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A surface, i.e., 2-dimensional compact complex manifold, S is of type K3 if its canonical
line bundleOS(KS) is trivial and if H1(S,OS) = 0. An ample line bundle L on a K3 surface
S is a polarization of genus g if its self intersection number (L2) is equal to 2g − 2, and
called primitive if L ' Mk implies k = ±1. The moduli space Fg of primitively polarized
K3 surfaces (S, L) of genus g is a quasi-projective variety of dimension 19 for every g ≥ 2
([15]). In [12], we have studied the generic primitively polarized K3 surfaces (S, L) of
genus 6 ≤ g ≤ 10. In each case, the K3 surface S is a comlete intersection of divisors in a
homogeneous space X and the polarization L is the restriction of the ample generator of
the Picard group Pic X ' Z of X.

In this article, we shall study the generic (polarized) K3 surfaces (S, L) of genus 18
and 20. (Polarization of genus 18 and 20 are always primitive.) The K3 surface S has
a canonical embedding into a homogeneous space X such that L is the restriction of the
ample generator of Pic X ' Z. S is not a comlete intersection of divisors any more but a
complete intersection in X with respect to a homogeneous vector bundle V (Definition 1.1):
S is the zero locus of a global section s of V . Moreover, the global section s is uniquely
determined by the isomorphism class of (S, L) up to the automorphisms of the pair (X,V).
As a corollary, we obtain a description of birational types of F18 and F20 as orbit spaces
(Theorem 0.3 and Corolary 5.10).

In the case of genus 18, the ambient space X is the 12-dimensional variety of 2-planes
in the smooth 7-dimensional hyperquadric Q7 ⊂ P8. The complex special orthogonal
group G = SO(9,C) acts on X transitively. Let F be the homogeneous vector bundle
corresponding to the fourth fundamental weight w4 = (α1 +2α2 +3α3 +4α4)/2 of the root
system

B4 :
α1◦ —

α2◦ —
α3◦=⇒α4◦(0.1)

of G. F is of rank 2 and the determinant line bundle
∧2F of F generates the Picard

group of X. The vector bundle V is the direct sum of five copies of F .

Theorem 0.2 Let S ⊂ X be the common zero locus of five global sections of the ho-
mogeneousn vector bundle F . If S is smooth and of dimension 2, then (S,

∧2F|S) is a
(polarized) K3 surface of genus 18.

Remark Consider the variety X of lines in the 5-dimensional hyperquadric Q5 ⊂ P6

instead. This is a 7-dimensional homogeneous space of SO(7,C) and has a homogeneous
vector bundle of rank 2 on it. The zero locus Z of its general global section is a Fano
5-fold of index 3 and a homogeneous space of the exceptional group of type G2. See [12]
and [13] for other description of Z and its relation to K3 surfaces of genus 10.

The space H0(X,F) of global sections of F is the (16-dimensional) spin representa-
tion U16 of the universal covering group G̃ = Spin(9,C) (see [5]). Let G(5, U16) be the
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Grassmann variety of 5-dimensional subspaces of U16 and G(5, U16)
s

be its open subset
consisting of stable points with respect to the action of G̃. The orthogonal group G
acts on G(5, U16) effectively and the geometric quotient G(5, U16)

s
/G exists as a normal

quasi-projective variety ([14]).

Theorem 0.3 The generic K3 surface of genus 18 is the common zero locus of five global
sections of the rank 2 homogeneous vector bundle F on X. Moreover, the classification
(rational) map G(5, U16)

s
/SO(9,C)− → F18 is birational.

Remark The spin represetation U16 is the restriction of the half spin representation H16

of Spin(10,C) to Spin(9,C). The quotient
SO(10,C)/SO(9,C) is isomorphic to the complement of the 8-dimensional hyperquadric
Q8 ⊂ P9. Hence F18 is birationally equivalent to a P9-bundle over the 10-dimensional
orbit space G(5, H16)

s
/SO(10,C).

Let E be the homogeneous vector bundle corresponding to the first fundamental weight
w1 = α1 +α2 +α3 +α4 and EN its restriction to SN . The genericity of SN is a consequence
of the simpleness of EN (Proposition 4.1). The uniqueness of the expression follows from
the rigidity of EN and the following:

Proposition 0.4 Let E be a stable vector bundle on a K3 surface S and assume that E
is rigid, i.e., χ(sl(E)) = 0. If a semi-stable vector bundle F has the same rank and Chern
classes as E, then F is isomorphic to E.

