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On Fano 3-Folds with B,>2

Shigefumi Mori and Shigera Mukai

This article is an introduction to the classification of Fano 3-folds,
i.e., 3-dimensional smooth projective varieties with ample anticanonical
bundles, whose second Betti numbers are not less than two. We shall
show, with proof or by an example, the principle of “how to classify
them” so that one will be able to do it. The complete classification will
be published elsewhere.

After stating our main results in § 1, we summarize the results of
Iskovskih, Sokurov and Mori which are indispensable to our classification
in §§2and 3. §5 is devoted to the classification of Fano 3-folds with B,
=2, especially, imprimitive ones. In § 6, we investigate the properties of
Fano conic bundles which play an essential role in the classification of
imprimitive Fano 3-folds with B,=>3 (§ 7), in the proof of Theorem 1.6
(§ 8) and in the proof of Theorem 1.2. (§ 9).

§0. Del Pezzo surface

We review here the theory of del Pezzo surfaces because it is useful
for understanding the outline of the classification of Fano 3-folds.

Let S be a del Pezzo surface, i.e., a smooth surface with negative cano-
nical bundle. The positive integer (— K)* is called the degree of S. By
Serre duality, Kodaira’s vanishing theorem and the Riemann-Roch theo-
rem, we have

.1 g=p,=0, p(S)=B,(S), dim|—Ks|=(—Kjy).
By Noether’s formula c}+4-¢,=12¢(0;), We have
0.2) (—Ks)*+p(S)=10.

In particular, we have

Proposition 0.3. (— K )*<9 and p(S)< 9 for every del Pezzo surface S.

In the case of Fano 3-folds, we have (— Ky)'< 64 and p(X)<10. But
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the proof is not so easy as the proposition above.
About the anticanonical system | — K|, we have

Proposition 0.4, (1) If (—Ks):>2, then | — K| is free, i.e., free from
fixed components and base points.
() If(—Kg)\>3, then| — K| is very ample.

In the case d=(— K)*>3, the surface S, of degree d embedded into
P? by the morphism ¢ attached to | — K| is called the anticanonical model
of S. ‘

" If p(S)=1, then by the Poincaré duality, there is an ample divisor D
with (D%)=1. Since (—K;)*=9, — K, is numerically equivalent to 3D. It
is easy to see that dim | D|=2 and the map associated to | D] is an isomor-
phism. Hence we have

Proposition 0.5. If p(S)=1, then S=P*.

(0.6) Extremal ray of a del Pezzo surface S (Theorem 2.1 [3)]

Let NE(S)C({divisors}/=)®, R be the cone generated by effective
divisors on S modulo numerical equivalence. This cone is a closed poly-
hedral cone. If p(§)>2, then an irreducible reduced curve C such that
the equivalence class [C] lies on the edge of NE(S) satisfies one of the fol-
lowing:

1) Cis an exceptional curve of the first kind.

2) p(S)=2, S has a P'-bundle structure and C is its fibre.

Proposition 0.7. If S is minimal, then p(S)=1o0r S=pP'x P

Proof. Assume that p(S)>1. Since S has no exceptional curve of
the first kind, p(S)=2 and S has a P'-bundle structure by (0.6). Since
NE(S) has two edge, S has two P'-bundle structures. Hence S is isomor-
phic to P! x P!, q.ed.

Proposition 0.8. Let E be an exceptional curve of the first kind on S
and a: S— S’ the blowing down of E. Then S’ is a del Pezzo surface.

By these propositions, a del Pezzo surface S satisfies one of the fol-
lowing:

d=(—K)» o(S) S

1) 9 1

2) 8 2 P'xp

3) 8 2 F,

4) 1<d<7 10—d  the blow-up of P? at 9—~d points in

“general position*.
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The meaning of “‘general position™ in 4) is as follows.

Proposition 0.9. ([S]) The blow-up of P* at r points x,, - - -, x, (n<8)
is a del Pezzo surface if and only if no 3 of them lie on a line, no 6 on a conic,
and for n=38 all eight do not lie on a cubic which is singular at one of
Xy v 0 vy Xge

By these propositions, we can conclude that the del Pezzo surfaces
have exactly 10 deformation types.

§1. Main results

Our final result on Fano 3-folds is the following:

Theorem 1.1.  There are exactly 87 types of Fano 3-folds with B,>>2
up to deformations. (See [7] for the description of the 87 types.)

Theorem 1.2. A Fano 3-fold with B,>6 is isomorphic to P'X S,;_p,,
where S, is a del Pezzo surface of degree d. In particular, every Fano 3-fold
has B,<10.

The number N(b) of Fano 3-folds with B,=b up to deformations is
as follows:

b |2 3 4567809 10 >
N®)|36 31 12 3 1 1 1 1 1 0

We refer the reader to {4] for Fano 3-folds with B,=1 which are
called Fano 3-folds of the first species.

