Polarized K3 surfaces of genus 18 and 20

Dedicated to Professor Hisasi Morikawa on his 60th Birthday

Shigeru MUKAI

A surface, i.e., 2-dimensional compact complex manifold, S is of type K3 if its canonical line bundle $\mathcal{O}_S(K_S)$ is trivial and if $H^1(S, \mathcal{O}_S) = 0$. An ample line bundle L on a K3 surface S is a polarization of genus g if its self intersection number (L^2) is equal to 2g - 2, and called *primitive* if $L \simeq M^k$ implies $k = \pm 1$. The moduli space \mathcal{F}_g of primitively polarized K3 surfaces (S, L) of genus g is a quasi-projective variety of dimension 19 for every $g \ge 2$ ([15]). In [12], we have studied the generic primitively polarized K3 surfaces (S, L) of genus $6 \le g \le 10$. In each case, the K3 surface S is a comlete intersection of divisors in a homogeneous space X and the polarization L is the restriction of the ample generator of the Picard group Pic $X \simeq \mathbb{Z}$ of X.

In this article, we shall study the generic (polarized) K3 surfaces (S, L) of genus 18 and 20. (Polarization of genus 18 and 20 are always primitive.) The K3 surface S has a *canonical* embedding into a homogeneous space X such that L is the restriction of the ample generator of Pic $X \simeq \mathbb{Z}$. S is not a comlete intersection of divisors any more but a complete intersection in X with respect to a homogeneous vector bundle \mathcal{V} (Definition 1.1): S is the zero locus of a global section s of \mathcal{V} . Moreover, the global section s is uniquely determined by the isomorphism class of (S, L) up to the automorphisms of the pair (X, \mathcal{V}) . As a corollary, we obtain a description of birational types of \mathcal{F}_{18} and \mathcal{F}_{20} as orbit spaces (Theorem 0.3 and Corolary 5.10).

In the case of genus 18, the ambient space X is the 12-dimensional variety of 2-planes in the smooth 7-dimensional hyperquadric $Q^7 \subset \mathbf{P}^8$. The complex special orthogonal group $G = SO(9, \mathbf{C})$ acts on X transitively. Let \mathcal{F} be the homogeneous vector bundle corresponding to the fourth fundamental weight $w_4 = (\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4)/2$ of the root system

$$(0.1) B_4: \overset{\alpha_1}{\circ} - \overset{\alpha_2}{\circ} - \overset{\alpha_3}{\circ} \Longrightarrow \overset{\alpha_4}{\circ}$$

of G. \mathcal{F} is of rank 2 and the determinant line bundle $\bigwedge^2 \mathcal{F}$ of \mathcal{F} generates the Picard group of X. The vector bundle \mathcal{V} is the direct sum of five copies of \mathcal{F} .

Theorem 0.2 Let $S \subset X$ be the common zero locus of five global sections of the homogeneousn vector bundle \mathcal{F} . If S is smooth and of dimension 2, then $(S, \bigwedge^2 \mathcal{F}|_S)$ is a (polarized) K3 surface of genus 18.

Remark Consider the variety X of lines in the 5-dimensional hyperquadric $Q^5 \subset \mathbf{P}^6$ instead. This is a 7-dimensional homogeneous space of $SO(7, \mathbf{C})$ and has a homogeneous vector bundle of rank 2 on it. The zero locus Z of its general global section is a Fano 5-fold of index 3 and a homogeneous space of the exceptional group of type G_2 . See [12] and [13] for other description of Z and its relation to K3 surfaces of genus 10.

The space $H^0(X, \mathcal{F})$ of global sections of \mathcal{F} is the (16-dimensional) spin representation U^{16} of the universal covering group $\tilde{G} = Spin(9, \mathbb{C})$ (see [5]). Let $G(5, U^{16})$ be the Grassmann variety of 5-dimensional subspaces of U^{16} and $G(5, U^{16})^s$ be its open subset consisting of stable points with respect to the action of \tilde{G} . The orthogonal group Gacts on $G(5, U^{16})$ effectively and the geometric quotient $G(5, U^{16})^s/G$ exists as a normal quasi-projective variety ([14]).

Theorem 0.3 The generic K3 surface of genus 18 is the common zero locus of five global sections of the rank 2 homogeneous vector bundle \mathcal{F} on X. Moreover, the classification (rational) map $G(5, U^{16})^s/SO(9, \mathbb{C}) \rightarrow \mathcal{F}_{18}$ is birational.

Remark The spin representation U^{16} is the restriction of the half spin representation H^{16} of $Spin(10, \mathbb{C})$ to $Spin(9, \mathbb{C})$. The quotient

 $SO(10, \mathbb{C})/SO(9, \mathbb{C})$ is isomorphic to the complement of the 8-dimensional hyperquadric $Q^8 \subset \mathbb{P}^9$. Hence \mathcal{F}_{18} is birationally equivalent to a \mathbb{P}^9 -bundle over the 10-dimensional orbit space $G(5, H^{16})^s/SO(10, \mathbb{C})$.

Let \mathcal{E} be the homogeneous vector bundle corresponding to the first fundamental weight $w_1 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ and E_N its restriction to S_N . The genericity of S_N is a consequence of the simpleness of E_N (Proposition 4.1). The uniqueness of the expression follows from the rigidity of E_N and the following:

Proposition 0.4 Let E be a stable vector bundle on a K3 surface S and assume that E is rigid, i.e., $\chi(sl(E)) = 0$. If a semi-stable vector bundle F has the same rank and Chern classes as E, then F is isomorphic to E.

This is a consequence of the Riemann-Roch theorem

(0.4) dim Hom
$$(E, F)$$
 + dim Hom $(F, E) \ge \chi(E^{\vee} \otimes F)$
= $\chi(E^{\vee} \otimes E) = \chi(sl(E)) + \chi(\mathcal{O}_S) = 2$

on a K3 surface (*cf.* [11], Corollary 3.5).

In the case of genus 20, the ambient homogeneous space X is the (20-dimensional) Grassmann variety G(V, 4) of 4-dimensional quotient spaces of a 9-dimensional vector space V and the homogeneous vector bundle \mathcal{V} is the direct sum of three copies of $\bigwedge^2 \mathcal{E}$, where \mathcal{E} is the (rank 4) universal quotient bundle on X. The generic K3 surface of genus 20 is a complete intersection in G(V, 4) with respect to $(\bigwedge^3 \mathcal{E})^{\oplus 3}$ in a unique way (Theorem 5.1 and Theorem 5.9). This description of K3 surfaces is a generalization of one of the three descriptions of Fano threefolds of genus 12 given in [13].

