)log/Slog |E′ ; ωE′′/k(DE′′)

∼→ ω(V ′′)log/Slog |E′′

[cf. Proposition 2.5, (i), (ii), (iii), (iv), (v), (vi); the fact that the log-modifications
(V ′′)log → (X ′′)log, (V ′)log → (X ′)log are unramified]. Moreover, it follows immedi-
ately from the definitions that deg(ωE′/k(DE′)) = 2gE′ + rE′ , deg(ωE′′/k(DE′′)) =
2gE′′+rE′′ . We thus conclude that deg(ω(V ′′)log/Slog |C′′) ≤ deg(ω(V ′)log/Slog |C′). On
the other hand, the existence of the generically nonzero morphism of line bundles
δ∗|C′′ implies that

deg(ω(V ′′)log/Slog |C′′) ≥ deg(ω(V ′)log/Slog |C′′)

= p · deg(ω(V ′)log/Slog |C′) ≥ p · deg(ω(V ′′)log/Slog |C′′)

— which implies that deg(ω(V ′′)log/Slog |C′′) ≤ 0. Now if C ′′ is stable, then we
have deg(ω(V ′′)log/Slog |C′′) = 2gE′′ + rE′′ > 0. We thus conclude that C ′′ is non-
stable. But this implies that δ∗|C′′ has at least one zero, so [cf. the above display
of inequalities] we obtain that deg(ω(V ′′)log/Slog |C′′) < 0, in contradiction to the
equality deg(ω(V ′′)log/Slog |C′′) = 0 if C ′′ is non-stable [cf. the proof of Proposition
2.5, (v)]. This completes the proof of assertion (ii). In light of assertion (ii),
assertion (iii) follows immediately from Proposition 2.5, (viii). This completes the
proof of assertion (iii).

Next, we consider assertion (iv). First, let us observe that by Proposition 2.5,
(ix), it follows that we may assume that split, base-field-isomorphic log-modifications
W log → Y log, Qlog → X log, together with a morphism W log → Qlog over Y log →
X log, have been chosen so that the generic point of the unique irreducible compo-

nent CW of W that maps finitely to C maps into U
[1]
Q . Then observe that there are

precisely two mutually exclusive possibilities:
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(c) some nonempty open subscheme of C maps quasi-finitely to U
[1]
Q ;

(d) C maps to a closed point c of U
[1]
Q .

Moreover, by Proposition 2.5, (i), (ii), (vii), it follows immediately that (b) [as
in the statement of assertion (iv)] ⇐⇒ (d). Thus, it suffices to show that (a) [as
in the statement of assertion (iv)] ⇐⇒ (d). Note that it is immediate that (d)
implies (a): Indeed, if we write clog for the log scheme obtained by equipping c with
the restriction to c of the log structure of Qlog, then we obtain an open injection
π1(c

log) ↪→ Gklog ; but this implies that the natural homomorphism ΔC → ΔXlog

factors through {1} = Ker(π1(c
log) ↪→ Gklog), hence that condition (a) is satisfied.

Thus, it remains to show that (a) implies (d), or, equivalently, that condition
(c) implies that condition (a) fails to hold. But this follows immediately from the
observation that condition (c) implies that ΔC surjects onto an open subgroup of the
decomposition group ΔE in ΔXlog of some irreducible component E of Q. Here, we
recall that the following well-known facts: if E is stable, then ΔE may be identified

with the maximal pro-l quotient of π1(UE ×k k), where we write UE
def
= E

⋂
U

[1]
Q ,

which is infinite; if E is not stable, then ΔE
∼= Zl(1) [cf. Proposition 2.5, (v)], hence

infinite. This completes the proof of assertion (iv).

Finally, we consider assertion (v). First, we observe that ΔC may be identified

with the maximal pro-l quotient of π1(UC ×k k), where we write UC
def
= C

⋂
U

[1]
Y

[and assume, for simplicity, that Y log is split]. In particular, an automorphism of
UC is equal to the identity if and only if it induces the identity outer automorphism
of ΔC [cf., e.g., [MT], Proposition 1.4, and its proof]. Note, moreover, that an
automorphism of Y log stabilizes C if and only if it stabilizes the conjugacy class
of ΔC [cf., e.g., [Mzk13], Proposition 1.2, (i)]. Thus, assertion (v) reduces to the
[easily verified] assertion that the morphism Yη → Xη is wildly ramified at C if and
only if Gal(Yη/Xη) stabilizes and induces the identity on C. This completes the
proof of assertion (v). ©

Remark 2.6.1. Note that the content of Lemma 2.6, (ii), (iii), is reminiscent
of the main results of [Tama2] [cf. also Corollary 2.11 below]. By comparison to
Tamagawa’s “resolution of nonsingularities”, however, Lemma 2.6, (ii), (iii), assert
a somewhat weaker conclusion, albeit for pro-p geometric fundamental groups, as
opposed to profinite geometric fundamental groups.

Remark 2.6.2. The argument applied in the final portion of the proof of Lemma
2.6, (ii), is reminiscent of the well-known classical argument that implies the nonex-
istence of a Frobenius lifting for stable curves over the ring of Witt vectors of a finite
field. That is to say, if k is absolutely unramified, and

Φ : X → X

is an S-morphism that induces the Frobenius morphism between the respective spe-
cial fibers, then one obtains a contradiction as follows: Since Φ induces a morphism
Xη → Xη, it follows immediately that Φ extends to a morphism of log stable curves
Φlog : X log → X log. Although the derivative

dΦlog : Φ∗(ωXlog/Slog) → ωXlog/Slog
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is ≡ 0 (mod p), one verifies immediately [by an easy local calculation] that 1
pdΦ

log

is necessarily 
≡ 0 (mod p) generically on each irreducible component of X. Since
ωXlog/Slog is a line bundle of degree 2gX − 2, and Φ reduces to the Frobenius mor-

phism between the special fibers, the existence of dΦlog thus implies [by taking
degrees] that p · (2gX − 2) ≤ 2gX − 2, i.e., that (p− 1)(2gX − 2) ≤ 0, in contradic-
tion to the fact that gX ≥ 2.

Remark 2.6.3. Note that it follows immediately from either of the conditions
(a), (b) of Lemma 2.6, (ii), that Y is not k-smooth [i.e., “singular”].

Corollary 2.7. (Uniformly Toral Neighborhoods via Cyclic Coverings)
Suppose that we are either in the situation of Lemma 2.6, (ii), (a) — which we
shall refer to in the following as case (a) — or in the situation of Lemma 2.6,
(ii), (b) — which we shall refer to in the following as case (b); suppose further, in
case (b), that X is not smooth over k. Also, we suppose that we have been given
a commutative diagram as in Lemma 2.6, (iii). Thus, in either case, we have an
irreducible component CW of W [lying over an irreducible component C of Y ]

satisfying certain special properties, as in Lemma 2.6, (iii). Let y ∈ U
[1]
W (Ok) (⊆

Wη(k) = Yη(k)) be a point such that the image of y meets CW , and, moreover, y

maps to a point x ∈ U
[1]
Q (Ok) (⊆ Qη(k) = Xη(k)); CQ the irreducible component of

Q that meets the image of x;

Fy
def
= W\(CW

⋂
U

[1]
W ) ⊆ W ; Fx

def
= Q\(CQ

⋂
U

[1]
Q ) ⊆ Q

[regarded as closed subsets of W , Q];

Uy
def
= W\Fy ⊆ W ; Ux

def
= Q\Fx ⊆ Q

[so the image of y lies in Uy; the image of x lies in Ux]. Write gY for the genus
of Yη; J

Y
η → η (respectively, JXη → η) for the Jacobian of Yη (respectively, Xη);

JY → S (respectively, JX → S) for the uniquely determined semi-abelian
scheme over S that extends JYη (respectively, JXη ); ιYη : Yη → JYη for the morphism
that sends a T -valued point ζ [where T is a k-scheme] of Yη, regarded as a divisor
on Yη ×k T , to the point of JYη determined by the degree zero divisor ζ − (y|T ). In

case (a), let σ ∈ Gal(Yη/Xη) be a generator of Gal(Yη/Xη); Jη ⊆ JYη the image

abelian scheme of the restriction to η of the endomorphism (1 − σ) : JY → JY ;
J → S the uniquely determined semi-abelian scheme over S that extends Jη [which
exists, for instance, by [BLR], §7.4, Lemma 2];

κ : JY → J

the [dominant] morphism induced by (1 − σ). In case (b), let J → S be the semi-
abelian scheme JX → S; κ : JY → J the [dominant] morphism induced by the
covering Yη → Xη. Write

βη : Yη ×k . . .×k Yη → JYη → Jη
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[where the product is of gY copies of Yη] for the composite of the morphism given

by adding gY copies of ιYη with the morphism κη
def
= κ|η.

(i) Write Ĵ (respectively, Ĝm) for the formal group over S given by com-
pleting J (respectively, the multiplicative group (Gm)S over S) at the origin. Then
there exists an exact sequence

0 → Ĵ ′ → Ĵ → Ĵ ′′ → 0

of [formally smooth] formal groups over S, together with an isomorphism Ĵ ′ ∼→ Ĝm

of formal groups over S. In the following, let us fix such an isomorphism Ĵ ′ ∼→ Ĝm

and identify Ĵ ′ with its image in Ĵ .

(ii) The morphisms ιYη , βη extend uniquely to morphisms

ιY : Uy → JY ; β : Uy ×k . . .×k Uy → J

[where the product is of gY copies of Uy], respectively; the morphism W → Q
restricts to a morphism Uy → Ux.