Definition 1.3. A Fano 3-fold is imprimitive if it is isomorphic to the
blow-up of a Fano 3-fold along a smooth irreducible curve. A Fano 3-
fold is primitive if it is not imprimitive.

Example 1.4. A Fano 3-fold with B,=1 is primitive. P'XP? P'X
P'X P! and a divisor W,C P?X P* of bidegree (1, 1) are primitive Fano 3-
folds. If a Fano 3-fold is a double cover of another primitive Fano 3-
fold with ample branch locus, then it is also primitive.

Example 1.5. Let C be a disjoint union of » smooth irreducible
curves in P* and assume that C is a scheme theoretic intersection of cubics.
Then the blow-up X of P? along C is an imprimtive Fano 3-fold with B,=
n+1.

Proof. 1t suffices to show that — K, is ample. Let @: X—P*® be the
blowing up and D=a"'(C) the exceptional divisor. Then we have — K
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~a*(—Kps)—D~4a*H—D for a plane H in P*. The linear system
|3a* H— D| is free by our assumption and |a*H|is also free. Hence | — K|
=|(Ba*H—D)+a*H|is free. By Proposition 4.6. [2] it suffices to show
that (— K- Z) >0 for every irreducible reduced curve Z on X.

Case in which a«(Z) is a point. Z is an exceptional line and (D-Z)
=—1. Hence (—Ky-Z)=@a*H-Z)—(D-Z)=4(H -a,Z)+1=1.

Case in which a(Z) is not a point. Since |3a*H—D|is free and H is
ample, we have

(—Ky-Z)=(a*H-Z)+@Ga*H—D-Z)>(H -a*Z)>0 q.ed.

The following is the first step of our classification and will be proved
in §8.

Theorem 1.6. Let X be a primitive Fano 3-fold. Then we have

(1) By(X)<3,

(2) if B{(X)=2, then X is a conic bundle over P* and

() if B(X)=3, then X is a conic bundle over P' X P' and has either
a divisor D=2 P' X P! such that @,(D)=0(—1, — 1) or another conic bundle
structure over P' X P'.

By (3) of the theorem, it is not hard, though we omit it here, to see
that a primitive Fano 3-fold with B,=3 satisfies one of the following:

(a) (—Kx)l=12. X s a double cover of P' X P'X P' whose branch
Jocus is a smooth divisor of tridegree (2, 2, 2).

(b) (—Ki)P=14. X isa smooth member of | LZ°R0,,, ».0(2, 3)|
on the P*-bundle P(0DO(—1, —1)®) over P'XP' such that XNY is
irreducible, where L is the tautological line bundle and Y is the unique
member of | L|.

() (—Ky)@=48. X isisomorphicto P'XP'XP".

(d) (—K,)»@=52. X is isomorphic to the P'-bundle P(@PDI(1, 1))
over P' X P

The primitive Fano 3-folds with B,=2 cannot be cassified only by (2)
of Theorem 1.6. The following will be proved in § 5.

Theorem 1.7. The primitive Fano 3-folds with B,=2 have the following
9 deformation types:
types of extremal
(— Ky b s of
)} 6 a double cover of P'XP* whose branch C,—-D,
locus is a divisor of bidegree (2.4)
2) 12 a double cover of W,, see 6), whose branch C,—C,
locus is a member of | — Ky} or a smooth
divisor on P*X P* of bidegree (2.2)
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) 14 a double cover of V,, see 8), whose branch C,—E, or E,
locus is a member of | —K,,|

4 24 a double cover of P'XP* whose branch C,—-D,
locus is a divisor of bidegree (2.2)

5 30 a smooth divisor on P*X P* of bidegree C,—C,

(1.2)
6 48 W,, a smooth divisor on P* X P* of bidegree C,—GC,
(L.D)
7 54 Prx p? C,—D,
8 56 V.=P(020(1)) C,—E
9 62 P(ODO(2)) C,—E;

§2. Known results

First we recall some known results on Fano 3-folds which are neces-
sary for our classification.

O. Elementary facts. Let X be a Fano 3-fold. Then by Serre
duality, the Riemann-Roch theorem and Kodaira’s vanishing theorem, we
have

i) h(0;)=0 for every i>0,

i) (—Kx a(X))=24x(0,)=24,

iii) dim|—Ky|=(/2)(—K)'+2 and

iv) Pic X is torsion-free.

In particular, the Picard number p(X') is equal to the second Betti number
B,(X) and is a topological invariant of X.