This work was done during the author's stay at the University of California Los Angeles in 1988-89, whose hospitality he gratefully acknowledges.

Table of Contents

- §1 Complete intersections with respect to vector bundles
- §2 A homogeneous space of $SO(9, \mathbb{C})$
- §3 K3 surfaces of genus 18 §4 Proof of Theorem 0.3
- §5 K3 surfaces of genus 20

Notation and Conventions. All varieties are considered over the complex number field \mathbf{C} . A vector bundle E on a variety X is a locally free \mathcal{O}_X -module. Its rank is denoted by r(E). The determinant line bundle $\wedge^{r(E)} E$ is denoted by det E. The dual vector bundle $\mathcal{H}om(E, \mathcal{O}_X)$ of E is deoted by E^{\vee} . The subbundle of $\mathcal{E}nd(E) \simeq E \otimes E^{\vee}$ consisting of trace zero endomorphisms of E is denoted by sl(E).

1 Complete intersections with respect to vector bundles

We generalize Bertini's theorem for vector bundles. Let $s \in H^0(U, E)$ be a global section of a vector bundle E on a variety U. Let $\mathcal{O}_V \longrightarrow E$ be the multiplication by s and $\eta : E^{\vee} \longrightarrow \mathcal{O}_V$ its dual homomorphism. The subscheme $(s)_0$ of U defined by the ideal $I = \operatorname{Im} \eta \subset \mathcal{O}_U$ is called the scheme of zeroes of s.

Definition 1.1 (1) Let $\{e_1, \dots, e_r\}$ be a local frame of E at $x \in U$. A global section $s = \sum_{i=1}^r f_i e_i, f_i \in \mathcal{O}_X$, of E is nondegenerate at x if s(x) = 0 and (f_1, \dots, f_r) is a regular sequence. s is nondegenerate if it is so at every point x of $(s)_0$.

(2) A subscheme Y of U is a complete intersection with respect to E if Y is the scheme of zeroes of a nondegenerate global section of E.

In the case U is Cohen-Macaulay, a global section s of E is nondegenerate if and only if the codimension of $Y = (s)_0$ is equal to the rank of E.

The wedge product by $s \in H^0(U, E)$ gives rise to a complex

(1.2)
$$\Lambda^{\bullet}: \mathcal{O}_U \longrightarrow E \longrightarrow \bigwedge^2 E \longrightarrow \cdots \longrightarrow \bigwedge^{r-1} E \longrightarrow \bigwedge^r E$$

called the *Koszul complex* of s. The dual complex

(1.3)
$$K^{\bullet}: \bigwedge^{r} E^{\vee} \longrightarrow \bigwedge^{r-1} E^{\vee} \longrightarrow \cdots \longrightarrow \bigwedge^{2} E^{\vee} \longrightarrow E^{\vee} \longrightarrow \mathcal{O}_{U}$$

is called the Koszul complex of Y.

Proposition 1.4 The Koszul complex K^{\bullet} is a resolution of the structure sheaf \mathcal{O}_Y of Y by vector bundles, that is, the sequence

$$0 \longrightarrow K^{\bullet} \longrightarrow \mathcal{O}_Y \longrightarrow 0$$

is exact.

In particular, the conormal bundle I/I^2 of Y in U is isomorphic to E^{\vee} and we have the adjunction formula

(1.5)
$$K_Y \cong (K_U + \det E)|_Y.$$

Since the pairing

$$\bigwedge^{i} E \times \bigwedge^{r-i} E \longrightarrow \det E$$

is nondegenerate for every i, we have

Lemma 1.6 The complex K^{\bullet} is isomorphic to $\Lambda^{\bullet} \otimes (det E)^{-1}$.

Let $\pi : \mathbf{P}(E) \longrightarrow X$ be the \mathbf{P}^{r-1} -bundle associated to E in the sense of Grothendieck and $\mathcal{O}_{\mathbf{P}}(1)$ the tautological line bundle on it. By the construction of $\mathbf{P}(E)$, we have the canonical isomorphisms

(1.7)
$$\pi_* \mathcal{O}_{\mathbf{P}}(1) \simeq E \quad and \quad H^0(\mathbf{P}(E), \mathcal{O}(1)) \simeq H^0(U, E).$$

The two linear systems associated to E and $\mathcal{O}_{\mathbf{P}}(1)$ have several common properties.

Proposition 1.8 A vector bundle E is generated by its global section if and only if the tautological line bundle $\mathcal{O}_{\mathbf{P}}(1)$ is so.

Proposition 1.9 Let σ be the global section of the tautological line bundle $\mathcal{O}_{\mathbf{P}}(1)$ corresponding to $s \in H^0(U, E)$ via (1.7). If U is smooth, then the following are equivalent: i) s is nondegenerate and $(s)_0$ is smooth, and

ii) the divisor $(\sigma)_0 \subset \mathbf{P}(E)$ is smooth.

Proof. Since the assertion is local, we may assume E is trivial, i.e., $E \simeq \mathcal{O}_U^{\oplus r}$. Let f_1, \dots, f_r be a set of generators of the ideal I defining $(s)_0$. A point $x \in (s)_0$ is singular if and only if df_1, \dots, df_r are linearly dependent at x, that is, there is a set of constants $(a_1, \dots, a_r) \neq (0, \dots, 0)$ such that $a_1 df_1 + \dots + a_r df_r = 0$ at x. This condition is equivalent to the condition that the divisor

$$(\sigma)_0: f_1X_1 + \dots + f_rX_r = 0$$

in $\mathbf{P}(E) \simeq U \times \mathbf{P}^{r-1}$ is singular at $x \times (a_1 : \cdots : a_r)$. Therefore, ii) implies i). Since $(\sigma)_0$ is smooth off $(s)_0 \times \mathbf{P}^{r-1}$, i) implies ii). q.e.d.

By these two propositions, Bertini's theorem (see [7, p. 137]) is generalized for vector bundles:

Theorem 1.10 Let E be a vector bundle on a smooth variety. If E is generated by its global sections, then every general global section is nondegenerate and its scheme of zeroes is smooth.