(iii) Suppose that k is an MLF [or, equivalently, that k is finite]. Then there
exists a positive integer M — which, in fact, may be taken to be 1 in case (b) —
such that the following condition holds: Let k• ⊆ k be a finite extension of k with
ring of integers Ok• , maximal ideal mk• ⊆ Ok• . Write Ik• for the image in J(Ok•)
via β [cf. (ii)] of the product of gY copies of Uy(Ok•). Then M · Ik• lies in the

subgroup Ĵ(Ok•) ⊆ J(Ok•). Write Îk• ⊆ Ĵ(Ok•) for the subgroup determined by
M · Ik• ;

Nk• ⊆ (O×
k•)⊗Qp

∼→ Ĝm(Ok•)⊗Qp
∼→ Ĵ ′(Ok•)⊗Qp

for the image of the intersection

Îk•
⋂

Ĵ ′(Ok•) (⊆ Ĵ(Ok•))

in Ĵ ′(Ok•)⊗Qp. Then as k• ⊆ k varies over the finite extensions of k, the subgroups

Nk• determine a uniformly toral neighborhood of Gal(k/k) [cf. [Mzk15], Def-
inition 3.6, (i), (ii)].

Proof. First, we consider assertion (i). Recall from the well-known theory of Néron
models of Jacobians [cf., e.g., [BLR], §9.2, Example 8] that the torus portion of the
special fiber of JY (respectively, JX) is [in the notation of Proposition 2.5, (vi)]
of rank lp-rk(Y ) (respectively, lp-rk(X)). In particular, the torus portion of the
special fiber of J is of rank lp-rk(Y ) − lp-rk(X) in case (a), and of rank lp-rk(X)
in case (b). Thus, in case (a), the fact that the morphism Yη → Xη is loopifying
implies that the torus portion of the special fiber of J is of positive rank; in case (b),
since X is not k-smooth, it follows from the loop-ampleness assumption of Lemma
2.6 that lp-rk(X) > 0, hence that the torus portion of the special fiber of J is of
positive rank. Now the existence of an exact sequence as in assertion (i) follows from
the well-known theory of degeneration of abelian varieties [cf., e.g., [FC], Chapter
III, Corollary 7.3]. This completes the proof of assertion (i).
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Next, we consider assertion (ii). The existence of the unique extension of ιYη
follows immediately from Proposition 2.5, (x); the existence of the unique extension
of βη follows immediately from the existence of this unique extension of ιYη [together

with the existence of the homomorphism of semi-abelian schemes κ : JY → J ]. In
case (b), the existence of the morphism Uy → Ux follows immediately from the
definitions. In case (a), if the morphism Uy → Ux fails to exist, then there exists a

closed point w ∈ W that maps to a closed point q ∈ Q such that w ∈ Uy ⊆ U
[1]
W , but

q 
∈ U
[1]
Q . On the other hand, since there exists an irreducible Zariski neighborhood

of w in W [cf. the simple structure of the monoid N], it follows from the fact
that CW maps finitely to CQ [in case (a)], that W → Q is quasi-finite in a Zariski
neighborhood of w. Thus, if we write Rw, Rq for the respective strict henselizations

ofW , Q at [some choice of k-valued points lifting] w, q, then Rw, Rq are normal, and
the natural inclusion Rq ↪→ Rw is finite [cf. Zariski’s main theorem]. In particular,
if we write Kq for the quotient field of Rq, then we have R×

w

⋂
Kq = R×

q [where “×”

denotes the subgroup of units], so the morphism W log → Qlog induces an injection
on the groupifications of the stalks of the characteristic sheaves at [some choice

of k-valued points lifting] w, q — in contradiction to the fact that w ∈ U
[1]
W , but

q 
∈ U
[1]
Q . This completes the proof of assertion (ii).

Finally, we consider assertion (iii). First, we define the number M as follows:
In case (a), the endomorphism (1−σ) : JY → JY admits a factorization θ◦κ, where
θ : J → JY is a “closed immersion up to isogeny” [cf., e.g., the situation discussed
in [BLR], §7.5, Proposition 3, (b)] — i.e., there exists a morphism θ′ : JY → J
such that θ′ ◦ θ : J → J is multiplication by some positive integer Mθ on J ; then

we take M
def
= Mθ. In case (b), we take M

def
= 1. In the following, if G is a group

scheme or formal group over Ok, and r ≥ 1 is an integer, then let us write

Gmr (Ok•) ⊆ G(Ok•)

for the subgroup of elements that are congruent to the identity modulo mrk · Ok• .

Next, let us make the following observation:

(1) We have M · Ik• ⊆ Jm(Ok•) ⊆ J(Ok•).

Indeed, in case (a), we reason as follows: It suffices to show thatM ·κ(ιY (Uy(Ok•))) ⊆
Jm(Ok•). Since, moreover, the endomorphism (1− σ) : JY → JY admits a factor-
ization θ◦κ, where, for some morphism θ′ : JY → J , θ′ ◦θ is equal to multiplication
by M , it suffices to show that

(1− σ)(ιY (Uy(Ok•))) ⊆ JYm (Ok•)

[since applying θ′ to this inclusion yields the desired inclusion M ·κ(ιY (Uy(Ok•))) ⊆
Jm(Ok•)]. On the other hand, since Yη → Xη is wildly ramified at CW , it follows
that σ acts as the identity on CW , hence that the composite morphism (1−σ)◦ ιY :
Uy → JY induces a morphism on special fibers Uy×Ok

k → JY ×Ok
k that is constant

[with image lying in the image of the identity section of JY ×Ok
k]. But this implies

that (1−σ)(ιY (Uy(Ok•))) ⊆ JYm (Ok•). This completes the proof of observation (1)
in case (a). In a similar [but slightly simpler] vein, in case (b), it suffices to observe
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that the morphism κ ◦ ιY : Uy → J admits a factorization Uy → Ux → JX , where
Uy → Ux is the morphism of assertion (ii), and Ux → JX is the “analogue of ιY ”
for the point x of Xη(k) [cf. Proposition 2.5, (x)]. That is to say, the fact that CW

maps to x ∈ U
[1]
Q (Ok) implies [by applying this factorization] that the morphism

κ ◦ ιY : Uy → J induces a morphism on special fibers Uy ×Ok
k → J ×Ok

k that is
constant [with image lying in the image of the identity section of J ×Ok

k]. This
completes the proof of observation (1) in case (b).

Next, let us make the following observation:

(2) There exists a positive integer r which is independent of k• such that
M · Ik• ⊇ Jmr (Ok•).

Indeed, since κ is clearly dominant, it follows immediately that the composite of
the morphism β : Uy ×k . . . ×k Uy → J with the morphism J → J given by
multiplication by M is dominant, hence, in particular, generically smooth [since k
is of characteristic zero]. Thus, [since M · Ik• is a group!] observation (2) follows
immediately from the “positive slope version of Hensel’s lemma” given in Lemma

2.1. Now since Ĵ ′
m(Ok•) = Jm(Ok•)

⋂
Ĵ ′(Ok•) [cf. assertion (i)], we conclude that

Ĵ ′
mr (Ok•) ⊆ Îk•

⋂
Ĵ ′(Ok•) ⊆ Ĵ ′

m(Ok•)

[cf. the inclusions of observations (1), (2)], so assertion (iii) follows essentially
formally [cf. [Mzk15], Definition 3.6, (i), (ii)]. This completes the proof of assertion
(iii). ©

Remark 2.7.1. Note that in the situation of case (b), if f is a rational function
on X whose value at x lies in O×

k , then the values ∈ O×
k• of f at points of Uy(Ok•)

[cf. the notation of Corollary 2.7, (iii)] determine a uniformly toral neighborhood.
It was precisely this observation that motivated the author to develop the theory
of the present §2.

Definition 2.8. Let k be a field of characteristic zero, k an algebraic closure of
k.

(i) Suppose that k is equipped with a topology. Let X be a smooth, geo-
metrically connected curve over k. Then we shall say that a subset Ξ ⊆ X(k) is
Galois-dense if, for every finite extension field k′ ⊆ k of k, Ξ

⋂
X(k′) is dense in

X(k′) [i.e., relative to the topology induced on X(k′) by k].

(ii) We shall refer to as a pro-curve U over k [cf. the terminology of [Mzk3]]
any k-scheme U that may be written as a projective limit of smooth, geometrically
connected curves over k in which the transition morphisms are birational. Let U be
a pro-curve over k. Then it makes sense to speak of the function field k(U) of U .
Write X for the smooth, proper, geometrically connected curve over k determined
by the function field k(U). Then one verifies immediately that U is completely
determined up to unique isomorphism by k(U), together with some Gal(k/k)-stable
subset Ξ ⊆ X(k) — i.e., roughly speaking, “U is obtained by removing Ξ from X”.
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If k is equipped with a topology, then we shall say that U is co-Galois-dense if the
corresponding Gal(k/k)-stable subset Ξ ⊆ X(k) is Galois-dense.

Remark 2.8.1. Suppose, in the notation of Definition 2.8, that k is an MLF
[and that k is equipped with the p-adic topology]. Let X be a smooth, proper,
geometrically connected curve over k, with function field k(X). Then Spec(k(X))
is a co-Galois-dense pro-curve over k. Suppose that X = X0×k0 k, where k0 ⊆ k is
a number field, and X0 is a smooth, proper, geometrically connected curve over k0,
with function field k(X0). Then Spec(k(X0) ⊗k0 k) [where we note that the ring
k(X0) ⊗k0 k is not a field!] also forms an example of a co-Galois-dense pro-curve
over k.

Remark 2.8.2. Let k be a field of characteristic zero.

(i) Let us say that a pro-curve U over k is of unit type if there exists a connected
finite étale covering of U that admits a nonconstant unit. Thus, any hyperbolic
curve U over k for which there exists a connected finite étale covering V → U such
that V admits a dominant k-morphism V → P , where P is the projective line minus
three points over k, is of unit type. That is to say, the hyperbolic curves considered
in [Mzk15], Remark 3.8.1 — i.e., the sort of hyperbolic curves that motivated the
author to prove [Mzk15], Corollary 3.8, (g) — are necessarily of unit type.

(ii) Suppose that k is an MLF of residue characteristic p, whose ring of integers
we denote by Ok. Let n ≥ 1 be an integer; η ∈ Ok/(p

n). Then observe that the
set E of elements of Ok that are ≡ η (mod pn) is of uncountable cardinality. In
particular, it follows that the subfield of k generated over Q by E is of uncountable
— hence, in particular, infinite — transcendence degree over Q.