1. Fano 3-folds with index >2 ([3]). The largest integer r which
divides — K in Pic X is called the index of X. Fano 3-folds with index >2
are classified as follows:

index of X By(X) (—K,) X
4 1 64 o
3 1 54 a smooth quadric Q in P!
2 1 8d Vs 1€d<5
2 48 W,
3 48 P'x Prx P!
2 56 V., see Theorem 1.7,

where 1) ¥, is a double cover of the Veronese cone W, C P* whose branch
locus is a smooth intersection of W, and a cubic hypersurface not passing
through the vertex of the cone,

2) V,is a double cover of P* whose branch locus is a smooth quartic
hypersurface,

3) V¥, is a smooth cubic hypersurface of P*,
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4) V,is a complete intersection of two quadrics in P53,

5) V,is a complete intersection of a linear subspace P*® in P° and the
Grassmann variety Grass (P‘DP') embedded in P® by the Pliicker
embedding, and

6) W, is a smooth divisor on P*X P? of bidegree (1.1). W, is iso-
morphic to the P'-bundle P(T,,) over P2,

II. Fano 3-folds whose anticanonical systems are not very ample
([3]). Let X be a Fano 3-fold of index 1. Then we have

1) the anticanonical system | — K| is free (i.e., free from fixed com-
ponents and base points) except for the following two cases

(i) Xis a isomorphic to the blow-up of ¥, along a smooth elliptic
curve which is a complete intersection of two members of |—(1/2)K,,].
One has (— K;)'=4.

(ii) X is isomorphic to P'X S,, where S, is a del Pezzo surface of
degree 1. One has (—Ky)*=6.

2) Assume that | —K| is free but not very ample. Such Fano 3-
folds are called hyperelliptic and classified as follows:

B(X) (—Ky) X

1 2 a double cover of P* whose branch locus is a
smooth sextic.

1 4 a double cover of a quadric hypersurface Qc P*
whose branch locus is a smooth intersection of
O and a quartic hypersurface

2 6 a double cover of P! X P* whose branch locus is
a smooth divisor on P'X P? of bidegree (2.4)

2 8 the blow-up of ¥, along an elliptic curve which
is a complete intersection of two members of
| —(1/2)K,,|

9 12 P! X S, where S, is a del Pezzo surface of degree
2.

III. Existence of lines ([8], [9]). Let X be a Fano 3-fold whose anti-
canonical system is very ample. Its anticanonical model, i.e., the image
of X by the morphism attached to | — K|, is a subvariety of degree 2g—2
in P3*!, where g=(1/2)(— Ky)'+1.

Theorem (§okurov). If the index of X is equal to 1 and if X £ P' X P,
then there exists a 1-dimensional family of lines on the anticanonical model
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§3. Extremal rays of Fano 3-folds

We apply the theory in [6] to Fano 3-folds. Let X be a Fano 3-fold
with B,>2. Let N,(X) (resp. NE (X)) be the set of numerically equiva-
lence classes of 1-cycles (resp. effective I-cycles) on X. Let N(X)=N.(X)
®, R and NE(X) the cone in N(X) generated by NE,(X). By Theorem
1.2 (6], we have

3.1 NE(X) is a closed polyhedral cone.

Let R be an extremal ray of X, i.e., a half line which is an edge of the
polyhedral cone NE(X). There exists a morphism f: X— Y to a normal
projective variety such that (i) f,0,=0, and (ii) for any irreducible
reduced curve C on X, [C] ¢ R if and only if f(C) is a point. Such an f
is unique up to an isomorphism, called the contraction of R and denoted
by cont;: X— Y (Theorem 3.1 [6]).

Put (R)=min {(—K,-Z)|Z is a rational curve such that [Z] ¢ R}
and let /=1I; be a rational curve such that [/]e R and (—K,-/)=p(R).
Then there exists an exact sequence

" .
G.2) 0—>Pic Yo Pic xX B 250,

where ( -)(D)=(D-1) for D e Pic X. (Theorem 1.2 [6]. The surjectivity

of ( -1) is a consequence of classification of R and Corollary 3.6 below and

not true in general if X is not a Fano 3-fold.) In particular, we have p(X)
R and f=cont, are classified as follows:

Case dim Y=3: There exists an irreducible reduced divisor D of X
such that f],_p is an isomorphism and dim f(D)< 1. Such D is uniquely
determined by R and called the exceptional divisor of R. Moreover f is
the blowing-up of Y by the ideal defining f(D) (given the reduced structure).
fand D satisfy one of the following ({6] Theorem 3.3 and Corollary 3.4)

type of R fand D p(R) I
E, f(D) is a smooth curve, Y is smooth and 1  exceptional
flp: D—¢(D) is a P'-bundle. line
E, f(D)is a point, Y is smooth, D=P?*and 2 linein
O0(D)=20p(—1). D=pP?
E, f(D) is an ordinary double point. D=P* 1 sxPl'or
X P, 0(D)=0(—1, —1) and sX P! and P'xtinD

P! % t are numerically equivalent for every
s, te P,
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E, J(D) is a double point. D is an irreduci- 1  generator
ble reduced singular quadric surface in P?, of the cone
Op(D)=0,Q0p(—1). D

E, f(D) is a quadruple point of ¥, D=P?, 1 linein
and O,(D)=Op(—2). Dz=p?

