Degeneration of **P**ⁿx **P**ⁿ and application to del Pezzo fibration

· · · · · · · · · · · · · · · · · · ·	June 5, 1997, RIMS, Kyoto Univ. Shigeru MUKAI
Motivation	· · · · · · · · · · · · · ·
(1-parameter) family of varieties	· · · · · · · · · · · · · · ·
{L+, M,} pair of vector bundles on) generated by n+1 global se	
$\Phi_L, \Phi_M : X \longrightarrow \mathbb{P}^n$	morphisms
$\overline{\mathcal{P}}_{t} := (\overline{\mathcal{P}}_{L}, \overline{\mathcal{P}}_{M}) : X \longrightarrow$	$> \mathbb{D}^n \times \mathbb{D}^n$
Confluence Problem	for general t
$L_{o} \cong M_{o}$	· · · · · · · · · · · · · · · · · · ·
What is the reasonable limit of $\mathbf{\Phi}_{\mathbf{t}}$ as	
Answer In good cases, such a limit	· · · · · · · · · · · · · ·
$\Phi_{\mathbf{b}}: \mathbf{X} \longrightarrow$ exists as a morphism to a degeneration of $\mathfrak{B}^{\mathbf{a}}$:	P ⁿ , ⁿ
projective variety with only A singularity along a	
$\widetilde{\Phi}_{0}$ is a lift of $\Phi_{0}: \mathbf{X} \longrightarrow$	

Example (n = 1) $P' \times P' \subset P^3 \times t - y = 0$ **B**^{i, i} $x + -y^2 = 0$ Advanced Problem Study the relation with "confluences" in other branches of mathematics, say, hypergeometric equations and (modular) representations. 30 VIP varieties $\mathbb{P}^n \times \mathbb{P}^n \subset \mathbb{P}^{n^2 + 2n}$ Segre variety $\mathbb{P}^n \subset \mathbb{P}^{n(n+3)/2}$ 2nd Veronese $G(P' \subset P') \subset D^{(n-)(m_2)_2}$ 3 Grassmannian These are projectivizations of cones of matrices of minimal rank: *) very important projective

{rank 1 matrix} $\subset M_{n+1, n+1}$ $(C) = C \otimes C^{n+1}$ $M_{p'} = \begin{pmatrix} q_0 \\ \vdots \\ q_n \end{pmatrix} (k_0 \cdots k_n) = (a_i k_j)_{0 \le i, j \le n}$ $\left\{ \begin{array}{l} \text{rank 1 symmetric} \\ \text{matrix} & \left[M_{P, P} \right] \end{array} \right\} \subset S^2 \mathbb{C}^{n+1}$ 2 $\left\{\begin{array}{l} \text{rank 2 skew-} \\ \text{symmetric matrix} \end{array}\right\} \subset \left\{\begin{array}{l} 2 \\ \\ \end{array}\right\} \subset \left\{\begin{array}{l} 2 \\ \\ \end{array}\right\} \subset \left[\begin{array}{l} 2 \\ \\ \end{array}\right]$ 3 $N_{\ell} = \left(\begin{vmatrix} a_i & a_j \\ b_i & \ell_j \end{vmatrix} \right)_{0 \le i, j \le n}$ Remark ्रि a natural rational map $\mathbb{P}^n \times \mathbb{P}^n \longrightarrow \mathbb{G}(\mathbb{P}^{\prime} \subset \mathbb{P}^n)$ (Bg) $\longrightarrow \overline{p}_{f}$ whose indeterminacy is eliminated by the blow-up with center the diagonal Δ . Furthermore, $\mathsf{Bl}(\mathbb{P}^{*},\mathbb{P}^{n})_{\text{factor}}\to \mathsf{G}(\mathbb{P}^{\prime}\subset\mathbb{P}^{n})$ is a **P**-bundle.

4 <u>§1</u> P^{n,n} as projective variety Degeneration of (1) is a mixture of (2) & (3). $\mathbb{P}(\mathbb{C}^{n_{r_{i}}}\otimes\mathbb{C}^{n_{r_{i}}})\stackrel{(1)}{\supset}\mathbb{P}^{n_{\varkappa}}\mathbb{P}^{n_{\varkappa}}$ $\mathbb{P}(S^2\mathbb{C}^{n_{*}}\oplus \tilde{\wedge}\mathbb{C}^{n_{*}'}) \supset \mathbb{P}(S^2\mathbb{C}^{n_{*}}) \perp \mathbb{P}(\tilde{\wedge}\mathbb{C}^{n_{*}})$ 2 U3P G (P'CP") 1st Definition $\mathbb{P}^{n,n}$ is the incidence join of Veronese \mathbb{P}^{n} and Grassmannian GLPCP') More precisely, the projectivization of $\bigcup \langle M_{p,p}, N_e \rangle \subset S^2 \mathbb{C}^{n_{\text{H}}} \mathbb{O}^{n_{\text{H}}}.$ PEL pep", leg(p', p")

5 (A) By definition, $\mathcal{P}^{n,n}$ is contained in the weighted projective space: $rac{x_{0}, \dots, x_{n}}{r} \quad \exists i_{j}$ $rac{y}{p(1, \dots, 1, 2, \dots, 2)} \subset p^{n_{1}2n}$ (ntl) $G(P' \subset P') \subset P'^{2, \dots, 2}$ degree Pliucker relations on Defining equation of Incidence relations among x and y 3 (B) Fix a line Then $U < M_{P,P}, N_e$ is a quadric cone. pel Grass. has A -singularity along $G(P' \subset P').$ [p] Veronese