(iii) Let k be as in (ii); X0 a proper hyperbolic curve over k0, where k0 ⊆ k is a
finitely generated extension of Q; k1 ⊆ k a finitely generated extension of k0; r ≥ 1
an integer. Then recall from [MT], Corollary 5.7, that any curve U1 obtained by

removing from X1
def
= X0 ×k0 k1 a set of r “generic points” ∈ X1(k1) = X0(k1) —

i.e., r points which determine a dominant morphism from Spec(k1) to the product
of r copies of X0 over k0 — is not of unit-type. In particular, it follows immediately
from (ii) that:

There exist co-Galois-dense pro-curves U over k which are not of unit type.

For more on the significance of this fact, we refer to Remark 2.10.1 below.

Remark 2.8.3. Suppose that we are in the situation of Definition 2.8, (i).
Let Y → X be a connected finite étale covering. Then one verifies immediately,
by applying “Krasner’s Lemma” [cf. [Kobl], pp. 69-70], that the inverse image
Ξ|Y ⊆ Y (k) of a Galois-dense subset Ξ ⊆ X(k) is itself Galois-dense.
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Corollary 2.9. (Point-theoreticity Implies Geometricity) For i = 1, 2,
let ki be an MLF of residue characteristic pi; ki an algebraic closure of ki; Σi a
set of primes of cardinality ≥ 2 such that pi ∈ Σi; Xi a hyperbolic curve over
ki; Xi the smooth, proper, geometrically connected curve over ki determined by the
function field of Xi; Ξi ⊆ Xi(ki) a Galois-dense subset. Write “π1(−)” for the
étale fundamental group of a connected scheme, relative to an appropriate choice of
basepoint; ΔXi for the maximal pro-Σi quotient of π1(Xi ×ki ki); ΠXi for the
quotient of π1(Xi) by the kernel of the natural surjection π1(Xi×ki ki) � ΔXi . Let

α : ΠX1

∼→ ΠX2

be an isomorphism of profinite groups such that a closed subgroup of ΠX1 is a
decomposition group of a point ∈ Ξ1 if and only if it corresponds, relative to α, to
a decomposition group in ΠX2 of a point ∈ Ξ2. Then p1 = p2, Σ1 = Σ2, and α is

geometric, i.e., arises from a unique isomorphism of schemes X1
∼→ X2.

Proof. First, we observe that by [Mzk15], Theorem 2.14, (i), α induces iso-

morphisms αΔ : ΔX1

∼→ ΔX2 , αG : G1
∼→ G2 [where, for i = 1, 2, we write

Gi
def
= Gal(ki/ki)]; p1 = p2 [so we shall write p

def
= p1 = p2]; Σ1 = Σ2 [so we shall

write Σ
def
= Σ1 = Σ2]. Also, by [the portion concerning semi-graphs of] [Mzk15],

Theorem 2.14, (i), it follows that α preserves the decomposition groups of cusps.
Thus, by passing to corresponding open subgroups of ΠXi [cf. Remark 2.8.3] and
forming the quotient by the decomposition groups of cusps in ΔXi

, we may assume,
without loss of generality, that the Xi are proper. Next, let l ∈ Σ be a prime 
= p.
Then let us recall that by the well-known stable reduction criterion [cf., e.g., [BLR],
§7.4, Theorem 6], Xi has stable reduction over Oki if and only if, for some Zl-
submodule M ⊆ Δab

Xi
⊗Zl of the maximal pro-l abelian quotient Δab

Xi
⊗Zl of ΔXi

,

the inertia subgroup of Gi acts trivially on M , Δab
Xi

⊗Zl/M . Thus, we may assume,

without loss of generality, that, for i = 1, 2, Xi admits a log stable model X log
i over

Spec(Oki)
log [where the last log structure is the log structure determined by the

closed point]. Since, by [the portion concerning semi-graphs of] [Mzk15], Theorem
2.14, (i), it follows that α induces an isomorphism between the dual graphs of the
special fibers X i of the Xi, hence that X 1 is loop-ample (respectively, singular) if
and only if X 2 is. Thus, by replacing Xi by a finite étale covering of Xi arising
from an open subgroup of ΠXi , we may assume that X i is loop-ample [cf. §0] and
singular [cf. Remark 2.6.3]. Now, to complete the proof of Corollary 2.9, it follows
from [Mzk15], Corollary 3.8, (e), that it suffices to show that αG is uniformly toral.

Next, let us suppose that, for i = 1, 2, we are given a finite étale covering
Yi → Xi of hyperbolic curves over ki with stable reduction over Oki arising from
open subgroups of ΠXi that correspond via α and are such that Gal(Yi/Xi) is cyclic

of order a positive power of p [cf. Lemma 2.6, (ii)]. Let us write Y log
i for the log

stable model of Yi over (Oki)
log, Yi for the special fiber of Yi. By possibly replacing

the ki by corresponding [relative to α] finite extensions of ki, we may assume that
the Yi are split [cf. Proposition 2.5, (vi)]. Note that by [the portion concerning
semi-graphs of] [Mzk15], Theorem 2.14, (i), it follows that Y1 → X1 is loopifying if
and only if Y2 → X2 is. Thus, by Lemma 2.6, (iv), (v) [cf. also Proposition 2.5, (i),
(ii)] (respectively, Lemma 2.6, (iv)), it follows that Y1 → X1 satisfies condition (a)
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(respectively, (b)) of Lemma 2.6, (ii), if and if Y2 → X2 does. For i = 1, 2, let Ci
be an irreducible component of Yi as in Corollary 2.7 [i.e., “C”]. By Lemma 2.6,
(iv) [cf. also the portion concerning semi-graphs of [Mzk15], Theorem 2.14, (i)],
we may assume that the Ci are compatible with α. Thus, to complete the proof of
Corollary 2.9, it suffices to construct uniformly toral neighborhoods [cf. Corollary
2.7, (iii)] that are compatible with α.

Write ΠYi ⊆ ΠXi , ΔYi ⊆ ΔXi for the open subgroups determined by Yi; T
Y
i ,

TXi for the maximal pro-p abelian quotients of ΔYi , ΔXi . If we are in case (a)
[cf. Corollary 2.7], then we choose generators σi ∈ Gal(Yi/Xi) ∼= ΔXi/ΔYi that
correspond via α and write Ti for the intersection with TYi of the image of the
endomorphism (1− σi) of T

Y
i ⊗Qp, and

κTi : T
Y
i → Ti

for the morphism induced by (1−σi). If we are in case (b) [cf. Corollary 2.7], then

we set Ti
def
= TXi ; write κTi : T

Y
i → Ti for the morphism induced by Yi → Xi [i.e.,

by the inclusion ΔYi ↪→ ΔXi ]. Thus, the formal group “J ′” of Corollary 2.7, (i),
corresponds to a Gi-submodule T ′

i ⊆ Ti such that T ′
i
∼= Zp(1); by [Tate], Theorem

4 [cf. also [Mzk5], Proposition 1.2.1, (vi)], we may assume that these submodules
T ′
i are compatible with α.

Next, let us write ΔYi � Δ
(l)
Yi

for themaximal pro-l quotient of ΔYi ; Δ
(l)
Ci

⊆ Δ
(l)
Yi

for the decomposition group of Ci in Δ
(l)
Yi

[well-defined up to conjugation]. Thus,

Δ
(l)
Ci

may be identified with the maximal pro-l quotient of π1(UCi ×ki ki), where
UCi

def
= Ci

⋂
U

[1]
Yi

[cf. the proof of Lemma 2.6, (iv)], ki is the residue field of ki,

and ki is the algebraic closure of ki induced by ki. Since Δ
(l)
Ci

is slim [cf., e.g.,

[MT], Proposition 1.4], and the outer action of Gi on Δ
(l)
Ci

clearly factors through

the quotient Gi � Gal(ki/ki), the resulting outer action of Gal(ki/ki) on Δ
(l)
Ci

determines, in a fashion that is compatible with α, an extension of profinite groups

1 → Δ
(l)
Ci

→ Π
(l)
Ci

→ Gal(ki/ki) → 1. In a similar vein, the outer action of Gi

on Δ
(l)
Yi

factors through the maximal tamely ramified quotient Gi � Gklog
i
, hence

[since Δ
(l)
Yi

is slim — cf., e.g., [MT], Proposition 1.4] determines, in a fashion that
is compatible with α, a morphism of extensions of profinite groups

1 −→ Δ
(l)
Ci

−→ Π
(l)
Ci

×Gal(ki/ki)
Gklog

i
−→ Gklog

i
−→ 1⏐⏐	

⏐⏐	
⏐⏐	

1 −→ Δ
(l)
Yi

−→ Π
(l)
Yi

−→ Gklog
i

−→ 1

— in which the vertical morphisms are inclusions, and the vertical morphism on
the right is the identity morphism; moreover, the images of the first two vertical
morphisms are equal to the respective decomposition groups of Ci [well-defined up
to conjugation].

Next, let us observe that, by our assumption concerning decomposition groups
of points ∈ Ξi in the statement of Corollary 2.9, it follows that α determines
a bijection Y1(k1,Ξ1)

∼→ Y2(k2,Ξ2), where we write Yi(ki,Ξi) ⊆ Yi(ki) for the
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subset of points lying over points ∈ Ξi. [Here, we recall that a point ∈ Yi(ki)
is uniquely determined by the conjugacy class of its decomposition group in ΠYi

— cf., e.g., [Mzk3], Theorem C.] Now let us choose corresponding [i.e., via this
bijection] points yi ∈ Yi(ki,Ξi) as our points “y” in the construction of the uniformly
toral neighborhoods of Corollary 2.7, (iii). Here, we observe that [by our Galois-
density assumption] we may assume that yi is compatible with Ci, in the sense

that the image in the quotient ΠYi � Π
(l)
Yi

of the decomposition group of yi in

ΠYi determines a subgroup of Π
(l)
Ci

×Gal(ki/ki)
Gklog

i
which contains the kernel of

the surjection Π
(l)
Ci

×Gal(ki/ki)
Gklog

i
� Π

(l)
Ci
. Note that this condition that yi be

“compatible with Ci” is manifestly “group-theoretic”, i.e., compatible with α [cf. the
portion concerning semi-graphs of [Mzk15], Theorem 2.14, (i); [Mzk5], Proposition
1.2.1, (ii)]. Moreover, let us recall from the theory of §1 that this condition that yi
be “compatible with Ci” is equivalent to the condition that the closure in Yi of yi
intersect UCi [cf. Proposition 1.3, (x)].