2 A homogeneous space of $SO(9, \mathbb{C})$

Let X be the subvariety of $Grass(\mathbf{P}^2 \subset \mathbf{P}^7)$ consisting of 2-planes in the smooth 7dimensional hyperquadric

(2.1)
$$Q^7: q(X) = X_1 X_5 + X_2 X_6 + X_3 X_7 + X_4 X_8 + X_9^2 = 0$$

in \mathbf{P}^8 . The special orthogonal group $G = SO(9, \mathbf{C})$ acts transitively on X. Let P be the stabilizer group at the 2-plane $X_4 = X_5 = \cdots = X_9 = 0$. X is isomorphic to G/P and the reductive part L of P consists of matrices

$$\left(\begin{array}{ccc} A & 0 & 0 \\ 0 & {}^tA^{-1} & 0 \\ 0 & 0 & B \end{array}\right)$$

with $A \in GL(3, \mathbb{C})$ and $B \in SO(3, \mathbb{C})$. We denote the diagonal matrix

$$[x_1, x_2, x_3, x_4, x_1^{-1}, x_2^{-1}, x_3^{-1}, x_4^{-1}, 1]$$

by $\langle x_1, x_2, x_3, x_4 \rangle$. All the invertible diagonal matrices $\langle x_1, x_2, x_3, x_4 \rangle$ form a maximal torus H of G contained in L. Let $X(H) \simeq \mathbb{Z}^{\oplus 4}$ be the character group and $\{e_1, e_2, e_3, e_4\}$ its standard basis. For a character $\alpha = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4$, let \underline{g}^{α} be the α -eigenspace $\{Z : Ad < x_1, x_2, x_3, x_4 > \cdot Z = x_1^{a_1}x_2^{a_2}x_3^{a_3}x_4^{a_4}Z\}$ of the adjoint action Ad on the Lie algebra g of G. Then we have the well-known decomposition

$$\underline{g} = \underline{h} \oplus \bigoplus_{0 \neq \alpha \in X(H)} \underline{g}^{\alpha}.$$

A character α is a root if $g^{\alpha} \neq 0$. In our case, there are 16 positive roots

 e_1, e_2, e_3, e_4 and $e_i \pm e_j (1 \le i \le j \le 4)$

ant their negatives. The basis of roots are

 $\alpha_1 = e_1 - e_2, \ \alpha_2 = e_2 - e_3, \ \alpha_3 = e_3 - e_4 \text{ and } \alpha_4 = e_4.$

Since e_1, e_2, e_3 and e_4 are orthonormal with respect to the Killing form, the Dynkin diagram of G is of type B_2 (see (0.1)). The fundamental weights are

(2.2)
$$w_1 = e_1, w_2 = e_1 + e_2, w_3 = e_1 + e_2 + e_3 \text{ and}$$
$$w_4 = \frac{1}{2}(e_1 + e_2 + e_3 + e_4)$$

(Cf. [4]). The positive roots of $L \simeq GL(3, \mathbb{C}) \times SO(3, \mathbb{C})$ with respect to H are

(2.3)
$$\alpha_1, \alpha_2, \alpha_1 + \alpha_2 \text{ and } \alpha_4.$$

The root basis of L is of type $A_2 \coprod A_1$ and the Weyl group W' is a dihedral group of order 12. There are 12 positive roots other than (2.3) and their sum is equal to $5(e_1 + e_2 + e_3) = 5w_3$. Hence by [2, §16], we have

Proposition 2.4 X is a 12-dimensional Fano manifold of index 5.

Let \tilde{G} be the universal covering group of G and \tilde{H} and \tilde{L} the pull-back of H and L, respectively. The character group $X(\tilde{H})$ of \tilde{H} is canonically isomorphic to the weight lattice. Let $\rho_i, 1 \leq i \leq 4$, be the irreducible representation of \tilde{L} with the highest weight w_i . Since the W'-orbit of w_4 consists of two weights $p_+ = w_4$ and $p_- = w_4 - e_4$ and since p_- is the reflection of p_+ by e_4 , the representation ρ_4 is of dimension 2. ρ_1 is induced from the vector representation of the $GL(3, \mathbb{C})$ -factor of L. From the equality

$$e_1 + e_2 + e_3 = p_+ + p_- = w_3,$$

we obtain the isomorphism

(2.5)
$$\bigwedge^{3} \rho_1 \simeq \bigwedge^{2} \rho_4 \simeq \rho_3$$

Let \mathcal{E} (resp. $\mathcal{O}_X(1), \mathcal{F}$) be the homogeneous vector bundle over X = G/P induced from the representation ρ_1 (resp. ρ_3, ρ_4). $\mathcal{O}_X(1)$ is the positive generator of Pic X. \mathcal{E} and \mathcal{F} are of rank 2 and 3, respectively. By the above isomorphism, we have

(2.6)
$$\bigwedge^{3} \mathcal{E} \simeq \bigwedge^{2} \mathcal{F} \simeq \mathcal{O}_{X}(1).$$

We shall study the property of the zero locus of a glogal section of $\mathcal{F}^{\oplus 5}$ in Section 3. For its study we need vanishing of cohomology groups of homogeneous vector bundles on X and apply the theorem of Bott[3]. The sum δ of the four fundamental weights w_i in (2.2) is equal to $(7e_1 + 5e_2 + 3e_3 + e_4)/2$. The sum of all positive roots is equal to 2δ .

Theorem 2.7 Let $\mathcal{E}(w)$ be the homogeneous vector bundles on $X = \hat{G}/\hat{P}$ induced from the representation of \tilde{L} with the heighest weight $w \in X(\tilde{H})$. Then we have

1) $H^i(X, \mathcal{E}(w))$ vanishes for every *i* if there is a root α with $(\alpha.\delta + w) = 0$, and

2) Let i_0 be the number of positive roots α with $(\alpha.\delta + w) < 0$. Then $H^i(X, \mathcal{E}(w))$ vanishes for every *i* except i_0 .

We apply the theorem to the following four cases:

- 1) $w = jw_3 + nw_4$ and $\mathcal{E}(w) \simeq S^n \mathcal{F}(j)$ for $n \leq 6$,
- 2) $w = w_1 + jw_3 + nw_4$ and $\mathcal{E}(w) \simeq \mathcal{E} \otimes S^n \mathcal{F}(j)$ for $n \leq 5$,
- 3) $w = 2w_1 + jw_3 + nw_4$ and $\mathcal{E}(w) \simeq S^2 \mathcal{E} \otimes S^n \mathcal{F}(j)$ for $n \leq 5$, and
- 4) $w = w_1 + w_2 + (j-1)w_3 + nw_4$ and $\mathcal{E}(w) \simeq sl(\mathcal{E}) \otimes S^n \mathcal{F}(j)$ for $n \leq 5$.