If R is of E,-type, then either (1) Y is a Fano 3-fold or (2) D=P'x
P! and 0,(D)=0(—1, —1) (Proposition 4.5).

R is called of E, ,-type in the case (1) and of E, ,-type in the case (2).
If R is of E, ,-type, then a horizontal section of f|,: D—C is not nu-
merically equivalent to a fibre of f|, (because Y is projective), and be-
longs to another extremal ray of E, ,-type. If B,(X)=2, then Y is always
a Fano 3-fold because Y is projective and p(Y)=1. Moreover, Y is of
index>2 (Proposition 4.10).

In the case R is of E,-type, Y is a Fano 3-fold. The proof is similar
to and easier than Proposition 4.5.

If the ray R is of type E, E,, E, or E,, then the exceptional divisor
has the following property:

(3.3) Both 0,(D) and w, are negative, i.c., their inverses are ample.
Every curve in D can move in D.

(3.4) D is mapped to a point by every morphism g from X onto a curve
if there is any.

Proof. If Ris of type E,, E, or E,, then D has no nontrivial mor-
phism onto a curve. If R is of type E,, then D=P'X P'. Hence either
g(sX P) or g(P' X t) is a point, or equivalently, the intersection number
(sX P'-g~'(point)) or (P' X ¢-g-'(point)) is zero. Since sX P! and P' X ¢
are numerically equivalent for every s, 7 ¢ P! by definition, both g(s X P')
and g(P' X t) are points. It follows that g(D) is a point. g.e.d.

Case dim Y=2: Y is a smooth projective surface, f: X— Y is a conic
bundle and f~*(C) is irreducible for every irreducible curve C on Y (Pro-
position 6.3). We have the following two cases:

type of R f #(R) !
C, J has a singular 1 an irreducible component of a
fibre reducible fibre or a reduced part

of a multiple fibre
C, fis a P'-bundle 2 afibre

Proposition 3.5, Y is rational,

Proof. Since g(X)=0 and [ is surjective, g(¥)=0. By the formula
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—4K, = fo(— Kx)+ 4, (Proposition 6.2, (4)), (K, - 4) is negative for every
ample divisor 4 on Y. Hence all the plurigenera P,(Y) vanish. There-
fore Y is rational by Castelnuovo’s criterion. q.e.d.

Corollary 3.6. If R is of Cy-type, then f is locally trivial for Zariski
topology.

Casedim Y=1: Yisa smooth curve and p(X)=p(Y)+1=2. Every
fibre of fis irreducible and reduced and the generic fibre X, is a del Pezzo
surface. We have the following three cases:

type of R S ¢(R)
D, X, is a del Pezzo surface of degree d, 1 <d<6. 1
D, J is a quadric bundle, i.e., every fibre is iso- 2
morphic to a normal quadric surface in P®.
D, fis a P*-bundle. 3

Since g(X)=0 and fis surjective, g(Y)=0. If follows that Y=P".

§4. Blowing-up aud blowing-down of Fano 3-folds

Let f: X— Y be the blowing-up of a smooth 3-dimensional variety ¥
along a smooth irreducible curve Con Y. We will keep the meaning of
these symbols in this section. The following are easily verified:

4.1) —Ky~f*(—K,)— D for the exceptional divisor D of f.

(4.2) D=P(N},y) and @,(—D) is the tautological line bundle, where
N,y is the normal bundle of C and N}, is its dual vector bundle.

@4.3) (D)=—deg Neys, (D™ —Ky)=2p,(C)—2,
D (=K ))=(—Ky C)+2—2p,(C) and
(=Kl =(—Kp)y—2{(— Ky - C)—p(C)+1}.

Lemma 4.4. Assume that X is a Fano 3-fold. Then we have

1 (=K, -C)>2p,(C)-2,

(2) (—K,-C)=0if Cisrational. The equality holds if and only if
Nepy=0(—1)® or equivalently D=P' X P' and 0,(D)==0(—1, —1), and

() (—Ky-C)>p(C)—1 and (— Ky) <(—Kyp)'.

Proof. Since —K, is ample, ((—Ky)*- D) is positive. Hence (1)
follows from (4.3). Since — K is ample, so is @,(—Ky). Since 0,(—Kj)
is a tautological line bundle of f],: D—C, the direct image F=
(f10)«0o(—Ky) is ample. If C=P?, every vector bundle on C is a direct
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sum of line bundles. Hence ((—K,)*-D)=deg F>2 and the equality
holds if and only if F=&(1)®. (2) follows from this and (4.3) because
F=N.,Qwz'. (3)is an easy consequence of (1), (2) and (4.3). q.e.d.

Proposition 4.5. If X is a Fano 3-fold, then one of the following holds:

(1) Y is a Fano 3-fold, and

(2) C=P' and Ng=0(—1)®* or equivalently D=P'XP' and
0, (D)=d0(—1, —1). Even in the case (2), | —nK,| is free for some n>>0.