Thus, by choosing any corresponding [i.e., via the bijection induced by α]
points y′i ∈ Yi(ki,Ξi) that are compatible with the Ci, we may compute [directly
from the decomposition groups of the yi, y

′
i in ΠYi ] the “difference” of yi, y

′
i in

H1(Gki , T
Y
i ), as well as the image

δyi,y′i ∈ H1(Gki , Ti)

of this difference via κTi . On the other hand, let us recall the Kummer isomorphisms

H1(Gki , T
′
i )

∼= O×
ki

⊗ Zp; H1(Gki , Ti)
∼= Ji(ki)⊗ Zp

[where Ji is the “J” of Corollary 2.7, (iii) — cf., e.g., the “well-known general
nonsense” reviewed in the proof of [Mzk14], Proposition 2.2, (i), for more details].
By applying these isomorphisms, we conclude that the subset of

H1(Gki , T
′
i ⊗Qp) ∼= O×

ki
⊗Qp

obtained by taking the image of the intersection in H1(Gki , Ti) with the image of
H1(Gki , T

′
i ) of the closure [cf. our Galois-density assumption, together with the

evident p-adic continuity of the assignment y′i 	→ δyi,y′i ] of the set obtained by

adding gYi
[where gYi

is the genus of Yi] elements of the form Mi · δyi,y′i [where Mi

is the “M” of Corollary 2.7, (iii)] yields — from the point of view of Corollary 2.7,
(iii) — a subset that coincides with the subset “Nk•” [when “k•” is taken to be ki]
constructed in Corollary 2.7, (iii). Thus, by allowing the “ki” to vary over arbitrary
corresponding finite extensions ⊆ ki of ki, we obtain uniform toral neighborhoods
of the Gi that are compatible with α. But this implies that αG is uniformly toral,
hence completes the proof of Corollary 2.9. ©

Remark 2.9.1. Corollary 2.9 may be regarded as a generalization of the [MLF
portion of] [Mzk14], Corollary 2.2, to the case of pro-Σ [where Σ is of cardinality
≥ 2 and contains the residue characteristic — that is to say, Σ is not necessarily the
set of all primes] geometric fundamental groups of not necessarily affine hyperbolic
curves. From this point of view, it is interesting to note that in the theory of the
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present §2, Lemma 2.6, which, as is discussed in Remark 2.6.2, is reminiscent of a
classical argument on the “nonexistence of Frobenius liftings”, takes the place of
Lemma 4.7 of [Tama1], which is applied in [Mzk14], Corollary 2.1, to reconstruct
the additive structure of the fields involved. In this context, we observe that the
appearance of “Frobenius endomorphisms” in Remark 2.6.2 is interesting in light of
the discussion of “hidden endomorphisms” in the Introduction, in which “Frobenius
endomorphisms” also appear.

Remark 2.9.2. One way to think of Corollary 2.9 is as the statement that:

The “Section Conjecture” over MLF’s implies the “absolute isomorphism
version of the Grothendieck Conjecture” over MLF’s.

Here, we recall that in the notation of Corollary 2.9, the “Section Conjecture”
over MLF’s amounts to the assertion that every closed subgroup of ΠXi

that maps
isomorphically to an open subgroup of Gal(ki/ki) is the decomposition group asso-
ciated to a closed point of Xi. In fact, in order to apply Corollary 2.9, a “relatively
weak version of the Section Conjecture” is sufficient — cf. the point of view of
[Mzk8].

Remark 2.9.3. The issue of verifying the “point-theoreticity hypothesis” of Corol-
lary 2.9 [i.e., the hypothesis concerning the preservation of decomposition groups
of closed points] may be thought of as consisting of two steps, as follows:

(a) First, one must show the J-geometricity [cf. [Mzk3], Definition 4.3] of
the image via α of a decomposition group Dξ ⊆ ΠX1 of a closed point ξ ∈
X1(k1). Once one shows this J-geometricity for all finite étale coverings of
X2 arising from open subgroups of ΠX2 , one concludes [cf. the arguments
of [Mzk3], §7, §8] that there exist rational points of a certain tower of
coverings of X2 determined by α(Dξ) ⊆ ΠX2 over tame extensions of k2.

(b) Finally, one must show that these rational points over tame extensions
of k2 necessarily converge — an issue that the author typically refers to
by the term “tame convergence”.

At the time of writing, it is not clear to the author how to complete either of
these two steps. On the other hand, in the “birational” — or, more generally, the
“co-Galois-dense” — case, one has Corollary 2.10 [given below].

Remark 2.9.4.

(i) By contrast to the quite substantial difficulty [discussed in Remark 2.9.3]
of verifying “point-theoreticity” for hyperbolic curves over MLF’s, in the case of
hyperbolic curves over finite fields, there is a [relatively simple] “group-theoretic”
algorithm for reconstructing the decomposition groups of closed points, which follows
essentially from the theory of [Tama1] [cf. [Tama1], Corollary 2.10, Proposition 3.8].
Such an algorithm is discussed in [Mzk14], Remark 10, although the argument given
there is somewhat sketchy and a bit misleading. A more detailed presentation may
be found in [SdTm], Corollary 1.25.
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(ii) A more concise version of this argument, along the lines of [Mzk14], Remark
10, may be given as follows: Let X be a proper [for simplicity] hyperbolic curve over
a finite field k, with algebraic closure k; Σ a set of prime numbers that contains a
prime that is invertible in k; π1(X ×k k) � ΔX the maximal pro-Σ quotient of the
étale fundamental group π1(X ×k k) of X ×k k; π1(X) � ΠX the corresponding

quotient of the étale fundamental group π1(X) of X; ΠX � Gk
def
= Gal(k/k) the

natural quotient. Then it suffices to give a “group-theoretic” characterization of
the quasi-sections D ⊆ ΠX [i.e., closed subgroups that map isomorphically onto an
open subgroup of Gk] which are decomposition groups of closed points of X. Write

X̃ → X

for the pro-finite étale covering corresponding to ΠX . If E ⊆ ΠX is a closed
subgroup whose image in Gk is open, then let us write kE for the finite extension
field of k determined by this image. If J ⊆ ΠX is an open subgroup, then let us write

XJ → X for the covering determined by J and JΔ
def
= J

⋂
ΔX . If J ⊆ ΠX is an open

subgroup such that JΔ is a characteristic subgroup of ΔX , then we shall say that
J is geometrically characteristic. Now let J ⊆ ΠX be a geometrically characteristic
open subgroup. Let us refer to as a descent-group for J any open subgroup H ⊆ ΠX
such that J ⊆ H, JΔ = HΔ. Thus, a descent-group H for J may be thought of as
an intermediate covering XJ → XH → X such that XH ×kH kJ ∼= XJ . Write

XJ(kJ )
fld-def ⊆ XJ(kJ)

for the subset of kJ -valued points of XJ that do not arise from points ∈ XH(kH) for
any descent-group H 
= J for J — i.e., the kJ -valued points whose field of definition
is kJ with respect to all possible “descended forms” of XJ . [That is to say, this
definition of “fld-def” differs slightly from the definition of “fld-def” in [Mzk14],

Remark 10.] Thus, if x̃ is a closed point of X̃ that maps to x ∈ XJ (kJ), and we
write D

x̃
⊆ ΠX for the stabilizer in ΠX [i.e., “decomposition group”] of x̃, then it

is a tautology that x maps to a point ∈ XHx(kHx) for Hx
def
= D

x̃
· JΔ (⊇ J) [so Hx

forms a descent-group for J ]; in particular, it follows immediately that:

x ∈ XJ (kJ)
fld-def ⇐⇒ D

x̃
⊆ J ⇐⇒ Hx = J .

Now it follows immediately from this characterization of “fld-def” that if J1 ⊆ J2 ⊆
ΠX are geometrically characteristic open subgroups such that kJ1 = kJ2 , then the
natural map XJ1(kJ1) → XJ2(kJ2) induces a map XJ1(kJ1)

fld-def → XJ2(kJ2)
fld-def.

Moreover, these considerations allow one to conclude [cf. the theory of [Tama1]]
that:

A quasi-section D ⊆ ΠX is a decomposition group of a closed point of X
if and and only if, for every geometrically characteristic open subgroup
J ⊆ ΠX such that D · JΔ = J , it holds that XJ(kJ )

fld-def 
= ∅.

Thus, to render this characterization of decomposition groups “group-theoretic”, it
suffices to give a “group-theoretic” criterion for the condition thatXJ (kJ)

fld-def 
= ∅.
In [Tama1], the Lefschetz trace formula is applied to compute the cardinality of
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XJ (kJ). On the other hand, if we use the notation “| − |” to denote the cardinality
of a finite set, then one verifies immediately that

|XJ (kJ)| =
∑
H

|XH(kH)fld-def|

— where H ⊇ J ranges over the descent-groups for J . In particular, by applying
induction on [ΠX : J ], one concludes immediately from the above formula that
|XJ (kJ)

fld-def| may be computed from the |XH(kH)|, as H ranges over the descent-
groups for J [while |XH(kH)| may be computed, as in [Tama1], from the Lefschetz
trace formula]. This yields the desired “group-theoretic” characterization of the
decomposition groups of ΠX .

Corollary 2.10. (Geometricity of Absolute Isomorphisms for Co-
Galois-dense Pro-curves) For i = 1, 2, let ki be an MLF of residue charac-
teristic pi; ki an algebraic closure of ki; Σi a set of primes of cardinality ≥ 2
such that pi ∈ Σi; Ui a co-Galois-dense pro-curve over ki. Write “π1(−)” for
the étale fundamental group of a connected scheme, relative to an appropriate choice
of basepoint; ΔUi for the maximal pro-Σi quotient of π1(Ui×ki ki); ΠUi for the
quotient of π1(Ui) by the kernel of the natural surjection π1(Ui ×ki ki) � ΔUi . Let

α : ΠU1

∼→ ΠU2

be an isomorphism of profinite groups. Then ΔUi , ΠUi are slim; p1 = p2;
Σ1 = Σ2; α is geometric, i.e., arises from a unique isomorphism of schemes
U1

∼→ U2.