This is a consequence of the Riemann-Roch theorem

dim Hom (E, F ) + dim Hom (F,E) ≥ χ(E∨ ⊗ F )(0.4)

= χ(E∨ ⊗ E) = χ(sl(E)) + χ(OS) = 2

on a K3 surface (cf. [11], Corollary 3.5).
In the case of genus 20, the ambient homogeneous space X is the (20-dimensional)

Grassmsann variety G(V, 4) of 4-dimensional quotient spaces of a 9-dimensional vector
space V and the homogeneous vector bundle V is the direst sum of three copies of

∧2 E ,
where E is the (rank 4) universal quotient bundle on X. The generic K3 surface of genus 20
is a complete intersection in G(V, 4) with respect to (

∧3 E)⊕3 in a unique way (Theorem 5.1
and Theorem 5.9). This description of K3 surfaces is a generalization of one of the three
descriptions of Fano threefolds of genus 12 given in [13].

This work was done during the author’s stay at the University of California Los Angeles in
1988-89, whose hospitality he gratefully acknowledges.
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Notation and Conventions. All varieties are considered over the complex number field C.
A vector bundle E on a variety X is a locally free OX-module. Its rank is denoted by
r(E). The determinant line bundle

∧r(E) E is denoted by det E. The dual vector bundle
Hom(E,OX) of E is deoted by E∨. The subbundle of End(E) ' E ⊗ E∨ consisting of
trace zero endomorphisms of E is denoted by sl(E).
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1 Complete intersections with respect to vector bun-

dles

We generalize Bertini’s theorem for vector bundles. Let s ∈ H0(U,E) be a global section
of a vector bundle E on a variety U . Let OV −→ E be the multiplication by s and
η : E∨ −→ OV its dual homomorphism. The subscheme (s)0 of U defined by the ideal
I = Im η ⊂ OU is called the scheme of zeroes of s.

Definition 1.1 (1) Let {e1, · · · , er} be a local frame of E at x ∈ U . A global section
s =

∑r
i=1 fiei, fi ∈ OX , of E is nondegenerate at x if s(x) = 0 and (f1, · · · , fr) is a regular

sequence. s is nondegenerate if it is so at every point x of (s)0.
(2) A subscheme Y of U is a complete intersection with respect to E if Y is the scheme

of zeroes of a nondegenerate global section of E.

In the case U is Cohen-Macaulay, a global section s of E is nondegenerate if and only
if the codimension of Y = (s)0 is equal to the rank of E.

The wedge product by s ∈ H0(U,E) gives rise to a complex

Λ• : OU −→ E −→
2∧

E −→ · · · −→
r−1∧

E −→
r∧

E(1.2)

called the Koszul complex of s. The dual complex

K• :
r∧

E∨ −→
r−1∧

E∨ −→ · · · −→
2∧

E∨ −→ E∨ −→ OU(1.3)

is called the Koszul complex of Y .

Proposition 1.4 The Koszul complex K• is a resolution of the structure sheaf OY of Y
by vector bundles, that is, the sequence

0 −→ K• −→ OY −→ 0

is exact.

In particular, the conormal bundle I/I2 of Y in U is isomorphic to E∨ and we have
the adjunction formula

KY
∼= (KU + det E)|Y .(1.5)

Since the pairing
i∧

E ×
r−i∧

E −→ det E

is nondegenerate for every i, we have

Lemma 1.6 The complex K• is isomorphic to Λ• ⊗ (detE)−1.

Let π : P(E) −→ X be the Pr−1-bundle associated to E in the sense of Grothendieck
and OP(1) the tautological line bundle on it. By the construction of P(E), we have the
canonical isomorphisms

π∗OP(1) ' E and H0(P(E),O(1)) ' H0(U,E).(1.7)

The two linear systems associated to E and OP(1) have several common properties.
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Proposition 1.8 A vector bundle E is generated by its global section if and only if the
tautological line bundle OP(1) is so.

Proposition 1.9 Let σ be the global section of the tautological line bundle OP(1) corre-
sponding to s ∈ H0(U,E) via (1.7). If U is smooth, then the following are equivalent:

i) s is nondegenerate and (s)0 is smooth, and
ii) the divisor (σ)0 ⊂ P(E) is smooth.

Proof. Since the assertion is local, we may assume E is trivial, i.e., E ' O⊕r
U . Let

f1, · · · , fr be a set of generators of the ideal I defining (s)0. A point x ∈ (s)0 is singular
if and only if df1, · · · , dfr are linearly dependent at x, that is, there is a set of constants
(a1, · · · , ar) 6= (0, · · · , 0) such that a1df1 + · · ·+ardfr = 0 at x. This condition is equivalent
to the condition that the divisor

(σ)0 : f1X1 + · · ·+ frXr = 0

in P(E) ' U ×Pr−1 is singular at x× (a1 : · · · : ar). Therefore, ii) implies i). Since (σ)0

is smooth off (s)0 ×Pr−1, i) implies ii). q.e.d.

By these two propositions, Bertini’s theorem (see [7, p. 137]) is generalized for vector
bundles:

Theorem 1.10 Let E be a vector bundle on a smooth variety. If E is generated by its
global sections, then every general global section is nondegenerate and its scheme of zeroes
is smooth.