Proof. First we show
Claim: | —nK,| is free for some n>0.

| —mKy| is free for some m>0. Therefore by (4.1), | —mKy| has no fixed
components or no base points outside of C. By Kodaira’s vanish-
ing theorem, the restriction map HY0,(—K;))=HYOx(— K+ D))—
HY0,(—K,+ D)) = H(0,(—K,)) is surjective. Since h°(O;(—Ky))>
1O, (—Kp)=(—K;-C)—p,(C)+1>0 by Lemma 4.4, |—K,| has a
member not containing C. Hence | —mKX,| has only a finite number of
base points. By Zariski’s Theorem, | —m’'mK,| is free for some m’ >0.
(—K;-Z)>0 for every irreducible curve ZC on Y, because
(- K - Z)=(f(—K;)-Z)=(—Ky-Z}+(D-2Z")>0, where Z' is the
strict transform of Z. Hence, if (— K, - C)>0, then Y is a Fano 3-fold by
Proposition 4.6, [2]. If (—K,-C)=0, then C and D satisfy (2) by Lemma
44. q.ed.

Corollary 4.6, Let V be the blow-up of a Fano 3-fold W along a dis-
Jjoint union of two smooth curves C, and C, on W. If V is a Fano 3-fold,
then the blow-up V, of W along C, is a Fano 3-fold for each i=1, 2.

Next we consider a necessary condition for X to be a Fano 3-fold.
The following is used very often in our classification.

Proposition 4.7. If X is a Fano 3-fold, then C does not meet any curve
Z with (— Ky Z)=1 in a zero-dimensional set.

Proof. Assume that C meets a curve Z with (— K- Z)=1 in a zero
dimensional set. Let Z’ be the strict transform of Z by f. Then, by (4.1),
we have (— Ky - Z")=(f*(—Ky)-Z')—(D-Z')=(—Ky [, Z")—(D-Z")=1
—(D-Z’). By our assumption (D-Z’) is positive. Hence (—K,-Z)is
nonpositive and — K is not ample. q.e.d.

Corollary 4.8. Assume that Y is isomorphic to the blow-up of Y'. If
X is a Fano 3-fold, then either C is disjoint from the exceptional divisor of
Y]Y’ or C is an exceptional line of Y|Y’ (i.e., an irreducible reduced curve
on Y which is mapped to a point of Y').
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Proposition 4.9. Assume that C=P' and (—K,-C)=1. IfXisa
Fano 3-fold, then Ny, = 0pD0p(—1).

Proof. Since deg Ngy=(—Ky C)+degKe=—1, Ngy=0p(n)®
0(—1—n) for some n>>0. Let s be the section of P'-bundle D=P(N},y)
—C corresponding to the exact sequence

0—>0(n+41)—>N¥,—>O(—n)—>0.

By (4.1) and (4.2), we have (— K- 5)=(f*(—K;):)—(D-5)=(—Ky-f;5)
+(@p(—D)-s)p=1—n. Therefore if X is a Fano 3-fold, we have n=0.
q.ed.

The following proposition shows that, in order to classify imprimitive
Fano 3-folds, it is not necessary to consider the blowing-up of Fano 3-folds
of the first species. Its proof is heavily due to Sokurov’s result.

Proposition 4.10. If' Y is a Fano 3-fold of the first species, i.e., with
B,=1 and of index 1, then X is not a Fano 3-fold.

Proof. Case l. |—Ky|is not very ample. By Il of §2,(—X,)'=2
or4. If X were a Fano 3-fold, (—K,)* would be equal to 2 by (4.3).
Since X is of index 1 and B,(X)>>2, | — K| would be very ample through
II of § 2 and hence X=2P* by the anticanonical map, which is a contra-
diction.

Case 2. |—K,|is very ample. By IIl of §2, Y has a 1-dimensional
family of rational curves Z with (—K,-Z)=1. Let S be the union of
such Z’s. Since p(Y)=1, Sis ample. Hence C meets a rational curve Z
with (— K- Z)=1. If CN Z is 0-dimensional, then X is not a Fano 3-fold
by Proposition 4.7. If C=Z and N,,, % 0D0(—1), then X is not a Fano
3-fold by Proposition 4.9. If C=Z and N, =0P0(—1), then we can
show that C meets other d} 1 rational curves Z’ (counted with multiplicity)
with (— K, - Z")=1, where d is the degree of the surface which is the union
of all the deformations of Z. Hence X is not a Fano 3-fold by Pro-
position 4.7.

§5. Classification of Fano 3-folds with B,=2

Let X be a Fano 3-fold with B,=2. Since N(X)=R? NE(X) has
just two edges, i.e., extremal rays R, and R, by (3.1). Set f;=cont,,: X—
Yy, pe=p(R) and ;=1 for i=1, 2. Let L, be an ample generator of
Pic Y, and put H,=f*L,. The proof of the following is one of the essential
parts of the classification of Fano 3-folds with B,=2. :
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Theorem S.1. (1) Pic X is the direct sum of f;*Pic Y, and f*Pic Y,.
{H,, Hy} is a basis of Pic X and {L,, 1.} is the dual basis of N,(X). Moreover,
— Ky = pH, + 1 H,.