Proof. First, we observe that Σi may be characterized as the set of primes l
such that ΠUi

has l-cohomological dimension > 2. Thus, Σ1 = Σ2. Let us write

Σ
def
= Σ1 = Σ2; Xi for the smooth, proper, geometrically connected curve over ki

determined by Ui; ΔXi for the maximal pro-Σ quotient of π1(Xi ×ki ki); ΠXi for
the quotient of π1(Xi) by Ker(π1(Xi ×ki ki) � ΔXi). Thus, Ui determines some
Galois-dense subset Ξi ⊆ Xi(ki). Since ΔUi

, ΠUi
may be written as inverse limits

of surjections of slim profinite groups [cf., e.g., [Mzk15], Proposition 2.3], it follows
that ΔUi , ΠUi are slim. Since the kernel of the natural surjection ΠUi � ΠXi

is topologically generated by the inertia groups of points ∈ Ξi, and these inertia

groups are isomorphic to ẐΣ(1) [where the “(1)” denotes a Tate twist; we write

ẐΣ for the maximal pro-Σ quotient of Ẑ] in a fashion that is compatible with the

conjugation action of some open subgroup of Gi
def
= Gal(ki/ki), it follows that we

obtain an isomorphism
Πab-t
Ui

∼→ Πab-t
Xi

on torsion-free abelianizations. In particular, it follows [in light of our assumptions
on Σi] that, in the notation of [Mzk15], Theorem 2.6,

sup
p′,p′′∈Σ

{δ1p′(ΠUi)− δ1p′′(ΠUi)} = sup
p′,p′′∈Σ

{δ1p′(ΠXi)− δ1p′′(ΠXi)}

= sup
p′,p′′∈Σ

{δ1p′(Gi)− δ1p′′(Gi)} = [ki : Qpi ]
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— cf. [Mzk15], Theorem 2.6, (ii). In particular, by applying this chain of equalities
to arbitrary open subgroups of ΠUi , we conclude that α induces an isomorphism

αG : G1
∼→ G2. Moreover, by [Mzk5], Proposition 1.2.1, (i), (vi), the existence of

αG implies that p1 = p2 [so we set p
def
= p1 = p2], and αG is compatible with the

respective cyclotomic characters.

Let M be a profinite abelian group equipped with a continuous H-action, for
H ⊆ Gi [where i ∈ {1, 2}] an open subgroup. Then let us write M � Q′(M) for the
quotient of M by the closed subgroup generated by the quasi-toral subgroups of M
[i.e., closed subgroups isomorphic as J-modules, for J ⊆ H an open subgroup, to
Zl(1) for some prime l]; M � Q′(M) � Q(M) for themaximal torsion-free quotient
of Q′(M). Also, if M is topologically finitely generated, then let us write M �
T (M) for the maximal torsion-free quasi-trivial quotient [i.e., maximal torsion-free
quotient on which H acts through a finite quotient]. Then one verifies immediately
that the assignments M 	→ Q(M), M 	→ T (M) are functorial. Moreover, it follows
from the observations of the preceding paragraph that the natural surjection ΔUi �
ΔXi determines a surjection on torsion-free abelianizations Δab-t

Ui
� Δab-t

Xi
that

induces an isomorphism Q(Δab-t
Ui

)
∼→ Q(Δab-t

Xi
). Thus, it follows from “Poincaré

duality” [i.e., the isomorphism Δab-t
Xi

∼→ Hom(Δab-t
Xi

, Ẑ(1)) determined by the cup-
product on the étale cohomology of X] that

2gXi = dimQl
(Q(Δab-t

Xi
)⊗Ql) + dimQl

(T (Δab-t
Xi

)⊗Ql)

= dimQl
(Q(Δab-t

Xi
)⊗Ql) + dimQl

(T (Q(Δab-t
Xi

))⊗Ql)

= dimQl
(Q(Δab-t

Ui
)⊗Ql) + dimQl

(T (Q(Δab-t
Ui

))⊗Ql)

— where gXi is the genus of Xi, and l ∈ Σ. Thus, we conclude that gX1 = gX2 . In
particular, by passing to corresponding [i.e., via α] open subgroups of the ΠUi , we
may assume that gX1 = gX2 ≥ 2.

Next, by applying this equality “gX1
= gX2

” to corresponding [i.e., via α] open
subgroups of the ΠUi , it follows from the Hurwitz formula that the condition on
a pair of open subgroups Ji ⊆ Hi ⊆ ΔUi

that “the covering between Ji and Hi

be cyclic of order a power of a prime number and totally ramified at precisely one
closed point but unramified elsewhere” is preserved by α. Thus, it follows formally
[cf., e.g., the latter portion of the proof of [Mzk5], Lemma 1.3.9] that α preserves the
inertia groups of points ∈ Ξi. Moreover, by considering the conjugation action of
ΠUi on these inertia groups, we conclude that α preserves the decomposition groups

⊆ ΠUi of points ∈ Ξi. Thus, in summary, α induces an isomorphism ΠX1

∼→ ΠX2

that preserves the decomposition groups ⊆ ΠXi
of points ∈ Ξi; in particular, by

applying Corollary 2.9 to this isomorphism ΠX1

∼→ ΠX2 , we obtain an isomorphism

of schemes U1
∼→ U2, as desired. This completes the proof of Corollary 2.10. ©

Remark 2.10.1. Thus, by contrast to the results of [Mzk14], Corollary 2.3, or
[Mzk15], Corollary 3.8, (g) [cf. [Mzk15], Remark 3.8.1] — or, indeed, Corollary
1.11, (iii) of the present paper — Corollary 2.10 constitutes the first “absolute
isomorphism version of the Grothendieck Conjecture over MLF’s” known to the
author that does not rely on the use of Belyi maps. One aspect of this independence
of the theory of Belyi maps may be seen in the fact that Corollary 2.10 may be
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applied to pro-curves which are not of unit type [cf. Remark 2.8.2, (i), (iii)]. Another
aspect of this independence of the theory of Belyi maps may be seen in the fact
that Corollary 2.10 involves geometrically pro-Σ arithmetic fundamental groups for
Σ which are not necessarily equal to the set of all prime numbers.

Finally, we observe that the techniques developed in the present §2 allow one
to give a more pedestrian treatment of the [somewhat sketchy] treatment given
in [Mzk9] [cf. the verification of “observation (iv)” given in the proof of [Mzk9],
Corollary 3.11, as well as Remark 2.11.1 below] of the fact that “cusps always appear
as images of nodes”.

Corollary 2.11. (Cusps as Images of Nodes) Let k be a complete dis-
cretely valued field of characteristic zero, with perfect residue field k of char-

acteristic p > 0 and ring of integers OK ; η
def
= Spec(k); Slog the log scheme obtained

by equipping S
def
= Spec(OK) with the log structure determined by the closed point

S
def
= Spec(k) of S; X log → Slog a stable log curve over Slog such that the un-

derlying scheme of the generic fiber X log ×S η is smooth; ξ ∈ X(S) a cusp of the
stable log curve X log; ξ ∈ X(S) the restriction of ξ to the special fiber X of X. In
the following, we shall denote restrictions to η by means of a subscript η; also we
shall often identify ξ with its image in X. Then, after possibly replacing k by a

finite extension of k, there exists a morphism of stable log curves over Slog

φlog : Y log → X log

such that the following properties are satisfied:

(a) the restriction φlog
η : Y log

η → X log
η is a finite log étale Galois covering;

(b) ξ is the image of a node of the special fiber Y of Y ;

(c) ξ is the image of an irreducible component of Y .

If, moreover, X is sturdy, loop-ample, and singular, then φη : Yη → Xη may
be taken to be finite étale of degree p.

Proof. By replacing k by an appropriate subfield of k, one verifies immediately
that we may assume that k is of countable cardinality, hence that k satisfies the
hypotheses of the discussion preceding Lemma 2.6. After possibly replacing k by a
finite extension of k and X log

η by a finite log étale Galois covering of X log
η [which,

in fact, may be taken to be of degree a power of p · l, where l is a prime 
= p], we
may assume that X is sturdy [cf. §0], loop-ample [cf. §0], singular [cf. Remark
2.6.3], and split. Next, let us recall from the well-known theory of pointed stable
curves [cf. [Knud]] that if we write V log → Slog for the stable log curve obtained by
forgetting the cusps of X log [so Vη = Xη], then it follows immediately from the fact
that X is sturdy that V = X. Thus, by Lemma 2.6, (i) [cf. also the way in which
Lemma 2.6, (i), is applied in the proof of Lemma 2.6, (ii)], it follows that, after
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possibly replacing k by a finite extension of k, there exists a morphism of stable log
curves over Slog

φlog : Y log → X log

such that if we write φ for the morphism of schemes underlying φlog, then φη :
Yη → Xη is a finite étale Galois covering of degree p that is wildly ramified over the
irreducible component C of X containing ξ.

Next, let us suppose that the property (c) is satisfied. Thus, there exists an
irreducible component E of Y that maps to ξ. Next, let us observe that there exists
an irreducible component D of Y that maps finitely to C and meets the connected
component F of the fiber φ−1(ξ) that contains E [so D is not contained in F ]. In
particular, it follows that there exists a chain of irreducible components

E1 = E,E2, . . . , En

[where n ≥ 1 is an integer] of Y joining E to D such that each Ej ⊆ F [for
j = 1, . . . , n]. Thus, En meets D at some node of Y that maps to ξ. That is to say,
property (b) is satisfied. Thus, to complete the proof of Corollary 2.11, it suffices
to verify property (c).