2 A homogeneous space of SO(9,C)

Let X be the subvariety of Grass(P2 ⊂ P7) consisting of 2-planes in the smooth 7-
dimensional hyperquadric

Q7 : q(X) = X1X5 + X2X6 + X3X7 + X4X8 + X2
9 = 0(2.1)

in P8. The special orthogonal group G = SO(9,C) acts transitively on X. Let P be the
stabilizer group at the 2-plane X4 = X5 = · · · = X9 = 0. X is isomorphic to G/P and the
reductive part L of P consists of matrices




A 0 0
0 tA−1 0
0 0 B




with A ∈ GL(3,C) and B ∈ SO(3,C). We denote the diagonal matrix

[x1, x2, x3, x4, x
−1
1 , x−1

2 , x−1
3 , x−1

4 , 1]

by < x1, x2, x3, x4 >. All the invertible diagonal matrices < x1, x2, x3, x4 > form a maximal
torus H of G contained in L. Let X(H) ' Z⊕4 be the character group and {e1, e2, e3, e4}
its standard basis. For a character α = a1e1 +a2e2 +a3e3 +a4e4, let gα be the α-eigenspace
{Z : Ad < x1, x2, x3, x4 > ·Z = xa1

1 xa2
2 xa3

3 xa4
4 Z} of the adjoint action Ad on the Lie algebra

g of G. Then we have the well-known decomposition

g = h⊕ ⊕

0 6=α∈X(H)

gα.
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A character α is a root if gα 6= 0. In our case, there are 16 positive roots

e1, e2, e3, e4 and ei ± ej(1 ≤ i ≤ j ≤ 4)

ant their negatives. The basis of roots are

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4 and α4 = e4.

Since e1, e2, e3 and e4 are orthonormal with respect to the Killing form, the Dynkin diagram
of G is of type B2 (see (0.1)). The fundamental weights are

w1 = e1, w2 = e1 + e2, w3 = e1 + e2 + e3 and(2.2)

w4 =
1

2
(e1 + e2 + e3 + e4)

(Cf. [4]). The positive roots of L ' GL(3,C)× SO(3,C) with respect to H are

α1, α2, α1 + α2 and α4.(2.3)

The root basis of L is of type A2
∐

A1 and the Weyl group W ′ is a dihedral group of order
12. There are 12 positive roots other than (2.3) and their sum is equal to 5(e1 + e2 + e3) =
5w3. Hence by [2, §16], we have

Proposition 2.4 X is a 12-dimensional Fano manifold of index 5.

Let G̃ be the universal covering group of G and H̃ and L̃ the pull-back of H and L,
respectively. The character group X(H̃) of H̃ is canonically isomorphic to the weight
lattice. Let ρi, 1 ≤ i ≤ 4, be the irreducible representation of L̃ with the highest weight
wi. Since the W ′-orbit of w4 consists of two weights p+ = w4 and p− = w4 − e4 and since
p− is the reflection of p+ by e4, the representation ρ4 is of dimension 2. ρ1 is induced from
the vector representation of the GL(3,C)-factor of L. From the equality

e1 + e2 + e3 = p+ + p− = w3,

we obtain the isomorphism

3∧
ρ1 '

2∧
ρ4 ' ρ3.(2.5)

Let E (resp. OX(1),F) be the homogeneous vector bundle over X = G/P induced from
the representation ρ1 (resp. ρ3, ρ4). OX(1) is the positive generator of PicX. E and F
are of rank 2 and 3, respectively. By the above isomorphism, we have

3∧ E '
2∧F ' OX(1).(2.6)

We shall study the property of the zero locus of a glogal section of F⊕5 in Section 3.
For its study we need vanishing of cohomology groups of homogeneous vector bundles on
X and apply the theorem of Bott[3]. The sum δ of the four fundamental weights wi in
(2.2) is equal to (7e1 + 5e2 + 3e3 + e4)/2. The sum of all positive roots is equal to 2δ.

Theorem 2.7 Let E(w) bethe homogeneous vector bundles on X = G̃/P̃ induced from the
representation of L̃ with the heighest weight w ∈ X(H̃). Then we have

1) H i(X, E(w)) vanishes for every i if there is a root α with (α.δ + w) = 0, and
2) Let i0 be the number of positive roots α with (α.δ + w) < 0. Then H i(X, E(w))

vanishes for every i except i0.
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We apply the theorem to the following four cases:
1) w = jw3 + nw4 and E(w) ' SnF(j) for n ≤ 6,
2) w = w1 + jw3 + nw4 and E(w) ' E ⊗ SnF(j) for n ≤ 5,
3) w = 2w1 + jw3 + nw4 and E(w) ' S2E ⊗ SnF(j) for n ≤ 5, and
4) w = w1 + w2 + (j − 1)w3 + nw4 and E(w) ' sl(E)⊗ SnF(j) for n ≤ 5.