Proposition 2.8 (1) The cohomology group $H^i(X, S^n \mathcal{F}(j))$, vanishes for every (i, n, j) with $0 \le n \le 6$ except the following:

i	0	3	9	12
n	n	6	6	n
j	≥ 0	-4	-7	$\leq -n-5$

(2) The cohomology group $H^i(X, \mathcal{E} \otimes S^n \mathcal{F}(j))$, vanishes for every (i, n, j) with $0 \le n \le 5$ except the following:

i	0	2	2	11	11	11	11	12
n	n	4	5	2	3	4	5	n
j	≥ 0	-3	-3	-6	-7	-9	-9	$\leq -n-6$

(3) The cohomology group $H^i(X, S^2 \mathcal{E} \otimes S^n \mathcal{F}(j))$, vanishes for every (i, n, j) with $0 \le n \le 5$ except the following:

i	0	2	2	10	11	11	11	11	11	12
n	n	4	5	2	3	4	4	5	5	n
j	≥ 1	-3	-3	-6	-8	-8	-9	-9	-10	$\leq -n-7$

(4) The cohomology group $H^i(X, sl(\mathcal{E}) \otimes S^n \mathcal{F}(j))$, vanishes for every (i, n, j) with $0 \le n \le 5$ except the following:

i	0	1	1	1	1	3	9	11	11	11	11	12
n	n	2	3	4	5	4	4	2	3	4	5	n
j	≥ 1	-1	-1	-1	-1	-3	-6	-6	-7	-8	-9	$\leq -n-6$

3 K3 surfaces of genus 18

In this section, we prove Theorem 0.2 and prepare the proof of Theorem 0.3. Let X, \mathcal{E} and \mathcal{F} be as in Section 2. Let N be a 5-dimensional subspace of $H^0(X, \mathcal{F})$ and $\{s_1, \dots, s_5\}$ a basis of N. The common zero locus $S_N \subset X$ of N coincides with the zero locus of the global section $s = (s_1, \dots, s_5)$ of $\mathcal{F}^{\oplus 5}$. Let Ξ_{SCI} be the subset of $G(5, H^0(X, \mathcal{F}))$ consisting of [N] such that S_N is smooth and of dimension 2. \mathcal{F} is generated by its global section and dim $X - r(\mathcal{F}^{\oplus 5}) = 2$. Hence by Theorem 1.10, we have

Proposition 3.1 Ξ_{SCI} is a non-empty (Zariski) open subset of $G(5, H^0(X, \mathcal{F}))$.

We compute the cohomology groups of vector bundles on S_N , dim $S_N = 2$, using the Koszul complex

(3.2)
$$\Lambda^{\bullet}: \mathcal{O}_X \longrightarrow \mathcal{F}^{\oplus 5} \longrightarrow \bigwedge^2(\mathcal{F}^{\oplus 5}) \longrightarrow \cdots \longrightarrow \bigwedge^9(\mathcal{F}^{\oplus 5}) \longrightarrow \bigwedge^{10}(\mathcal{F}^{\oplus 5}).$$

The terms $\Lambda^i = \Lambda^i(\mathcal{F}^{\oplus 5})$ of this complex have the following symmetry:

Lemma 3.3 $\Lambda^i \simeq \Lambda^{10-i} \otimes \mathcal{O}_X(i-5).$

Proof. By (1.6), Λ^i is isomorphic to $(\Lambda^{10-i})^{\vee} \otimes \mathcal{O}_X(5)$. Since \mathcal{F} is of rank 2, \mathcal{F}^{\vee} is isomorphic to $\mathcal{F} \otimes \mathcal{O}_X(-1)$, which shows the lemma. *q.e.d.*

We need the decomposition of Λ^i into irreducible homogeneous vector bundles. $\Lambda^i = \Lambda^i(\mathcal{F}^{\oplus 5}), i \leq 5$, has the following vector bundles as its irreducible factors:

(3.4)
$$\begin{array}{c|c} \Lambda^{0} & \mathcal{O} \\ \hline \Lambda^{1} & \mathcal{F} \end{array} \qquad \begin{array}{c|c} \Lambda^{2} & S^{2}\mathcal{F}, \mathcal{O}(1) \\ \hline \Lambda^{3} & S^{3}\mathcal{F}, \mathcal{F}(1) \end{array} \qquad \begin{array}{c|c} \Lambda^{4} & S^{4}\mathcal{F}, S^{2}\mathcal{F}(1), \mathcal{O}(2) \\ \hline \Lambda^{5} & S^{5}\mathcal{F}, S^{3}\mathcal{F}(1), \mathcal{F}(2) \end{array}$$

Proposition 3.5 If $[N] \in \Xi_{SCI}$, then S_N is a K3 surface.

Proof. By Proposition 2.4 and (2.6), the vector bundle $\mathcal{F}^{\oplus 5}$ and the tangent bundle T_X have the same determinant bundle. Hence S_N has a trivial canonical bundle. By Proposition 1.4 and Lemma 1.6, we have the exact sequence $0 \longrightarrow K^{\bullet} \longrightarrow \mathcal{O}_{S_N} \longrightarrow 0$ and the isomorphism $K^{\bullet} \simeq \Lambda^{\bullet} \otimes \mathcal{O}(-5)$. By (1) of Proposition 2.8 and the Serre duality $H^i(K^{10}) \simeq H^{12-i}(\mathcal{O}_X)^{\vee}$, we have

$$H^{1}(K^{1}) = H^{2}(K^{2}) = \dots = H^{10}(K^{10}) = 0$$

and

$$H^{1}(K^{0}) = H^{2}(K^{1}) = \dots = H^{10}(K^{9}) = H^{11}(K^{10}) = 0$$

Therefore, the restriction map $H^0(\mathcal{O}_X) \longrightarrow H^0(\mathcal{O}_{S_N})$ is surjective and $H^1(\mathcal{O}_{S_N})$ vanishes. Hence S_N is connected and regular. q.e.d.