Now suppose that property (c) fails to hold. Then φ is finite over some neigh-
borhood of ξ. Since φη is wildly ramified over C, it follows that there exists a

nontrivial element σ ∈ Gal(Y log
η /X log

η ) that fixes and acts as the identity on some
irreducible component D of Y that maps finitely to C. After possibly replacing k
by a finite extension of k, it follows from the finiteness of φ over some neighborhood
of ξ that we may assume that there exists a cusp ζ ∈ Y (S) of Y log lying over ξ
such that the restriction ζ of ζ to Y lies in D. But then the distinct [since σ is

nontrivial, and φη is étale] cusps ζ, ζσ of Y log have identical restrictions ζ, ζσ to Y
— in contradiction to the definition of a “stable log curve” [i.e., of a “pointed stable
curve”]. This completes the proof of property (c) and hence of Corollary 2.11. ©

Remark 2.11.1.

(i) The statement of [Mzk9], Corollary 3.11, concerns smooth log curves over an
MLF, but in fact, the same proof as the proof given in [Mzk9] for [Mzk9], Corollary
3.11, may be applied to smooth log curves over an arbitrary mixed characteristic
complete discretely valued field. Here, we note that by passing to an appropriate
extension, this discretely valued field may be assumed to have a perfect residue field,
as in Corollary 2.11. In particular, Corollary 2.11 may be applied to [the portion
corresponding to “observation (iv)” in loc. cit. of] the proof of such a generalization
of [Mzk9], Corollary 3.11, for more general fields.

(ii) In the discussion of the “pro-Σ version” of [Mzk9], Corollary 3.11, in
[Mzk9], Remark 3.11.1,

one should assume that pα, pβ ∈ Σ.

In fact, this assumption is, in some sense, implicit in the phraseology that appears
in the first two lines of [Mzk9], Remark 3.11.1, but it should have been stated
explicitly.
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Section 3: Elliptic and Belyi Cuspidalizations

The sort of preservation of decomposition groups of closed points that is re-
quired in the hypothesis of Corollary 2.9 is shown [for certain types of hyperbolic
curves] in the case of profinite geometric fundamental groups in [Mzk8], Corollary
3.2. On the other hand, at the time of writing, the author does not know of any
such results in the case of pro-Σ geometric fundamental groups, when Σ is not equal
to the set of all primes. Nevertheless, in the present §3, we observe that the tech-
niques of [Mzk8], §2, concerning the preservation of decomposition groups of torsion
points of elliptic curves do indeed hold for fairly general pro-Σ geometric fundamen-
tal groups [cf. Corollaries 3.3, 3.4]. Moreover, we observe that these techniques —
which may be applied not only to [hyperbolic orbicurves related to] elliptic curves,
but also, in the profinite case, to [hyperbolic orbicurves related to] tripods [i.e.,
hyperbolic curves of type (0, 3) — cf. [Mzk15], §0], via the use of Belyi maps —
allow one to recover not only the decomposition groups of [certain] closed points,
but also the resulting “cuspidalizations” [i.e., the arithmetic fundamental groups of
open subschemes obtained by removing such closed points] — cf. Corollaries 3.7,
3.8.

Let X be a hyperbolic orbicurve over a field k of characteristic zero; k an
algebraic closure of k. We shall denote the base-change operation “×kk” by means
of a subscript k. Thus, we have an exact sequence of fundamental groups 1 →
π1(Xk) → π1(X) → Gal(k/k) → 1.

Definition 3.1. Let π1(X) � Π be a quotient of profinite groups. Write Δ ⊆ Π
for the image of π1(Xk) in Π. Then we shall say that X is Π-elliptically admissible
if the following conditions hold:

(a) X admits a k-core [in the sense of [Mzk6], Remark 2.1.1] X → C;

(b) C is semi-elliptic [cf. §0], hence admits a double covering D → C by a
once-punctured elliptic curve D;

(c) X admits a finite étale covering Y → X by a hyperbolic curve Y over a
finite extension kY of k that arises from a normal open subgroup ΠY ⊆ Π
such that the resulting finite étale covering Y → C factors as the composite
of a covering Y → D with the covering D → C and, moreover, is such
that, for every set of primes Σ such that some open subgroup of Δ is
pro-Σ, it holds that Δ is pro-Σ, and, moreover, the degree of the covering
Y → C ×k kY is a product of primes [perhaps with multiplicities] ∈ Σ.

When Π = π1(X), we shall simply say that X is elliptically admissible.

Remark 3.1.1. In the notation of Definition 3.1, one verifies immediately that
Dk → Ck may be characterized as the unique [up to isomorphism over Ck] finite
étale double covering of Ck by a hyperbolic curve [i.e., as opposed to an arbitrary
hyperbolic orbicurve].
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Example 3.2. Scheme-theoretic Elliptic Cuspidalizations.

(i) Let N be a positive integer; D a once-punctured elliptic curve over a finite
Galois extension k′ of k such that all of the N -torsion points of the underlying
elliptic curve E of D are defined over k′; D → C a semi-elliptic k′-core of D [such
that D → C is the double covering appearing in the definition of “semi-elliptic”].
Then the morphism [N ]E : E → E given by multiplication by N determines a finite
étale covering [N ]D : U → D [of degree N2], together with an open embedding
U ↪→ D [which we use to identify U with its image in D], i.e., we have a diagram
as follows:

U ↪→ D⏐⏐	[N ]D

D

Suppose that the Galois group Gal(k/k) is slim. Then, in the language of [Mzk15],
§4, this situation may be described as follows [cf. [Mzk15], Definition 4.2, (i),
where we take the extension “1 → Δ → Π → G → 1” to be the extension 1 →
π1(D ×k′ k) → π1(D) → Gal(k/k′) → 1]: The above diagram yields a chain

D � U (→ D) � (U ↪→) Un � (Un ↪→) Un−1 � . . .

� (U3 ↪→) U2 � (U2 ↪→) U1
def
= D

[where n
def
= N2 − 1] whose associated type-chain is

�, •, . . . , •

[i.e., a finite étale covering, followed by n de-cuspidalizations], together with a
terminal isomorphism

U1
∼→ D

[which, in our notation, amounts to the identity morphism] from the U1 at the end
of the above chain to the unique D of the trivial chain [of length 0]. In particular:

The above chain may thought of as a construction of a “cuspidalization”
[i.e., result of passing to an open subscheme by removing various closed
points] U ↪→ D of D.

The remainder of the portion of the theory of the present §3 concerning elliptic
cuspidalizations consists, in essence, of the unraveling of various consequences of
this “chain-theoretic formulation” of the diagram that appears at the beginning of
the present item (i).

(ii) A variant of the discussion of (i) may be obtained as follows. In the notation
of (i), suppose further that X is an elliptically admissible hyperbolic orbicurve over
k, and that we have been given finite étale coverings V → X, V → D, where V is a
hyperbolic curve over k′. Also, [for simplicity] we suppose that V → X is a Galois

covering such that Gal(V/X) preserves the open subscheme UV
def
= V ×D U ⊆ V

[i.e., the inverse image of U ⊆ D via V → D]. Thus, UV ⊆ V descends to an
open subscheme UX ⊆ X. Then by appending to the chain of (i) the “finite étale
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covering” V → X, followed by the “finite étale quotient” V → D on the left, and
the “finite étale covering” V → D, followed by the “finite étale quotient” V → X
on the right, we obtain a chain

X � V (→ X) � (V →) D � U (→ D) � (U ↪→) Un � (Un ↪→) Un−1 � . . .

� (U3 ↪→) U2 � (U2 ↪→) U1
def
= D � V (→ D) � (V →) X∗

def
= X

whose associated type-chain is

�,�,�, •, . . . , •,�,�

[where the “. . . ” are all “•’s”], together with a terminal isomorphism X∗
∼→ X

[i.e., the identity morphism]. In particular, the above chain may thought of as a
construction of a “cuspidalization” UX ↪→ X of X via the construction of a “cuspi-
dalization” UV ↪→ V of V , equipped with descent data [i.e., a suitable collection of
automorphisms] with respect to the finite étale Galois covering V → X.

Now by translating the scheme-theoretic discussion of Example 3.2 into the
language of profinite groups via the theory of [Mzk15], §4, we obtain the following
result.

Corollary 3.3. (Pro-Σ Elliptic Cuspidalization I: Algorithms) Let D be a
chain-full set of collections of partial construction data [cf. [Mzk15], Definition
4.6, (i)] such that the rel-isom-DGC holds [i.e., the “relative isomorphism version
of the Grothendieck Conjecture for D holds” — cf. [Mzk15], Definition 4.6, (ii)];
G a slim profinite group;

1 → Δ → Π → G → 1

an extension of GSAFG-type that admits partial construction data (k,X,Σ),
where k is of characteristic zero, and X is a Π-elliptically admissible [cf. Def-
inition 3.1] hyperbolic orbicurve, such that ([X], [k],Σ) ∈ D; α : π1(X) � Π
the corresponding scheme-theoretic envelope [cf. [Mzk15], Definition 2.1, (iii)];

X̃ → X the pro-finite étale covering of X determined by α [so Π
∼→ Gal(X̃/X)];

k̃ the resulting field extension of k [so G
∼→ Gal(k̃/k)]. Suppose further that, for

some l ∈ Σ, the cyclotomic character G → Z×
l has open image. Thus, by the

theory of [Mzk15], §4, we have associated categories

Chain(Π); Chainiso-trm(Π); ÉtLoc(Π)

which may be constructed via purely “group-theoretic” operations from the
extension of profinite groups 1 → Δ → Π → G → 1 [cf. [Mzk15], Definition 4.2,
(iii), (iv), (v); [Mzk15], Lemma 4.5, (v); the proof of [Mzk15], Theorem 4.7, (ii)].
Then:

(i) Let G′ ⊆ G be a normal open subgroup, corresponding to some finite ex-

tension k′ ⊆ k̃ of k; Π′ def
= Π ×G G′; C a k′-core of Xk′

def
= X ×k k′. Then

the finite étale covering Xk′ → C determines a chain Xk′ � C of the category

Chain(X̃/Xk′) [cf. [Mzk15], Definition 4.2, (i), (ii)] whose image Π′ � ΠC in
Chain(Π′) [via the natural functor of [Mzk15], Remark 4.2.1] may be characterized
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“group-theoretically”, up to isomorphism in Chain(Π′), as the unique chain of
length 1 in Chain(Π′), with associated type-chain �, such that the resulting object

of ÉtLoc(Π′) forms a terminal object of ÉtLoc(Π′).