Proposition 2.8 (1) The cohomology group H i(X,SnF(j)), vanishes for every (i, n, j)
with 0 ≤ n ≤ 6 except the following:

i 0 3 9 12
n n 6 6 n
j ≥ 0 −4 −7 ≤ −n− 5

(2) The cohomology group H i(X, E ⊗SnF(j)), vanishes for every (i, n, j) with 0 ≤ n ≤
5 except the following:

i 0 2 2 11 11 11 11 12
n n 4 5 2 3 4 5 n
j ≥ 0 −3 −3 −6 −7 −9 −9 ≤ −n− 6

(3) The cohomology group H i(X,S2E ⊗ SnF(j)), vanishes for every (i, n, j) with 0 ≤
n ≤ 5 except the following:

i 0 2 2 10 11 11 11 11 11 12
n n 4 5 2 3 4 4 5 5 n
j ≥ 1 −3 −3 −6 −8 −8 −9 −9 −10 ≤ −n− 7

(4) The cohomology group H i(X, sl(E) ⊗ SnF(j)), vanishes for every (i, n, j) with
0 ≤ n ≤ 5 except the following:

i 0 1 1 1 1 3 9 11 11 11 11 12
n n 2 3 4 5 4 4 2 3 4 5 n
j ≥ 1 −1 −1 −1 −1 −3 −6 −6 −7 −8 −9 ≤ −n− 6

3 K3 surfaces of genus 18

In this section, we prove Theorem 0.2 and prepare the proof of Theorem 0.3. Let X, E and
F be as in Section 2. Let N be a 5-dimensional subspace of H0(X,F) and {s1, · · · , s5}
a basis of N . The common zero locus SN ⊂ X of N coincides with the zero locus of the
global section s = (s1, · · · , s5) of F⊕5. Let ΞSCI be the subset of G(5, H0(X,F)) consisting
of [N ] such that SN is smooth and of dimension 2. F is generated by its global section
and dim X − r(F⊕5) = 2. Hence by Theorem 1.10, we have

Proposition 3.1 ΞSCI is a non-empty (Zariski) open subset of G(5, H0(X,F)).

We compute the cohomology groups of vector bundles on SN , dim SN = 2, using the
Koszul complex

Λ• : OX −→ F⊕5 −→
2∧
(F⊕5) −→ · · · −→

9∧
(F⊕5) −→

10∧
(F⊕5).(3.2)

The terms Λi =
∧i(F⊕5) of this complex have the following symmetry:
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Lemma 3.3 Λi ' Λ10−i ⊗OX(i− 5).

Proof. By (1.6), Λi is isomorphic to (Λ10−i)∨ ⊗ OX(5). Since F is of rank 2, F∨ is
isomorphic to F ⊗OX(−1), which shows the lemma. q.e.d.

We need the decomposition of Λi into irreducible homogeneous vector bundles. Λi =∧i(F⊕5), i ≤ 5, has the following vector bundles as its irreducible factors:

(3.4)
Λ0 O
Λ1 F

Λ2 S2F ,O(1)
Λ3 S3F ,F(1)

Λ4 S4F , S2F(1),O(2)
Λ5 S5F , S3F(1),F(2)

Proposition 3.5 If [N ] ∈ ΞSCI , then SN is a K3 surface.

Proof. By Proposition 2.4 and (2.6), the vector bundle F⊕5 and the tangent bundle
TX have the same determinant bundle. Hence SN has a trivial canonical bundle. By
Proposition 1.4 and Lemma 1.6, we have the exact sequence 0 −→ K• −→ OSN

−→ 0
and the isomorphism K• ' Λ• ⊗O(−5). By (1) of Proposition 2.8 and the Serre duality
H i(K10) ' H12−i(OX)∨, we have

H1(K1) = H2(K2) = · · · = H10(K10) = 0

and
H1(K0) = H2(K1) = · · · = H10(K9) = H11(K10) = 0.

Therefore, the restriction map H0(OX) −→ H0(OSN
) is surjective and H1(OSN

) vanishes.
Hence SN is connected and regular. q.e.d.