(2) IfR.isof type E, E,, E, or E,, then (D,-1,)=1, where D, is the
exceptional divisor of R,.

Proof of (1) (mainly in the case X is primitive).

If R, or R, is of D,-type, then X is a Fano P%-bundle over P' and we
know that X is isomorphic to P'X P* or the blow-up of P* along a line.
For these X, (1) is easily checked. Hence we may assume that neither
R, nor R, is of Dytype.

By (3.2), we have two exact sequences

0 . fi 5. (1) ,
—>Pic Y,—>Pic X-—>Z—0 i=1, 2.
By the definition of f,=cont,, it is obvious that £;* Pic Y, N f;* Pic ¥,={0}.
Let a be the order of the quotient group Pic X/3,.,./* Pic ¥,. By the
above exact sequences, both (H,-1)and (H,-1) are equal to a. Since
(H,-1)=0and (— Ky -I)=p, for i=1, 2, we have

(5-2) a(— Ky) = pH, +u H,.
Hence it suffices to show that a=1. We will deduce it from the equality
(5.3) 2da=a(— K- (X)) =p(H,- X))+ p1i(Hy - (X))

and an estimation of (¢,(X)- H,).
By the Riemann-Roch Theorem, we have

Lemma 5.4. Let D be an effective divisor on X, then (c,(X)-D)=
6x(0p)+6x(0 (D) —2(D*) —((— Kx)*- D).

By the lemma, we have

typeof R | E,=E,, E, E,or E, E,
.5) (eX) - H) | 24/r4 deg C 24/r 24/r  45/r
C, C, D, D, D

b

degd+6 6 12—(K,) 4 3

where r is the largest number which devides — K+ D (resp. — Kz +2D,
2(—Ky)+D), D being the exceptional divisor of R, in Pic X if R is of
type E, or E; or E, (resp. E;, E;), C is the center of the blowing-up fand
deg Cis (L-C)if R is of E-type, 4 is the discriminant locus {reY|X,is
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not smooth} of f'if R is of C,-type, where Y= P* by Proposition 3.7, in
the case R is of type C, or C,, and X, is the generic fibre of £if f is of D,-
type.

For example, in the case R is of type E, or E,, applying the lemma to
the exceptional divisor D, we have (c(X) -D)=6+0—4—2=0. Since
—Ky+DzrH, (cfX)- H) is equal to (1/r){(c/(X)- — Ky)+(cx(X)- D)} =
24/r.

If R is of type C,, then Y= P* and by the formula 4= —4K,,—
fo(—K) (Proposition 6.2), we have deg 4< 12. It follows that

(5.6) 7<(e(X)-H)L17 if R is of C,-type.

If R is of type D,, then 1<(K; ,)*< 6 by the classification of extremal
rays. Hence we have

¢.7 6<(e(X)- )11 if R is of D,-type.

We consider the case in which X is primitive. By Theorem 1.6, at
least one of R, and R, (say R,) is of type C, or C,. R, is not E,-type since
X is primitive. Hence by (5.5), (5.6) and (5.7), we have

(5.8) (cX)-H)<24 or =45,

Case 1. R, is of C,-type

i) w=1. a(—Kp)xH,+H, If(c(X)-H,)=45, then we have by
(5.3) and (5.6), 51=7+445<24a<17445=62, which is a contradiction.
Hence (c(X)- H;)< 24 by (5.8) and we have 24a=(c,(X)- H,)+(c.(X)- H,)
<17424=41. It follows that a=1.

i) p.=2. a(—K;)x2H,+H, Ifa were even, then H, would be
divisible by 2 in Pic X, which contradicts to our choice of H,. Hence a is
odd. Since R, is of type E, or C, or D, (see § 3), (c(X)- H,)< 24 by (5.5).
Hence we have 242<2.174-24=58 by (5.3) and (5.6). It follows that a=1.

Case 2. R, is of C.-type

) pw=1. a(—K )= H,+2H, By the same reason as above, g is
odd. By (5.3) and (5.5), we have 12a=3+4(c.(X)- H,). By (5.8), we have
a=1.

i) =2 a(—K;)=2H,+2H, By (5.3), 12a=6+4(c(X)-H,). In
the case R, is of E,-type, from the equality 12a=6-(24/r), we obtain a=1
and r=4. If R, is not of E-type, then (c,(X)- H,)<6 and we have a—1.

In the case X is imprimitive, (1) can be proved in a way quite similar
to the primitive case by Lemma 5.9 below. Since X is imprimitive, R, or
R, is of E,-type.
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Lemma 5.9. If R, is of E,-type, we have

(1) deg C,<(r,—(pfa)yd,, where C, is the center of f,=contg, and
d=(L})-

(2 (eX)-H)L31.