(ii) The collection of open subgroups ΠD ⊆ ΠC that arise from finite étale
double coverings D → C that exhibit C as semi-elliptic [cf. Remark 3.1.1]
may be characterized “group-theoretically” as the collection of open subgroups

J ⊆ ΠC of index 2 such that J
⋂
ΔC [where ΔC

def
= Ker(ΠC � G′)] is torsion-free

[i.e., the covering determined by J is a scheme — cf. [Mzk15], Lemma 4.1, (iv)].

(iii) Write ΔD
def
= Ker(ΠD � G′). Let N be a positive integer which is a

product of primes [perhaps with multipliticites] of Σ; U ⊆ D the open subscheme
obtained by removing the N-torsion points of the elliptic curve underlying D;
V → X, V → D finite étale coverings, where V is a hyperbolic curve over k′.
Suppose further that V → X arises from a normal open subgroup ΠV ⊆ Π such that

Gal(V/X) ∼= Π/ΠV preserves the open subscheme UV
def
= V ×D U ⊆ V [i.e., the

inverse image of U ⊆ D via V → D], while V → D arises from an open immersion
ΠV ↪→ ΠD. Thus, UV ⊆ V descends to an open subscheme UX ⊆ X, and U ⊆ D,
UV ⊆ V , UX ⊆ X determine extensions of GSAFG-type

1 → ΔU → ΠU → G′ → 1; 1 → ΔUV → ΠUV → G′ → 1

1 → ΔUX
→ ΠUX

→ G → 1

[i.e., by considering the finite étale Galois coverings of degree a product of primes
[perhaps with multipliticites] ∈ Σ over coverings of U , UV , UX arising from Π],
together with natural surjections ΠU � ΠD, ΠUV

� ΠV , ΠUX
� Π and open im-

mersions ΠUV ↪→ ΠU , ΠUV ↪→ ΠUX . [In particular, ΔU , ΔUV , and ΔUX are pro-Σ
groups.] Then, for any G′ ⊆ G that is sufficiently small, where “sufficiently”
depends only on N , the natural surjection

ΠUX � Π

— i.e., “cuspidalization” of Π — may be constructed via “group-theoretic”
operations as follows:

(a) There exists a [not necessarily unique] Π-chain, which admits an en-
tirely “group-theoretic” description, with associated type-chain

�,�,�, •, . . . , •,�,�

— cf. Example 3.2, (ii) — that admits a terminal isomorphism with the
trivial Π-chain [of length 0], and whose final three groups consist of ΠD �
ΠV (↪→ ΠD) � (ΠV ↪→) Π such that the natural surjection ΠU � ΠD
may be recovered from the chain of “•’s” terminating at the third to last
group of the above-mentioned Π-chain; the natural surjection ΠUV �
ΠV may then be recovered from ΠU � ΠD by forming the fiber product
with the inclusion ΠV ↪→ ΠD.

(b) The natural surjection ΠUX
� Π may be recovered from ΠUV

� ΠV
[where we note that ΠUV � ΠV may be identified with the fiber product of
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ΠUX
� Π with the inclusion ΠV ↪→ Π] by forming the “

out
� ” [cf. §0] with

respect to the unique lifting [relative to ΠUV � ΠV ] of the outer action of
the finite group Π/ΠV on ΠV to a group of outer automorphisms of ΠUV

.

(c) The decomposition groups of the closed points of X lying in the
complement of UX may be obtained as the images via ΠUX

� Π of the
cuspidal decomposition groups of ΠUX [cf. [Mzk15], Lemma 4.5, (v)].

Proof. The assertions of Corollary 3.3 follow immediately from the definitions,
together with the various references quoted in the course of the “group-theoretic”
reconstruction algorithm described in the statement of Corollary 3.3, and the equiv-
alences of [Mzk15], Theorem 4.7, (i). ©

Remark 3.3.1. Let p be a prime number. Then if one takes F to be set of iso-
morphism classes of generalized sub-p-adic fields, S the set of sets of prime numbers
containing p, and V to be the set of isomorphism classes of hyperbolic orbicurves

over fields whose isomorphism class ∈ F, then D
def
= V×F×S satisfies the hypothesis

of Corollary 3.3 concerning “D” [cf. [Mzk15], Example 4.8, (i)].

Remark 3.3.2. Recall that when k is an MLF or an NF, the subgroup Δ ⊆ Π
admits a purely “group-theoretic” characterization [cf. [Mzk15], Theorem 2.6, (v),
(vi)]. Thus, when k is an MLF or an NF, the various “group-theoretic” reconstruc-
tion algorithms described in the statement of Corollary 3.3 may be thought of as
being applied not to the extension 1 → Δ → Π → G → 1, but rather to the single
profinite group Π.

Remark 3.3.3. One verifies immediately that Corollary 3.3 admits a “tempered
version”, when the base field k is an MLF [cf. [Mzk15], Theorem 4.12, (i)]. We
leave the routine details to the reader.

Remark 3.3.4. By applying the tempered version of Corollary 3.3 discussed in
Remark 3.3.3, one may obtain “explicit reconstruction algorithm versions” of certain
results of [Mzk12] [cf. [Mzk12], Theorem 1.6; [Mzk12], Remark 1.6.1] concerning
the étale theta function. We leave the routine details to the reader.

The “group-theoretic” algorithm of Corollary 3.3 has the following immediate
“Grothendieck Conjecture-style” consequence.

Corollary 3.4. (Pro-Σ Elliptic Cuspidalization II: Comparison) Let D
be a chain-full set of collections of partial construction data [cf. [Mzk15],
Definition 4.6, (i)] such that the rel-isom-DGC holds [cf. [Mzk15], Definition 4.6,
(ii)]. For i = 1, 2, let Gi be a slim profinite group;

1 → Δi → Πi → Gi → 1
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an extension of GSAFG-type that admits partial construction data (ki, Xi,Σi),
where ki is of characteristic zero, and Xi is a Πi-elliptically admissible
[cf. Definition 3.1] hyperbolic orbicurve, such that ([Xi], [ki],Σi) ∈ D; αi :
π1(Xi) � Πi the corresponding scheme-theoretic envelope [cf. [Mzk15], Defi-

nition 2.1, (iii)]; X̃i → Xi the pro-finite étale covering of X determined by αi
[so Πi

∼→ Gal(X̃i/Xi)]; k̃i the resulting field extension of ki [so Gi
∼→ Gal(k̃i/ki)];

Ci a ki-core of Xi; Di → Ci a finite étale double covering that exhibits Ci as
semi-elliptic [cf. Remark 3.1.1]; Πi ⊆ ΠCi , ΠDi ⊆ ΠCi the open subgroups deter-
mined by Xi → Ci, Di → Ci; N a positive integer which is a product of primes
[perhaps with multipliticites] ∈ Σ1

⋂
Σ2; Ui ⊆ Di the open subscheme obtained

by removing the N-torsion points of the elliptic curve underlying Di; Vi → Xi,
Vi → Di finite étale coverings that arise from a normal open subgroup ΠVi ⊆ Πi
and an open immersion ΠVi ↪→ ΠDi such that Gal(Vi/Xi) ∼= Πi/ΠVi preserves

the open subscheme UVi

def
= Vi ×Di Ui ⊆ Vi [i.e., the inverse image of Ui ⊆ Di

via Vi → Di]; UXi ⊆ Xi the resulting open subscheme [obtained by descending
UVi ⊆ Vi];

1 → ΔUXi
→ ΠUXi

→ Gi → 1

the extension of GSAFG-type obtained [via αi] by considering the finite étale
Galois coverings of degree a product of primes [perhaps with multipliticites] ∈ Σi
over coverings of UXi arising from Πi; ΠUXi

� Πi the natural surjection [relative

to αi]. Suppose further that, for some l ∈ Σ1

⋂
Σ2, the cyclotomic characters

Gi → Z×
l have open image for i = 1, 2. Let

φ : Π1
∼→ Π2

be an isomorphism of profinite groups such that φ(Δ1) = Δ2. Then there
exists an isomorphism of profinite groups

φU : ΠUX1

∼→ ΠUX2

that is compatible with φ, relative to the natural surjections ΠUXi
� Πi. More-

over, such an isomorphism is unique up to composition with an inner automor-
phism arising from an element of the kernel of ΠUXi

� Πi.

Proof. The construction of φU follows immediately from Corollary 3.3; the asserted
uniqueness then follows immediately from our assumption that the rel-isom-DGC
holds. ©

Remark 3.4.1. Just as in the case of Corollary 3.3 [cf. Remark 3.3.3], Corollary
3.4 admits a “tempered version”, when the base fields ki invoved are MLF’s. We
leave the routine details to the reader.

Remark 3.4.2. By applying Corollary 3.4 [cf. also Remarks 3.3.4, 3.4.1], one
may obtain “pro-Σ tempered” versions of certain results of [Mzk12] [cf. [Mzk12],
Theorem 1.6; [Mzk12], Remark 1.6.1] concerning the étale theta function. We leave
the routine details to the reader.
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Now we return to the notation introduced at the beginning of the present
§3: Let X be a hyperbolic orbicurve over a field k of characteristic zero; k an
algebraic closure of k. Thus, we have an exact sequence of fundamental groups
1 → π1(X ×k k) → π1(X) → Gal(k/k) → 1.

Definition 3.5. We shall say that X is of strictly Belyi type if it is defined over
a number field and isogenous [cf. §0] to a hyperbolic curve of genus zero. [Thus,
this definition generalizes the definition of [Mzk14], Definition 2.3, (i).]

Example 3.6. Scheme-theoretic Belyi Cuspidalizations.