Let FN be the restriction of F to SN . The complex K• ⊗ F gives a resolution of FN .
Since SnF ⊗ F ' Sn+1F ⊕ Sn−1F(1), we have the following 4 series of vanishings by (1)
of Proposition 2.8:

(a) H1(F ⊗K2) = H2(F ⊗K3) = · · · = H9(F ⊗K10) = 0,
(b) H1(F ⊗K1) = H2(F ⊗K2) = · · · = H9(F ⊗K9) = H10(F ⊗K10) = 0,
(c) H1(F) = H2(F ⊗K1) = · · · = H10(F ⊗K9) = H11(F ⊗K10) = 0

and
(d) H2(F) = H3(F ⊗K1) = · · · = H11(F ⊗K9) = H12(F ⊗K10) = 0.
By (c) and (d), both H1(FN) and H2(FN) vanish. By (a) and (b), the sequence

0 −→ H0(F ⊗K1) −→ H0(F) −→ H0(FN) −→ 0

is exact. So we have proved

Proposition 3.6 If dim SN = 2, then we have
1) H1(SN , FN) = H2(SN , FN) = 0, and
2) the restriction map H0(X,F) −→ H0(SN , FN) is surjective and its kernel coincides

with N .

Let EN be the restriction of E to SN . Arguing similarly for the complexes K•⊗E , K•⊗S2E
and K• ⊗ sl(E), we have

Proposition 3.7 If dim SN = 2, then we have
(1) all the higher cohomology groups of EN and S2EN vanish,
(2) the restriction maps H0(X, E) −→ H0(SN , EN) and H0(X,S2E) −→ H0(SN , S2EN)

are bijective, and
(3) all the cohomology groups of sl(EN) vanish.



MUKAI: Polarized K3 surfaces of genus 18 and 20 271

Corollary 3.8 The natural map S2H0(SN , EN) −→ H0(SN , S2EN) is surjective and its
kernel is generated by a nondegenerate symmetric tensor.

Proof. The assertion holds for the pair of X and E since H0(X,S2E) is an irreducible
representation of G. Hence it also holds for the pair SN and EN by (2) of the proposition.
q.e.d.

Corollary 3.9 χ(EN) = dim H0(X, E) = 9 and χ(sl(EN)) = 0.

Theorem 0.2 is a consequence of Proposition 3.5 and the following:

Proposition 3.10 The self intersection number of c1(EN) is equal to 34.

Proof. By (3.9), and the Riemann-Roch theorem, we have

9 = χ(EN) = (c1(EN)2)/2− c2(EN) + 3 · 2
and

0 = χ(sl(EN)) = −c2(sl(EN)) + 8 · 2 = 2(c1(EN)2)− 6c2(EN) + 16,

which imply (c1(EN)2) = 34 and c2(EN) = 14. q.e.d.

4 Proof of Theorem 0.3

We need the following general fact on deformations of vector bundles on K3 surfaces, which
is implicit in [10].

Proposition 4.1 Let E be a simple vector bundle on a K3 surface S and (S ′, L′) be a
small deformation of (S, det L). Then there is a deformation (S ′, E ′) of the pair (S, E)
such that det E ′ ' L′.

Proof. The obstruction ob(E) for E to deform a vector bundle on S ′ is contained in
H2(S, End(E)). Its trace is the obstruction for det E to deform a line bundle on S ′, which
is zero by assumption. Since the trace map H2(S, End(E)) −→ H2(S,OS) is injective, the
obstruction ob(E) itself is zero. q.e.d.

We fix a 5-dimensional subspace N of H0(X,F) ' U16 belonging to ΞSCI and consider
deformations of the polarized K3 surface (SN ,OS(1)), where OS(1) is the restriction of
OX(1) to SN .

Proposition 4.2 Let (S, L) be a sufficiently small deformation of
(SN ,OS(1)). Then there exists a vector bundle E on S which satisfies the following:

i) det E ' L,
ii) The pair (S, E) is a deformation of (SN , EN),
iii) E is generated by its global sections and H1(S, E) = H2(S, E) = 0,
iv) the natural linear map

S2H0(S, E) −→ H0(S, S2E)

is surjective and its kernel is generated by a nondegenerate symmetric tensor, and
v) the morphism Φ|E| : S −→ G(H0(E), 3) associated to E is an embedding.
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Proof. The existence of E which satisfies i) and ii) follows from Proposition 4.1. The
pair (SN , EN) satifies iii) and iv) by Proposition 3.7and Corollary 3.8. Since (S, E) is a
small deformation of (SN , EN), E satisfies iii) and v). Since H1(SN , S2EN) vanishes, E
satisfies iv), too. q.e.d.

By iii) of the proposition, we identify S with its image in G(H0(E), 3). By iv) of the
proposition, (the image of) S lies in the 12-dimensional homogeneous space X of SO(9,C).
By Proposition 3.6, S is contained in the common zero locus of a 5-dimensional subspace
N ′ of H0(X,F). Since S is a small deformation of SN , S is also a complete intersection
with respect to F⊕5. Therefore, we have shown

Proposition 4.3 The image of the classification morphism ΞSCI −→ F18,
[N ] 7→ (SN ,OS(1)), is open.