B (X)) -H)L25ifa<3, <23 ifaL2and <17 if a=1.

4 (c(X)-H)L20 if a<3 and p,=2.

Proof. (1) Since both H, and H, are numerically effective, (H,- H})
>0 (cf. [2]). On the other hand, by (4.2) and — K, =r,H,— D,, we have

0< pi(H, - H)=(H,-(a(— Ky)— . H,)")
=(H,-((ar, —Pz)Hx’—aDI)z)
=(ar, _ﬂz)g(Hf)‘*' a*(H,- D}).

Since (H,- D})= —deg C, and (H})=(L})=d,, we have our assertion.

(2) By Proposition 4.10, the index r, of the Fano 3-fold Y, is greater
than 1. Hence by I in § 2, the possibility of the pair (r,, d,) is limited to
4,1), 3,2) and (2,4d), 1<d,<5. Hence by (1), we have (c(X):- H)=
(24/r)+deg C,<maxq,, ¢ [(24/r))+(r,—(1/a))’d}=31, where [ ] is the
Gauss symbol. This shows (2). (3) and (4) are proved in a similar way.

q.e.d.

Proof of (2) in Theorem 5.1. Here we only prove (2) in the case X is
primitive,

Case 1. R, is of C-type. By (1) of Theorem 5.1, — K, & . H,+ H,.
Since H,- D,z 0 and Hizz2l,, we have 2(/,- D,) = (H3}- Do) =1/} ((— K )*-
D,)=1if R, is of type E, or E,, and =2 if R, is of type E, or E,. Hence
R, is of type E, or E, and (/,- D,)=1.

Case 2. R,is of type C,. By (1) of Theorem 5.1, — K, = p, H,+2H,.
R, is not of type E, or E,, because 24=(c,(X)- H))+2(c{X)- H,)=6+
(48/r) has no integral solution. Hence R, is of type E, or E; and we have
(h- D)=(Hi-Dy=(1/p)(— Ky)- Do)=1. q.e.d.

Now we classify the primitive Fano 3-folds with B, =2 by using
Theorem 5.1. We denote by (x —x*x) the case in which the ray R, is of
-type and R, of xx-type. We may assume that R, is of C, or C,-type.

Case 1. R, is also of C, or C,-type. Both f, and f; are conic bundles
over P%.  Consider the morphism f=(f, f;): X—P?*X P:. By the defini-
tion of f;, f is finite.

Claim. f,X is a divisor of bidegree (2/u,, 2/1,).
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Proof. Put M =n}F0p(l) for i=1, 2, where r,: P* X P*—>P* is the
projection onto the i-th factor. Since f*M, = H, and Hi=(2/u)!,, we have

(f,.X - point X line) =(f, X- M3 My)=(f*M3-f*M,)
=@ Hy="2(-H) =2

& H
by Theorem 5.1. It follows that f, X a2 (2/p,) M, + (2/p,)M.,. q.ed.

Claim. 1If the natural morphism «: X—f(X) is birational, then it is
an isomorphism.

Proof. Assume that « is birational. Since « is finite, we have — K
~a*(— K, x,)+ 4 by the residue formula, where 4 is the zeros of the con-
ductor ideal. Since f(X) is of bidegree (2/s,, 2/u,), we have

a*(= K= f*(3= 2\ M,+£*(3= 2 ) MumuH, + b
M H
Hence by Theorem 5.1, 4 is empty, that is, X— f(X) is an isomorphism.

q.ed.

(C,—C)) f is generically one-to-one or two-to-one. In the former
case, f'is an embedding and the image is a divisor of bidegree (2,2). In
the latter case, X is double cover of f(X). f(X)CP*XP? is of bidegree
(1, 1) and smooth because both ,),r, and =,|,y, are equidimensional (type
2) in Theorem 1.7).

(C,—C,) X is isomorphic to a smooth divisor on P*X P* of bidegree
(1, 2) (type 5) in Theorem 1.7).

(C;—C)) X is isomorphic to W,, a smooth divisor on P*XP? of
bidegree (1, 1) (type 6) in Theorem 1. 7).

Case2. R, is of D,, D, or Dytype. Consider the morphism f=
(i, f2): X—P*x P'. fis finite and surjective. By Theorem 5.1, we have
deg f=(H}- H))=Q/w)(},- H)=2/y,. Therefore X is a double cover of
Pt % P! or isomorphic to P* X P! (type 1), 4) and 7) in Theorem 1.7).