P"," (°C) Minimal resolution is a **P**ⁿ-bundle over **P**ⁿ: In fact, P^{n, n} $\tilde{\beta}^{n,n} \cong \mathbb{P}(\mathfrak{O}(2) \oplus \mathcal{R}^{(2)})$ & $- \mathbf{k}_{\mathbf{p}} = (n+1) H$, H: tautological line bundle. is the image of $\overline{P}_{H}: \widetilde{\mathbb{P}}^{n,n}$ $\Rightarrow B(2_{C_{\mu}} \oplus \sqrt[]{C_{\mu}})$ $P^{2,2} \subset P(111222)$ Example (n = 2) is a cubic hypersuraface $\sum_{i=1}^{n} x_i J_i = 0$ 82 Degeneration of Bx Br to Brin Bundle method Elementary transformatior

2 § 3 P" in Grassmanian $J \Rightarrow 0_x^{2n\tau_2} \rightarrow E = L \oplus M$ $\emptyset_{\mathbf{x}}^{\mathbf{n}_{\tau_{1}}} \longrightarrow$ Ox M pair of line bundles rank 2 bundle -----> G (2nt2, 2) Φ_{E} : X First we describe this map. $\mathcal{P}^{2^{n+1}} \supset \mathcal{P}^{n} \coprod \mathcal{P}^{n} \qquad \left(\begin{array}{c} \text{When } n=1, \text{ just a pair} \\ \text{of skew lines in } \mathcal{P}^{3}, \end{array}\right)$ $\mathbb{C}^{2n+2} = V_1 \oplus V_2 \quad \dim V_1 = \dim V_2 = n+1$ $\mathbb{P} \times \mathbb{P}^{n}$ is a subvariety of $\mathbb{G}(\mathbb{P} \times \mathbb{P}^{n})$ defined by two Schubert conditions: $\left\{ \left[U \right] \in G\left(2, \mathbb{C}^{2n+2}\right) \middle| U_{n}V_{1} \neq 0, U_{n}V_{2} \neq 0 \right\}$ = { line l'intersecting both B(V1) & B(V2)} $= \mathbb{P}(V_1) \times \mathbb{P}(V_2)$ Thus $\mathbb{B}^n \times \mathbb{B}^n \subset \mathbb{G}(2, \mathbb{C}^{2n^{n}})$ is defined by a pair of points $[V_i], [V_L] \in G(n+1, 2n+2)$

Our $\mathcal{B}^{\bullet,\bullet}$ is the limit case where $\mathcal{D}_{\mathbf{V}_{\mathbf{L}}} \mathcal{J}$ becomes an infinitely near point, that is, a tangent direction at $[V_1]$ Fast: Tangent space of G(n+1, C²ⁿ⁺²) at [V] is Hom $(V, C^{2n+2}/V)$ (linear map from sub to quotient) A tangent vector $\varphi: V \longrightarrow C^{2nne}/V$ is <u>non-degenerate</u> if fis an isomorphism. ${f 9}$: non-degenerate tangent vector 2nd Definition $\left|\mathcal{P}^{n,n}\right| = \left\{ \left[U \right] \in \mathcal{G}(2,\mathbb{C}^{2n+\epsilon}) \middle| \begin{array}{c} \operatorname{Im} U \ \operatorname{in} \ \mathbb{C}^{2n+\epsilon} / \\ \subset \mathcal{P}(U_0,V). \end{array} \right\}$ 2 cases 1) $\dim U_n V = 1$ 9: UNV ~ Im U 2) UCV (---> B"," > G(2,V)). The 2nd agrees with the 1st definition in $\S1$.

\$4 Functorial property free line bundle • $\circ \xrightarrow{} \downarrow \rightarrow \vdash \rightarrow \vdash \rightarrow \vdash \rightarrow \circ$ exact sequence with surjective $\mathcal{H}^{\circ}(E) \rightarrow \mathcal{H}^{\circ}(L)$ $\ge E_E : X \longrightarrow G(H^{\circ}(E), 2)$ factors through (P",") reg. (2 More generally ____: free line bundle : effective divisor with $I-I^{\circ}(L) \xrightarrow{\sim} H^{\circ}(L(D))$. $o \rightarrow L(D) \rightarrow E \rightarrow L \rightarrow o$ with exact sequence H°(E) → H°(L) Factors through P"." §5 Del Pezzo surface of degree 6 S : RDP del Pezzo surface of degree 6 minimal resolution of S is the blow-up of $\mathbf{p}^{\mathbf{z}}$ at 3 points \mathbf{p} , \mathbf{p} and $\mathbf{p}_{\mathbf{z}}$, which may be infinitely near.

10 p_{1}, p_{2}, p_{3} are not colinear. care a $s \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$ $S = (\mathbb{P}^2 \times \mathbb{P}^2) \cap H_1 \cap H_2$ 2th-prpips (graph of quadratic Cremona transformation) Care of p, , p, , p, are colinear. $D \in [h - p_1 - p_2 - p_3]$ (-2) P'न \exists exact sequence $0 \rightarrow L(D) \rightarrow E \rightarrow$ S= B^{2,2}, Hin Ha as in §4, (2). $S \longrightarrow C$ RDP dP -fibration over a curve **Proposition** with only central monodromy^{*)} (contained in the first factor C_{2} of C_{2} x C_{3} = D_{12}) P-bundle such that ב ל in $S \cong P_n \mathcal{H}_n \mathcal{H}_\lambda$ and every fiber of P/C is either $\mathbb{P}^2 \times \mathbb{P}^2$ or $\mathbb{P}^{2,2}$ *) In the talk this monodromy condition was erroneously omitted.