The Picard group of a K3 surface S is isomorphic to H1,1(S,Z) = H2(S,Z)∩H0(Ω2)⊥.
Since the local Torelli type theorem holds for the period map of K3 surfaces ([1, §7, Chap.
VIII]), the subset {(S, L)|Pic S 6= Z · [L]} of Fg is a countable union of subvarieties. Hence
by the proposition and Baire’s property, we have

Proposition 4.4 There exists [N ] ∈ ΞSCI such that (SN ,OS(1)) is Picard general, i.e.,
Pic SN is generated by OS(1).

The stability of vector bundles is easy to check over a Picard general variety.

Proposition 4.5 If (SN ,OS(1)) is Picard general, then EN is µ-stable with respect to
OS(1).

Proof. Let B be a locally free subsheef of EN . By our assumption, det B is isomorphic
to OS(b) for an integer b. In the case B is a line bundle, we have b ≤ 0 since dim H0(B) ≤
dim H0(EN) = 9. In the case B is of rank 2,

∧2 B ' OS(b) is a subsheaf of
∧2 EN '

E∨
N ⊗ OS(1). We have H0(SN , E∨

N) = H2(SN , EN)∨ = 0 by (1) of Proposition 3.7 and
the Serre duality. Hence b is nonpositive. Therefore we have b/r(B) < 1/3 for every B
with r(B) < r(EN) = 3. If F is a subsheaf of EN , then its double dual F∨∨ is a locally
free subsheaf of EN . Hence c1(F )/r(F ) < c1(EN)/r(EN) for every subsheaf F of EN with
0 < r(F ) < r(EN). q.e.d.

Let Ξ be the subset of ΞSCI consisting of [N ] such that EN is stable with respect to
OS(1) in the sense of Gieseker [6]. Ξ is non-empty by the above two propositions.

Theorem 4.6 Let M and N be 5-dimensional subspaces of H0(X,F) with [M ], [N ] ∈ Ξ.
(1) If (SM ,OS(1)) and (SN ,OS(1)) are isomorphic to each other, then [M ] and [N ]

belong to the same SO(9,C)-orbit.
(2) The automorphism group of (SN ,OS(1)) is isomorphic to the stabilizer group of

SO(9,C) at [N ] ∈ G(5, U16).

Proof. Let φ : SM −→ SN be an isomorphism such that φ∗OS(1) ' OS(1). Two vector
bundles EM and φ∗EN have the same rank and Chern classes. Since EN is rigid by (3) of
Proposition 3.7 and since both are stable, there exists an isomorphism f : EM −→ φ∗EN

by Proposition 0.4. By (2) of Proposition 3.7,

H0(f) : H0(SM , EM) −→ H0(SM , φ∗EN) ' H0(SN , EN)



MUKAI: Polarized K3 surfaces of genus 18 and 20 273

is an automorphism of V = H0(X, E). By Corollary 3.8, H0(f) preserves the 1-dimensional
subspace Cq of S2V . Hence replacing f by cf for suitable constant c, we may assume that
H0(f) belongs to the special orthogonal group SO(V, q). Let L be a lift of H0(f) to G̃ =
Spin(V, q). Since F is homogeneous, there exists an isomorphism ` : FM −→ φ∗FN such
that H0(`) = L. By (2) of Proposition 3.6, L maps M ⊂ H0(X,F) onto N ⊂ H0(X,F),
which shows (1). Putting M = N in this argument, we have (2). q.e.d.

Let Φ : Ξ −→ F18, [N ] 7→ (SN ,OS(1)) be the classification morphism. By the
theorem, every fibre of Φ is an orbit of SO(9,C). By the openness of stability condition
([8]) and Proposition 4.3, the image of Φ is Zariski open in F18. Hence we have completed
thr proof of Theorem 0.3.

5 K3 surfaces of genus 20

Let V be a vector space of dimension 9 and E the (rank 4) universal quotient bundle on
the Grassmann variety X = G(V, 4). The determinant bundle of E is the ample generator
OX(1) of Pic X ' Z . We denote the restrictions of E and OX(1) to SN by EN and OS(1),
respectively.

Theorem 5.1 Let N be a 3-dimensional subspace of H0(G(V, 4),
∧2 E) ' ∧2 V and SN ⊂

G(V, 4) the common zero locus of N . If SN is smooth and of dimension 2, then the pair
(SN ,OS(1)) is a K3 surface of genus 20.

The tangent bundle TX of G(V, 4) is isomorphic to E ⊗ F , where F is the dual of the
universal subbundle. Hence X = G(V, 4) is a 20-dimensional Fano manifold of index 9.
SN is the scheme of zeroes of the section

s : OX −→ (
2∧ E)⊗C N∨ ' (

2∧ E)⊕3

induced by OX ⊗C N −→ ∧2 E . The vector bundle (
∧2 E)⊕3 is of rank 6 · 3 = 18, and has

the same determinant as TX . Hence, by Theorem 1.10 and Proposition 1.4, we have

Proposition 5.2 Let ΞSCI be the subset of G(3,
∧2 V ) consisting of [N ] such that SN is

smooth and of dimension 2. Then ΞSCI is non-empty and SN has trivial canonical bundle
for every [N ] ∈ ΞSCI .