Let F_N be the restriction of \mathcal{F} to S_N . The complex $K^{\bullet} \otimes \mathcal{F}$ gives a resolution of F_N . Since $S^n \mathcal{F} \otimes \mathcal{F} \simeq S^{n+1} \mathcal{F} \oplus S^{n-1} \mathcal{F}(1)$, we have the following 4 series of vanishings by (1) of Proposition 2.8:

- (a) $H^1(\mathcal{F} \otimes K^2) = H^2(\mathcal{F} \otimes K^3) = \dots = H^9(\mathcal{F} \otimes K^{10}) = 0,$
- (b) $H^1(\mathcal{F} \otimes K^1) = H^2(\mathcal{F} \otimes K^2) = \cdots = H^9(\mathcal{F} \otimes K^9) = H^{10}(\mathcal{F} \otimes K^{10}) = 0,$
- (c) $H^1(\mathcal{F}) = H^2(\mathcal{F} \otimes K^1) = \dots = H^{10}(\mathcal{F} \otimes K^9) = H^{11}(\mathcal{F} \otimes K^{10}) = 0$

and

(d) $H^2(\mathcal{F}) = H^3(\mathcal{F} \otimes K^1) = \cdots = H^{11}(\mathcal{F} \otimes K^9) = H^{12}(\mathcal{F} \otimes K^{10}) = 0.$

By (c) and (d), both $H^1(F_N)$ and $H^2(F_N)$ vanish. By (a) and (b), the sequence

$$0 \longrightarrow H^0(\mathcal{F} \otimes K^1) \longrightarrow H^0(\mathcal{F}) \longrightarrow H^0(F_N) \longrightarrow 0$$

is exact. So we have proved

Proposition 3.6 If dim $S_N = 2$, then we have

1) $H^1(S_N, F_N) = H^2(S_N, F_N) = 0$, and

2) the restriction map $H^0(X, \mathcal{F}) \longrightarrow H^0(S_N, F_N)$ is surjective and its kernel coincides with N.

Let E_N be the restriction of \mathcal{E} to S_N . Arguing similarly for the complexes $K^{\bullet} \otimes \mathcal{E}$, $K^{\bullet} \otimes S^2 \mathcal{E}$ and $K^{\bullet} \otimes sl(\mathcal{E})$, we have

Proposition 3.7 If dim $S_N = 2$, then we have

(1) all the higher cohomology groups of E_N and $S^2 E_N$ vanish,

(2) the restriction maps $H^0(X, \mathcal{E}) \longrightarrow H^0(S_N, E_N)$ and $H^0(X, S^2\mathcal{E}) \longrightarrow H^0(S_N, S^2E_N)$ are bijective, and

(3) all the cohomology groups of $sl(E_N)$ vanish.

Corollary 3.8 The natural map $S^2H^0(S_N, E_N) \longrightarrow H^0(S_N, S^2E_N)$ is surjective and its kernel is generated by a nondegenerate symmetric tensor.

Proof. The assertion holds for the pair of X and \mathcal{E} since $H^0(X, S^2\mathcal{E})$ is an irreducible representation of G. Hence it also holds for the pair S_N and E_N by (2) of the proposition. q.e.d.

Corollary 3.9 $\chi(E_N) = \dim H^0(X, \mathcal{E}) = 9$ and $\chi(sl(E_N)) = 0$.

Theorem 0.2 is a consequence of Proposition 3.5 and the following:

Proposition 3.10 The self intersection number of $c_1(E_N)$ is equal to 34.

Proof. By (3.9), and the Riemann-Roch theorem, we have

$$9 = \chi(E_N) = (c_1(E_N)^2)/2 - c_2(E_N) + 3 \cdot 2$$

and

$$0 = \chi(sl(E_N)) = -c_2(sl(E_N)) + 8 \cdot 2 = 2(c_1(E_N)^2) - 6c_2(E_N) + 16,$$

which imply $(c_1(E_N)^2) = 34$ and $c_2(E_N) = 14$.

4 Proof of Theorem 0.3

We need the following general fact on deformations of vector bundles on K3 surfaces, which is implicit in [10].

Proposition 4.1 Let *E* be a simple vector bundle on a K3 surface *S* and (S', L') be a small deformation of $(S, \det L)$. Then there is a deformation (S', E') of the pair (S, E) such that $\det E' \simeq L'$.

Proof. The obstruction ob(E) for E to deform a vector bundle on S' is contained in $H^2(S, \mathcal{E}nd(E))$. Its trace is the obstruction for det E to deform a line bundle on S', which is zero by assumption. Since the trace map $H^2(S, \mathcal{E}nd(E)) \longrightarrow H^2(S, \mathcal{O}_S)$ is injective, the obstruction ob(E) itself is zero. q.e.d.

We fix a 5-dimensional subspace N of $H^0(X, \mathcal{F}) \simeq U^{16}$ belonging to Ξ_{SCI} and consider deformations of the polarized K3 surface $(S_N, \mathcal{O}_S(1))$, where $\mathcal{O}_S(1)$ is the restriction of $\mathcal{O}_X(1)$ to S_N .

Proposition 4.2 Let (S, L) be a sufficiently small deformation of $(S_N, \mathcal{O}_S(1))$. Then there exists a vector bundle E on S which satisfies the following:

i) det $E \simeq L$,

ii) The pair (S, E) is a deformation of (S_N, E_N) ,

iii) E is generated by its global sections and $H^1(S, E) = H^2(S, E) = 0$,

iv) the natural linear map

$$S^2 H^0(S, E) \longrightarrow H^0(S, S^2 E)$$

is surjective and its kernel is generated by a nondegenerate symmetric tensor, and v) the morphism $\Phi_{|E|}: S \longrightarrow G(H^0(E), 3)$ associated to E is an embedding.

q.e.d.

Proof. The existence of E which satisfies i) and ii) follows from Proposition 4.1. The pair (S_N, E_N) satisfies iii) and iv) by Proposition 3.7and Corollary 3.8. Since (S, E) is a small deformation of (S_N, E_N) , E satisfies iii) and v). Since $H^1(S_N, S^2 E_N)$ vanishes, E satisfies iv), too. q.e.d.

By iii) of the proposition, we identify S with its image in $G(H^0(E), 3)$. By iv) of the proposition, (the image of) S lies in the 12-dimensional homogeneous space X of $SO(9, \mathbb{C})$. By Proposition 3.6, S is contained in the common zero locus of a 5-dimensional subspace N' of $H^0(X, \mathcal{F})$. Since S is a small deformation of S_N , S is also a complete intersection with respect to $\mathcal{F}^{\oplus 5}$. Therefore, we have shown

Proposition 4.3 The image of the classification morphism $\Xi_{SCI} \longrightarrow \mathcal{F}_{18}$, $[N] \mapsto (S_N, \mathcal{O}_S(1))$, is open.

The Picard group of a K3 surface S is isomorphic to $H^{1,1}(S, \mathbf{Z}) = H^2(S, \mathbf{Z}) \cap H^0(\Omega^2)^{\perp}$. Since the local Torelli type theorem holds for the period map of K3 surfaces ([1, §7, Chap. VIII]), the subset $\{(S, L) | \text{Pic } S \neq \mathbf{Z} \cdot [L]\}$ of \mathcal{F}_g is a countable union of subvarieties. Hence by the proposition and Baire's property, we have

Proposition 4.4 There exists $[N] \in \Xi_{SCI}$ such that $(S_N, \mathcal{O}_S(1))$ is Picard general, i.e., Pic S_N is generated by $\mathcal{O}_S(1)$.