(i) Let P be a copy of the projective line minus three points over a finite Galois
extension k′ of k; V an arbitrary hyperbolic curve over k′; U ⊆ V a nonempty open
subscheme [hence, in particular, a hyperbolic curve over k′]. Suppose that U [hence
also V ] is defined over a number field. Then it follows from the existence of Belyi
maps [cf. [Belyi]; [Mzk7]] that, for some nonempty open subscheme W ⊆ U , there
exists a diagram as follows:

W ↪→ U ↪→ V⏐⏐	β
P

[where the “↪→’s” are the natural open immersions; the “Belyi map” β is finite
étale]. By replacing k′ by some finite extension of k′, let us suppose further [for
simplicity] that the cusps of W are all defined over k′. Also, let us suppose that the
Galois group Gal(k/k) is slim. Then, in the language of [Mzk15], §4, this situation
may be described as follows [cf. [Mzk15], Definition 4.2, (i), where we take the
extension “1 → Δ → Π → G → 1” to be the extension 1 → π1(P ×k′ k) →
π1(P ) → Gal(k/k′) → 1]: For some nonnegative integers n, m, the above diagram
yields a chain

P � W (→ P ) � (W ↪→) Wn � (Wn ↪→) Wn−1 � . . .

� (W2 ↪→) W1
def
= U � (U ↪→) Um � (Um ↪→) Um−1 � . . .

� (U2 ↪→) U1
def
= V

whose associated type-chain is

�, •, . . . , •

[i.e., a finite étale covering, followed by n+m de-cuspidalizations]. In particular:

The above chain may thought of as a construction of a “cuspidalization”
[i.e., result of passing to an open subscheme by removing various closed
points] U ↪→ V of V .

The remainder of the portion of the theory of the present §3 concerning Belyi
cuspidalizations consists, in essence, of the unraveling of various consequences of
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this “chain-theoretic formulation” of the diagram that appears at the beginning of
the present item (i).

(ii) A variant of the discussion of (i) may be obtained as follows. In the notation
of (i), suppose further that X is a hyperbolic orbicurve of strictly Belyi type over k,
and that we have been given finite étale coverings V → X, V → Q, together with
an open immersion Q ↪→ P [so Q is a hyperbolic curve of genus zero over k′]. Also,
[for simplicity] we suppose that V → X is Galois, that U ⊆ V descends to an open
subscheme UX ⊆ X, and [by possibly replacing k′ by a finite extension of k′] that
the cusps of Q are defined over k′. Then by appending to the chain of (i) the “finite
étale covering” V → X, followed by the “finite étale quotient” V → Q, followed by

the de-cuspidalizations Q ↪→ Ql ↪→ . . . ↪→ Q1
def
= P [for some nonnegative integer l],

on the left, and the “finite étale quotient” V → X on the right, we obtain a chain

X � V (→ X) � (V →) Q � (Q ↪→) Ql � . . . � (Q2 ↪→) Q1
def
= P

� W (→ P ) � (W ↪→) Wn � . . . � (W2 ↪→) W1
def
= U � (U ↪→) Um � . . .

� (U2 ↪→) U1
def
= V � (V →) X∗

def
= X

whose associated type-chain is

�,�, •, . . . , •,�, •, . . . , •,�

[where the “. . . ” are all “•’s”], together with a terminal isomorphism X∗
∼→ X

[i.e., the identity morphism]. In particular, the above chain may thought of as
a construction of a “cuspidalization” UX ↪→ X of X via the construction of a
“cuspidalization” U ↪→ V of V , equipped with descent data [i.e., a suitable collection
of automorphisms] with respect to the finite étale Galois covering V → X.

Now by translating the scheme-theoretic discussion of Example 3.6 into the
language of profinite groups via the theory of [Mzk15], §4, we obtain the following
result.

Corollary 3.7. (Profinite Belyi Cuspidalization I: Algorithms) Let D be a
chain-full set of collections of partial construction data [cf. [Mzk15], Definition
4.6, (i)] such that the rel-isom-DGC holds [i.e., the “relative isomorphism version
of the Grothendieck Conjecture for D holds” — cf. [Mzk15], Definition 4.6, (ii)];
G a slim profinite group;

1 → Δ → Π → G → 1

an extension of GSAFG-type that admits partial construction data (k,X,Σ),
where k is of characteristic zero, X is a hyperbolic orbicurve of strictly
Belyi type [cf. Definition 3.5], and Σ is the set of all primes, such that

([X], [k],Σ) ∈ D; α : π1(X)
∼→ Π the corresponding scheme-theoretic envelope

[cf. [Mzk15], Definition 2.1, (iii)], which is an isomorphism of profinite groups;

X̃ → X the pro-finite étale covering of X determined by α [so Π
∼→ Gal(X̃/X)];

k̃ the resulting algebraic closure of k [so G
∼→ Gal(k̃/k)]. Suppose further that, for

some l ∈ Σ, the cyclotomic character G → Z×
l has open image. Thus, by the

theory of [Mzk15], §4, we have associated categories

Chain(Π); Chainiso-trm(Π); ÉtLoc(Π)
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which may be constructed via purely “group-theoretic” operations from the
extension of profinite groups 1 → Δ → Π → G → 1 [cf. [Mzk15], Definition 4.2,
(iii), (iv), (v); [Mzk15], Lemma 4.5, (v); the proof of [Mzk15], Theorem 4.7, (ii)].
Then for every nonempty open subscheme

UX ⊆ X

defined over a number field, the natural surjection

ΠUX

def
= π1(UX) � π1(X)

∼→ Π

[where the final “
∼→ ” is given by the inverse of α] — i.e., “cuspidalization” of

Π — may be constructed via “group-theoretic” operations as follows:

(a) For some normal open subgroup ΠV ⊆ Π, which corresponds to a fi-
nite covering V → X of hyperbolic orbicurves, there exists a [not neces-
sarily unique] Π-chain, which admits an entirely “group-theoretic”
description, with associated type-chain

�,�, •, . . . , •,�, •, . . . , •,�

— cf. Example 3.6, (ii) — that admits a terminal isomorphism with

the trivial Π-chain [of length 0] such that if we write U
def
= V ×X UX ,

ΠU
def
= ΠV ×Π ΠUX

, then the natural surjection ΠU � ΠV may be
recovered from the chain of “•’s” terminating at the second to last group
of the above-mentioned Π-chain.

(b) The natural surjection ΠUX � Π may be recovered from ΠU � ΠV

by forming the “
out
� ” [cf. §0] with respect to the unique lifting [relative

to ΠU � ΠV ] of the outer action of the finite group Π/ΠV on ΠV to a
group of outer automorphisms of ΠU .

(c) The decomposition groups of the closed points of X lying in the
complement of UX may be obtained as the images via ΠUX � Π of the
cuspidal decomposition groups of ΠUX

[cf. [Mzk15], Lemma 4.5, (v)].

Proof. The assertions of Corollary 3.7 follow immediately from the definitions,
together with the various references quoted in the course of the “group-theoretic”
reconstruction algorithm described in the statement of Corollary 3.7, and the equiv-
alences of [Mzk15], Theorem 4.7, (i). ©

Remark 3.7.1. Similar remarks to Remarks 3.3.1, 3.3.2, 3.3.3 may be made for
Corollary 3.7.

Remark 3.7.2. In the situation of Corollary 3.7, when the field k is an MLF, one
then obtains an algorithm for constructing the decomposition groups of arbitrary
closed points of X, by combining the algorithms of Corollary 3.7 — cf., especially,
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Corollary 3.7, (c), which allows one to construct the decomposition groups of those
closed points of X which [like UX !] are defined over a number field — with the “p-
adic approximation lemma” of [Mzk8] [i.e., [Mzk8], Lemma 3.1]. A “Grothendieck
Conjecture-style” version of this sort of reconstruction of decomposition groups of
arbitrary closed points of X may be found in [Mzk8], Corollary 3.2.

The “group-theoretic” algorithm of Corollary 3.7 has the following immediate
“Grothendieck Conjecture-style” consequence.

Corollary 3.8. (Profinite Belyi Cuspidalization II: Comparison) Let
D be a chain-full set of collections of partial construction data [cf. [Mzk15],
Definition 4.6, (i)] such that the rel-isom-DGC holds [cf. [Mzk15], Definition 4.6,
(ii)]. For i = 1, 2, let Gi be a slim profinite group;

1 → Δi → Πi → Gi → 1

an extension of GSAFG-type that admits partial construction data (ki, Xi,Σi),
where ki is of characteristic zero, Xi is a hyperbolic orbicurve of strictly
Belyi type [cf. Definition 3.5], and Σi is the set of all primes, such that

([Xi], [ki],Σi) ∈ D; αi : π1(Xi)
∼→ Πi the corresponding scheme-theoretic en-

velope [cf. [Mzk15], Definition 2.1, (iii)], which is an isomorphism of profinite

groups; X̃i → Xi the pro-finite étale covering of Xi determined by αi [so

Πi
∼→ Gal(X̃i/Xi)]; k̃i the resulting algebraic closure of ki [so Gi

∼→ Gal(k̃i/ki)].
If, for i = 1, 2, UXi ⊆ Xi is a nonempty open subscheme which is defined
over a number field, then write

1 → ΔUXi
→ ΠUXi

→ Gi → 1

for the extension of GSAFG-type determined by [αi and] the natural surjection

π1(UXi) � Gal(k̃i/ki) (∼= Gi); ΠUXi
� Πi for the natural surjection [relative

to αi]. Suppose further that, for some l ∈ Σ1

⋂
Σ2, the cyclotomic characters

Gi → Z×
l have open image for i = 1, 2. Let

φ : Π1
∼→ Π2

be an isomorphism of profinite groups such that φ(Δ1) = Δ2. Then, for each
nonempty open subscheme UX1 ⊆ X1 defined over a number field, there exist a
nonempty open subscheme UX2

⊆ X2 defined over a number field and an isomor-
phism of profinite groups

φU : ΠUX1

∼→ ΠUX2

that is compatible with φ, relative to the natural surjections ΠUXi
� Πi. More-

over, such an isomorphism φU is unique up to composition with an inner auto-
morphism arising from an element of the kernel of ΠUXi

� Πi.

Proof. The construction of φU for a suitable nonempty open subscheme UX2

follows immediately from Corollary 3.7; the asserted uniqueness then follows im-
mediately from our assumption that the rel-isom-DGC holds. ©

Remark 3.8.1. A similar remark to Remark 3.4.1 may be made for Corollary
3.8.
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