We show vanishing of cohomology groups of vector bundles on SN using the Koszul
complex
(5.3)

Λ• : OX −→ (
2∧ E)⊕3 −→

2∧
(

2∧ E)⊕3 −→ · · · −→
17∧

(
2∧ E)⊕3 −→

18∧
(

2∧ E)⊕3

of s and the Bott vanishing. G(V, 4) is a homogeneous space of GL(9,C). The stabilizer

group P consists of the matrices of the form

(
A B
0 D

)
with A ∈ GL(4,C), B ∈ M4,5(C)

and D ∈ GL(5,C). The set H of invertible diagonal matrices is a maximal torus. The
roots of GL(9,C) are ei− ej, i 6= j, for the standard basis of the character group X(H) of
H. We take ∆ = {ei− ei+1}1≤i≤8 as a root basis. The reductive part L of P is isomorphic
to GL(4,C) × GL(5,C) and its root basi is ∆ \ {e4 − e5}. Let ρ(a1, a2, a3, a4) be the
irreducible representation of GL(4,C) (or L) with the heighest weight
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w = (a1, a2, a3, a4) = a1e1 + a2e2 + a3e3 + a4e4, a1 ≥ a2 ≥ a3 ≥ a4. We denote by
E(a1, a2, a3, a4) the homogeneus vector bundle on X induced from the representation
ρ(a1, a2, a3, a4). The universal quotient bundle E is E(1, 0, 0, 0) and its exterior products∧2 E ,

∧3 E and
∧4 E are E(1, 1, 0, 0), E(1, 1, 1, 0) and E(1, 1, 1, 1), respectively.

We apply the Bott vanishing theorem ([3]). One half δ of the sum of all the positive
roots is equal to 4e1 + 3e2 + 2e3 + e4 − e6 − 2e7 − 3e8 − 4e4 and we have

δ + w = (4 + a1)e1 + (3 + a2)e2 + (2 + a3)e3 + (1 + a4)e4 − e6 − 2e7 − 3e8 − 4e9.

All the cohomology groups of E(a1, a2, a3, a4) vanish if a number appears more than once
among the coeficients. For the convenience of later use we state the vanishing theorem for
E(a1, a2, a3, a4)⊗OX(−9):

Proposition 5.4 The cohomology group H i(X, E(a1, a2, a3, a4) ⊗ OX(−9)) vanishes for
every i if one of the following holds:

i) λ ≤ aλ ≤ λ + 4 for some 1 ≤ λ ≤ 4, or
ii) aµ − aν = µ− ν for some pair µ 6= ν.

To apply this to the Koszul complex (5.3), we need the decomposition of Λi =
∧i(

∧2 E)⊕3

into the sum of irreducible homogeneous vector bundles. Since (
∧2 E)∨ ' (

∧2 E)(−1), we
have the following in the same manner as Lemma 3.3:

Lemma 5.5 Λi ' Λ18−i ⊗OX(i− 9).

Put ρ2 = ρ(1, 1, 0, 0). It is easy to check the following:

i 2 3 4 5 6∧i ρ2 ρ(2, 1, 1, 0) ρ(3, 1, 1, 1) ρ(3, 2, 2, 1) ρ(3, 3, 2, 2) ρ(3, 3, 3, 3)
⊕ρ(2, 2, 2, 0)

The representation
∧i(ρ⊕3

2 ) is isomorphic to

⊕

p+q+r=i

(
p∧

ρ2)⊗ (
q∧

ρ2)⊗ (
r∧

ρ2).

By the computation using the Littlewood-Richardson rule ([9, Chap. I, §9]), we have

Proposition 5.6 The set Wi of the highest weights of irreducible components of the rep-
resentation

∧i ρ⊕3
2 is as follows:

i Wi

1 {(1, 1, 0, 0)}
2 {(2, 2, 0, 0), (2, 1, 1, 0), (1, 1, 1, 1)}
3 {(3, 3, 0, 0), (3, 2, 1, 0), (3, 1, 1, 1), (2, 2, 2, 0), (2, 2, 1, 1)}
4 {(4, 3, 1, 0), (4, 2, 2, 0), (4, 2, 1, 1), (3, 3, 2, 0), (3, 3, 1, 1), (3, 2, 2, 1), (2, 2, 2, 2)}
5 {(5, 3, 2, 0), (5, 3, 1, 1), (5, 2, 2, 1), (4, 4, 2, 0), (4, 3, 3, 0)} ∪W3 + (1, 1, 1, 1)
6 {(6, 3, 3, 0), (6, 3, 2, 1), (6, 2, 2, 2), (5, 4, 3, 0), (4, 4, 4, 0)} ∪W4 + (1, 1, 1, 1)
7 {(7, 3, 3, 1), (7, 3, 2, 2), (6, 4, 4, 0), (5, 5, 4, 0)} ∪W5 + (1, 1, 1, 1)
8 {(8, 3, 3, 2), (6, 5, 5, 0)} ∪W6 + (1, 1, 1, 1)
9 {(9, 3, 3, 3), (6, 6, 6, 0)} ∪W7 + (1, 1, 1, 1)