The stability of vector bundles is easy to check over a Picard general variety.

Proposition 4.5 If $(S_N, \mathcal{O}_S(1))$ is Picard general, then E_N is μ -stable with respect to $\mathcal{O}_S(1)$.

Proof. Let B be a locally free subsheef of E_N . By our assumption, det B is isomorphic to $\mathcal{O}_S(b)$ for an integer b. In the case B is a line bundle, we have $b \leq 0$ since dim $H^0(B) \leq$ dim $H^0(E_N) = 9$. In the case B is of rank 2, $\bigwedge^2 B \simeq \mathcal{O}_S(b)$ is a subsheaf of $\bigwedge^2 E_N \simeq$ $E_N^{\vee} \otimes \mathcal{O}_S(1)$. We have $H^0(S_N, E_N^{\vee}) = H^2(S_N, E_N)^{\vee} = 0$ by (1) of Proposition 3.7 and the Serre duality. Hence b is nonpositive. Therefore we have b/r(B) < 1/3 for every B with $r(B) < r(E_N) = 3$. If F is a subsheaf of E_N , then its double dual $F^{\vee\vee}$ is a locally free subsheaf of E_N . Hence $c_1(F)/r(F) < c_1(E_N)/r(E_N)$ for every subsheaf F of E_N with $0 < r(F) < r(E_N)$.

Let Ξ be the subset of Ξ_{SCI} consisting of [N] such that E_N is stable with respect to $\mathcal{O}_S(1)$ in the sense of Gieseker [6]. Ξ is non-empty by the above two propositions.

Theorem 4.6 Let M and N be 5-dimensional subspaces of $H^0(X, \mathcal{F})$ with $[M], [N] \in \Xi$. (1) If $(S_M, \mathcal{O}_S(1))$ and $(S_N, \mathcal{O}_S(1))$ are isomorphic to each other, then [M] and [N] belong to the same $SO(9, \mathbb{C})$ -orbit.

(2) The automorphism group of $(S_N, \mathcal{O}_S(1))$ is isomorphic to the stabilizer group of $SO(9, \mathbb{C})$ at $[N] \in G(5, U^{16})$.

Proof. Let $\phi: S_M \longrightarrow S_N$ be an isomorphism such that $\phi^* \mathcal{O}_S(1) \simeq \mathcal{O}_S(1)$. Two vector bundles E_M and $\phi^* E_N$ have the same rank and Chern classes. Since E_N is rigid by (3) of Proposition 3.7 and since both are stable, there exists an isomorphism $f: E_M \longrightarrow \phi^* E_N$ by Proposition 0.4. By (2) of Proposition 3.7,

$$H^0(f): H^0(S_M, E_M) \longrightarrow H^0(S_M, \phi^* E_N) \simeq H^0(S_N, E_N)$$

is an automorphism of $V = H^0(X, \mathcal{E})$. By Corollary 3.8, $H^0(f)$ preserves the 1-dimensional subspace $\mathbb{C}q$ of S^2V . Hence replacing f by cf for suitable constant c, we may assume that $H^0(f)$ belongs to the special orthogonal group SO(V,q). Let L be a lift of $H^0(f)$ to $\tilde{G} =$ Spin(V,q). Since \mathcal{F} is homogeneous, there exists an isomorphism $\ell : F_M \longrightarrow \phi^* F_N$ such that $H^0(\ell) = L$. By (2) of Proposition 3.6, L maps $M \subset H^0(X, \mathcal{F})$ onto $N \subset H^0(X, \mathcal{F})$, which shows (1). Putting M = N in this argument, we have (2). q.e.d.

Let $\Phi : \Xi \longrightarrow \mathcal{F}_{18}$, $[N] \mapsto (S_N, \mathcal{O}_S(1))$ be the classification morphism. By the theorem, every fibre of Φ is an orbit of $SO(9, \mathbb{C})$. By the openness of stability condition ([8]) and Proposition 4.3, the image of Φ is Zariski open in \mathcal{F}_{18} . Hence we have completed thr proof of Theorem 0.3.

5 K3 surfaces of genus 20

Let V be a vector space of dimension 9 and \mathcal{E} the (rank 4) universal quotient bundle on the Grassmann variety X = G(V, 4). The determinant bundle of \mathcal{E} is the ample generator $\mathcal{O}_X(1)$ of Pic $X \simeq \mathbb{Z}$. We denote the restrictions of \mathcal{E} and $\mathcal{O}_X(1)$ to S_N by E_N and $\mathcal{O}_S(1)$, respectively.

Theorem 5.1 Let N be a 3-dimensional subspace of $H^0(G(V, 4), \bigwedge^2 \mathcal{E}) \simeq \bigwedge^2 V$ and $S_N \subset G(V, 4)$ the common zero locus of N. If S_N is smooth and of dimension 2, then the pair $(S_N, \mathcal{O}_S(1))$ is a K3 surface of genus 20.

The tangent bundle T_X of G(V, 4) is isomorphic to $\mathcal{E} \otimes \mathcal{F}$, where \mathcal{F} is the dual of the universal subbundle. Hence X = G(V, 4) is a 20-dimensional Fano manifold of index 9. S_N is the scheme of zeroes of the section

$$s: \mathcal{O}_X \longrightarrow (\bigwedge^2 \mathcal{E}) \otimes_{\mathbf{C}} N^{\vee} \simeq (\bigwedge^2 \mathcal{E})^{\oplus 3}$$

induced by $\mathcal{O}_X \otimes_{\mathbf{C}} N \longrightarrow \bigwedge^2 \mathcal{E}$. The vector bundle $(\bigwedge^2 \mathcal{E})^{\oplus 3}$ is of rank $6 \cdot 3 = 18$, and has the same determinant as T_X . Hence, by Theorem 1.10 and Proposition 1.4, we have

Proposition 5.2 Let Ξ_{SCI} be the subset of $G(3, \bigwedge^2 V)$ consisting of [N] such that S_N is smooth and of dimension 2. Then Ξ_{SCI} is non-empty and S_N has trivial canonical bundle for every $[N] \in \Xi_{SCI}$.

We show vanishing of cohomology groups of vector bundles on S_N using the Koszul complex (5, 2)

(5.3)

$$\Lambda^{\bullet}: \quad \mathcal{O}_X \longrightarrow (\bigwedge^2 \mathcal{E})^{\oplus 3} \longrightarrow \bigwedge^2 (\bigwedge^2 \mathcal{E})^{\oplus 3} \longrightarrow \cdots \longrightarrow \bigwedge^{17} (\bigwedge^2 \mathcal{E})^{\oplus 3} \longrightarrow \bigwedge^{18} (\bigwedge^2 \mathcal{E})^{\oplus 3}$$

of s and the Bott vanishing. G(V, 4) is a homogeneous space of $GL(9, \mathbb{C})$. The stabilizer group P consists of the matrices of the form $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ with $A \in GL(4, \mathbb{C}), B \in M_{4,5}(\mathbb{C})$ and $D \in GL(5, \mathbb{C})$. The set H of invertible diagonal matrices is a maximal torus. The roots of $GL(9, \mathbb{C})$ are $e_i - e_j, i \neq j$, for the standard basis of the character group X(H) of H. We take $\Delta = \{e_i - e_{i+1}\}_{1 \leq i \leq 8}$ as a root basis. The reductive part L of P is isomorphic to $GL(4, \mathbb{C}) \times GL(5, \mathbb{C})$ and its root basi is $\Delta \setminus \{e_4 - e_5\}$. Let $\rho(a_1, a_2, a_3, a_4)$ be the irreducible representation of $GL(4, \mathbb{C})$ (or L) with the heighest weight $w = (a_1, a_2, a_3, a_4) = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4, a_1 \ge a_2 \ge a_3 \ge a_4$. We denote by $\mathcal{E}(a_1, a_2, a_3, a_4)$ the homogeneous vector bundle on X induced from the representation $\rho(a_1, a_2, a_3, a_4)$. The universal quotient bundle \mathcal{E} is $\mathcal{E}(1, 0, 0, 0)$ and its exterior products $\bigwedge^2 \mathcal{E}, \bigwedge^3 \mathcal{E}$ and $\bigwedge^4 \mathcal{E}$ are $\mathcal{E}(1, 1, 0, 0), \mathcal{E}(1, 1, 1, 0)$ and $\mathcal{E}(1, 1, 1, 1)$, respectively.

We apply the Bott vanishing theorem ([3]). One half δ of the sum of all the positive roots is equal to $4e_1 + 3e_2 + 2e_3 + e_4 - e_6 - 2e_7 - 3e_8 - 4e_4$ and we have

$$\delta + w = (4 + a_1)e_1 + (3 + a_2)e_2 + (2 + a_3)e_3 + (1 + a_4)e_4 - e_6 - 2e_7 - 3e_8 - 4e_9.$$

All the cohomology groups of $\mathcal{E}(a_1, a_2, a_3, a_4)$ vanish if a number appears more than once among the coefficients. For the convenience of later use we state the vanishing theorem for $\mathcal{E}(a_1, a_2, a_3, a_4) \otimes \mathcal{O}_X(-9)$:

Proposition 5.4 The cohomology group $H^i(X, \mathcal{E}(a_1, a_2, a_3, a_4) \otimes \mathcal{O}_X(-9))$ vanishes for every *i* if one of the following holds:

i) $\lambda \leq a_{\lambda} \leq \lambda + 4$ for some $1 \leq \lambda \leq 4$, or ii) $a_{\mu} - a_{\nu} = \mu - \nu$ for some pair $\mu \neq \nu$.

To apply this to the Koszul complex (5.3), we need the decomposition of $\Lambda^i = \Lambda^i (\Lambda^2 \mathcal{E})^{\oplus 3}$ into the sum of irreducible homogeneous vector bundles. Since $(\Lambda^2 \mathcal{E})^{\vee} \simeq (\Lambda^2 \mathcal{E})(-1)$, we have the following in the same manner as Lemma 3.3:

Lemma 5.5 $\Lambda^i \simeq \Lambda^{18-i} \otimes \mathcal{O}_X(i-9).$

Put $\rho_2 = \rho(1, 1, 0, 0)$. It is easy to check the following:

$$\begin{array}{c|cccccc} i & 2 & 3 & 4 & 5 & 6 \\ \hline \wedge^i \rho_2 & \rho(2,1,1,0) & \rho(3,1,1,1) & \rho(3,2,2,1) & \rho(3,3,2,2) & \rho(3,3,3,3) \\ \oplus \rho(2,2,2,0) & & \end{array}$$

The representation $\wedge^i(\rho_2^{\oplus 3})$ is isomorphic to

$$\bigoplus_{p+q+r=i} (\bigwedge^p \rho_2) \otimes (\bigwedge^q \rho_2) \otimes (\bigwedge^r \rho_2).$$

By the computation using the Littlewood-Richardson rule ([9, Chap. I, §9]), we have

Proposition 5.6 The set W_i of the highest weights of irreducible components of the representation $\bigwedge^i \rho_2^{\oplus 3}$ is as follows:

 W_i i $\{(1, \overline{1, 0, 0})\}$ 1 $\{(2, 2, 0, 0), (2, 1, 1, 0), (1, 1, 1, 1)\}$ $\mathcal{2}$ \mathcal{Z} $\{(3,3,0,0), (3,2,1,0), (3,1,1,1), (2,2,2,0), (2,2,1,1)\}$ $\{(4,3,1,0), (4,2,2,0), (4,2,1,1), (3,3,2,0), (3,3,1,1), (3,2,2,1), (2,2,2,2)\}$ 4 5 $\{(5,3,2,0), (5,3,1,1), (5,2,2,1), (4,4,2,0), (4,3,3,0)\} \cup W_3 + (1,1,1,1)$ 6 $\{(6,3,3,0), (6,3,2,1), (6,2,2,2), (5,4,3,0), (4,4,4,0)\} \cup W_4 + (1,1,1,1)$ γ $\{(7,3,3,1), (7,3,2,2), (6,4,4,0), (5,5,4,0)\} \cup W_5 + (1,1,1,1)$ $8 \mid \{(8,3,3,2), (6,5,5,0)\} \cup W_6 + (1,1,1,1)$ $9 \mid \{(9,3,3,3), (6,6,6,0)\} \cup W_7 + (1,1,1,1)$