The sets of the highest weights appearing in the decompositions of E ⊗ Λ•,
∧2 E ⊗ Λ•

and E ⊗ E∨ ⊗ Λ• are easily computed from Lemma 5.5 and the proposition using the
following formula:
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ρ(1, 0, 0, 0)⊗ ρ(a1, a2, a3, a4) =
⊕

∑
bi = 1 +

∑
ai

ai ≤ bi ≤ ai + 1

ρ(b1, b2, b3, b4),

ρ(1, 1, 0, 0)⊗ ρ(a1, a2, a3, a4) =
⊕

∑
bi = 2 +

∑
ai

ai ≤ bi ≤ ai + 1

ρ(b1, b2, b3, b4)

and
ρ(0, 0, 0,−1)⊗ ρ(a1, a2, a3, a4) =

⊕
∑

bi = −1 +
∑

ai

ai − 1 ≤ bi ≤ ai

ρ(b1, b2, b3, b4).

Applying Proposition 5.4 to the exact sequence

0 −→ Λ• ⊗OX(−9) −→ OSN
−→ 0,

0 −→ Λ• ⊗ E ⊗OX(−9) −→ EN −→ 0,

0 −→ Λ• ⊗
2∧ E ⊗ OX(−9) −→

2∧
EN −→ 0

and
0 −→ Λ• ⊗ sl(E)⊗OX(−9) −→ sl(EN) −→ 0,

we have the following in a similar way to Propositions 3.6 and 3.7:

Proposition 5.7 If dim SN = 2, then we have
(1) the restriction map H0(OX) −→ H0(OSN

) is surjective and H1(OSN
) vanishes,

(2) all higher cohomology groups of EN and
∧2 EN vanish,

(4) the restriction map H0(X, E) −→ H0(SN , EN) is bijective,
(4) the restriction map H0(X,

∧2 E) −→ H0(SN ,
∧2 EN) is surjective and its kernel

coincides with N , and
(5) all cohomology groups of sl(EN) vanish.

Corollary 5.8 χ(EN) = dim H0(X, E) = 9 and χ(sl(EN)) = 0.

If [N ] belongs to ΞSCI , then SN is a K3 surface by Proposition 5.2 and (1) of Proposition
5.7. We have (c1(EN)2) = 38 by the corollary in a similar manner to Proposition 3.10.
This proves Theorem 5.1.

Theorem 5.9 Let Ξ be the subset of G(3,
∧2 V ), dim V = 9, consisting of [N ] such that

SN is a K3 surface and EN is stable with respect to LN . Then we have
(1) Ξ is a non-empty Zariski open subset,
(2) the image of the classification morphism Φ : Ξ −→ F20 is open,
(3) every fibre of Φ is an orbit of PGL(V ), and
(4) the automorphism group of (SN , LN) is isomorphic to the stabilizer group of PGL(V )

at [N ] ∈ G(3,
∧2 V ).

There exists a 3-dimensional subspace N of
∧2 V such that the polarlized K3 surface

(SN ,OS(1)) is Picard general. Let B be a locally free subsheaf of EN . In the cases
r(B) = 1 and 3, we have b ≤ 0 in the same way as Proposition 4.4. In the case B is of
rank 2,

∧2 B ' OS(b) is a subsheaf of
∧2 EN . Since

∧2 EN ' ∧2 E∨
N ⊗OS(1), we have

Hom (O(1),
2∧

EN) ' H0(SN , (
2∧

EN)(−1)) ' H2(SN ,
2∧

EN)∨ = 0
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by the Serre duality and 2) of Proposition 5.7. Hence b is nonpositve. Therefore, EN is
µ-stable if (SN ,OS(1)) is Picard general. This shows (1) of the theorem. The rest of the
proof of Theorem 5.9 is the same as that of Theorem 0.3 in Section 4.

Let G(3,
∧2 V )

s
be the stable part of G(3,

∧2 V ) with respect to the action of SL(V ).

Corollary 5.10 The moduli space F20 of K3 surfaces of genus 20 is birationally equival-
lent to the moduli space G(3,

∧2 V )
s
/PGL(V ) of nets of bivectors on V .
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