The sets of the highest weights appearing in the decompositions of $\mathcal{E} \otimes \Lambda^{\bullet}$, $\bigwedge^2 \mathcal{E} \otimes \Lambda^{\bullet}$ and $\mathcal{E} \otimes \mathcal{E}^{\vee} \otimes \Lambda^{\bullet}$ are easily computed from Lemma 5.5 and the proposition using the following formula:

$$\rho(1,0,0,0) \otimes \rho(a_1,a_2,a_3,a_4) = \bigoplus_{\substack{\sum b_i = 1 + \sum a_i \\ a_i \le b_i \le a_i + 1}} \rho(b_1,b_2,b_3,b_4),$$

$$\rho(1,1,0,0) \otimes \rho(a_1,a_2,a_3,a_4) = \bigoplus_{\substack{\sum b_i = 2 + \sum a_i \\ a_i \le b_i \le a_i + 1}} \rho(b_1,b_2,b_3,b_4)$$

and

$$\rho(0,0,0,-1) \otimes \rho(a_1,a_2,a_3,a_4) = \bigoplus_{\substack{\sum b_i = -1 + \sum a_i \\ a_i - 1 \le b_i \le a_i}} \rho(b_1,b_2,b_3,b_4).$$

Applying Proposition 5.4 to the exact sequence

$$0 \longrightarrow \Lambda^{\bullet} \otimes \mathcal{O}_{X}(-9) \longrightarrow \mathcal{O}_{S_{N}} \longrightarrow 0,$$
$$0 \longrightarrow \Lambda^{\bullet} \otimes \mathcal{E} \otimes \mathcal{O}_{X}(-9) \longrightarrow E_{N} \longrightarrow 0,$$
$$0 \longrightarrow \Lambda^{\bullet} \otimes \bigwedge^{2} \mathcal{E} \otimes \mathcal{O}_{X}(-9) \longrightarrow \bigwedge^{2} E_{N} \longrightarrow 0$$

and

$$0 \longrightarrow \Lambda^{\bullet} \otimes sl(\mathcal{E}) \otimes \mathcal{O}_X(-9) \longrightarrow sl(E_N) \longrightarrow 0$$

we have the following in a similar way to Propositions 3.6 and 3.7:

Proposition 5.7 If dim $S_N = 2$, then we have

(1) the restriction map $H^0(\mathcal{O}_X) \longrightarrow H^0(\mathcal{O}_{S_N})$ is surjective and $H^1(\mathcal{O}_{S_N})$ vanishes,

(2) all higher cohomology groups of E_N and $\bigwedge^2 E_N$ vanish,

(4) the restriction map $H^0(X, \mathcal{E}) \longrightarrow H^0(S_N, E_N)$ is bijective,

(4) the restriction map $H^0(X, \bigwedge^2 \mathcal{E}) \longrightarrow H^0(S_N, \bigwedge^2 E_N)$ is surjective and its kernel coincides with N, and

(5) all cohomology groups of $sl(E_N)$ vanish.

Corollary 5.8 $\chi(E_N) = \dim H^0(X, \mathcal{E}) = 9$ and $\chi(sl(E_N)) = 0$.

If [N] belongs to Ξ_{SCI} , then S_N is a K3 surface by Proposition 5.2 and (1) of Proposition 5.7. We have $(c_1(E_N)^2) = 38$ by the corollary in a similar manner to Proposition 3.10. This proves Theorem 5.1.

Theorem 5.9 Let Ξ be the subset of $G(3, \bigwedge^2 V)$, dim V = 9, consisting of [N] such that S_N is a K3 surface and E_N is stable with respect to L_N . Then we have

(1) Ξ is a non-empty Zariski open subset,

(2) the image of the classification morphism $\Phi: \Xi \longrightarrow \mathcal{F}_{20}$ is open,

(3) every fibre of Φ is an orbit of PGL(V), and

(4) the automorphism group of (S_N, L_N) is isomorphic to the stabilizer group of PGL(V)at $[N] \in G(3, \bigwedge^2 V)$.

There exists a 3-dimensional subspace N of $\bigwedge^2 V$ such that the polarlized K3 surface $(S_N, \mathcal{O}_S(1))$ is Picard general. Let B be a locally free subsheaf of E_N . In the cases r(B) = 1 and 3, we have $b \leq 0$ in the same way as Proposition 4.4. In the case B is of rank 2, $\bigwedge^2 B \simeq \mathcal{O}_S(b)$ is a subsheaf of $\bigwedge^2 E_N$. Since $\bigwedge^2 E_N \simeq \bigwedge^2 E_N^{\vee} \otimes \mathcal{O}_S(1)$, we have

$$\operatorname{Hom}\left(\mathcal{O}(1),\bigwedge^{2} E_{N}\right) \simeq H^{0}(S_{N},(\bigwedge^{2} E_{N})(-1)) \simeq H^{2}(S_{N},\bigwedge^{2} E_{N})^{\vee} = 0$$

by the Serre duality and 2) of Proposition 5.7. Hence b is nonpositve. Therefore, E_N is μ -stable if $(S_N, \mathcal{O}_S(1))$ is Picard general. This shows (1) of the theorem. The rest of the proof of Theorem 5.9 is the same as that of Theorem 0.3 in Section 4.

Let $G(3, \bigwedge^2 V)^s$ be the stable part of $G(3, \bigwedge^2 V)$ with respect to the action of SL(V).

Corollary 5.10 The moduli space \mathcal{F}_{20} of K3 surfaces of genus 20 is birationally equivallent to the moduli space $G(3, \bigwedge^2 V)^s / PGL(V)$ of nets of bivectors on V.

References

- [1] Barth, W., C. Peters and A. Van de Ven: Compact complex surfaces, Springer, 1984.
- [2] Borel A. and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
- [3] Bott, R.: Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
- [4] Bourbaki, N.: Éléments de mathematique, Groupes et algébre de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
- [5] Chevalley, C.: The algebraic theory of spinors, Columbia University Press, 1955.
- [6] Gieseker, D.: On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106(1977), 45-60.
- [7] Griffiths, P.A. and J. Harris: Principles of Algebraic Geometry, John Wiley, New-York, 1978.
- [8] Maruyama, M.: Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976), 627-637.
- [9] Macdonald, I.G.: Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
- [10] Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101-116.
- [11] Mukai, S.: On the moduli space of bundles on K3 surfaces: I, in 'Vector Bundles on Algebraic Varieties (Proceeding of the Bombay Conference 1984) ', Tata Institute of Fundamental Research Studies, 11, pp. 341-413, Oxford University Press, 1987.
- [12] Mukai, S.: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 , in 'Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata', pp. 357-377, 1988, Kinokuniya, Tokyo.
- [13] Mukai, S.: Biregular classification of Fano threefolds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. 86 (1989), 3000-3002.
- [14] Mumford, D.: Geometric invariant theory, Springer, 1965.
- [15] Piatetskij-Shapiro, I.I. and I.R. Shafarevich: A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971), 503-572.

Department of Mathematics Nagoya University School of Sciences 464 Furō-chō, Chikusa-ku Nagoya, Japan