Case3. R,isof E,, E,, E, or E-type. By (2) of Theorem 5.1, the
degree of f}|,,: D,—P* is equal to (H}-D)=Q/p)(!,- D;)=2/p,=1 or 2.
Hence if D, = P? then y,=2 and deg fi|,,=1, that is, if R, is of E; or E;-
type, then £, is a P'-bundle and D, is a section of f;. Therefore X is iso-
morphic to P(ODA(1)) or P(ODO(2)) according as R, is of E.-type or
E.-type (type 8) or 9) in Theorem 1.7),

In the case R, is of type E; or E-type, then g,=1 and degf;|,,=2.
Since 0.(— Ky—D,) is trivial for every fibre F of f,, it is isomorphic to
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Ji¥Op(n) for some integer n. Since @, (— Ky —D,)=0,,2), n=2. Since
Op(—K)=0p (1), 1,400,(—Kx)=0pD0p(1). Hence by the exact
sequence 0— Og(—Ky—D,)— O0x(—Ky)—>0p(— K;)—0, we have 0—
O0p(2)=f1,x0x(— K¢)—0pD0p(1)—~0. Hence f ,0x(—Kx)=0,D0p(1)
@0p(2). Since f; is conic bundle, X is a divisor of P(0p,D0-(1)B0(2)).
Since — K ~ L|y, X is linearly equivalent to 2L, where L is the tautological
line bundle. Let S be the section of P(@DO(1YPA(2)) corresponding to
the exact sequence 0—O(1)YDI(2)—0DI(1YDO(2)—0—0. Since Lis is
trivial and X is Fano, XNS=¢. P(ODO(1)YDPO(2))—S is isomorphic to
the line bundle Z=V(0,,((— 1/2)K,,)) over V;. 1t is easy to see the restric-
tion of Z—V, to X is a double covering. (type 3) in Theorem 1.7)

So we have proved that every primitive Fano 3-fold with B,=2 belongs
to a class in Theorem 1.7. It is easily verified that every class in Theorem
1.7 is a family of Fano 3-folds parametrized by an irreducible variety.
Moreover every two different classes cannot be deformed to each other
because they have different values of (—K,)*. Therefore the primitive
Fano 3-folds with B,=2 have exactly 9 deformation types as described in
Theorem 1.7,

The imprimitive Fano 3-folds with B,=2 are also classified by using
Theorem 5.1. For example, we consider the case (E,—E,). In this case,
X is the graph of birational map between Y, and ¥,. Let C, be the center
of the blowing-up f;, r, the index of Y, and put d,=(L3).

(5.11) deg Ci=(r,—1)’d, —(r.— 1)d,
(—Kxy=03r,—2)d,+(3r,—2)d..

Proof. —Ky~fX(—K;)—D,~rH,—D, fori=1,2. On the other
hand, — K, % H,+ H, by Theorem 5.1. Hence D,=(r,—1)H,— H, and D,
=(r,—)H,— H,. Since (H-D,)=0 for both i=1, 2, we have (H}- H,)=
(r,— YHHN=(,—1)d, and (H,- H)=(r,— 1)d.. Therefore

deg C,=—(H, D)= —(H, - (n—DH,— H,))
= —(n— 1Y (H)+2(r,—1)(H}- H)—(H,- H})
= —(r,— 1)’d,+ 2(r,— 1)’d, — (r,— 1)d,
=(r—1d,—(r,— 1)d,.
The second equality is obtained in the same way. q.e.d.
By Proposition 4.10, both r, and r, are greater than 1. By (5.11),
deg C,+deg C,=(r,— 1)(r,—2)d, + (r;— 1)(r,— 2)d..

Hence either r, or r, is greater than 2. By I of § 2, we can show that Fano
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3-folds with B,=2 of type (E, — E,) have the following 6 deformation types:
(—Kyy Y, degC, pC) Y, degC, p.(C)

D 20 P 6 3 P 6 3
2 24 P 5 1 0 5 1
3) 26 P 5 2 V. 1 0
4 28 Qo 4 0 0 4 0
55 30 P4 0 v, 2 0
6 34 0 3 0 v, 1 0

Here p,(C,) can be computed by (4.3).
As a corollary of the classification, we have

Proposition 5.12. An imprimitive Fano 3-fold X with B,=2 satisfies
one of the following:

(@) X is isomorphic to the blow-up of P* along a smooth irreducible
curve which is a scheme-theoretic intersection of cubics.

(b) X is isomorphic to the blow-up of QC P* along a smooth irreducible
curve which is a scheme-theoretic intersection of members of |0(2)|.

(¢) X is isomorphic to the blow-up of V,, 1<d<S, along an elliptic
or rational curve which is a scheme-theoretic intersection of members of
l —(I/Z)ch"

§6. Fano conic bundle

First we recall some general properties of a conic bundle f: X—S.

Definition 6.1. A morphism f: X—S from a smooth variety X onto
a smooth surface S is a conic bundle if every fibre is isomorphic to a conic,
i.e., 3 scheme of zeros of a nonzero homogeneous form of degree 2 on P

The set {s € S|/~'(s) is not smooth} is called the discriminant locus of f and
denoted by 4,.

Proposition 6.2, (1) fis flat and fLw3' is a vector bundle of rank 3
and the natural map X—P(f,w3") is an embedding. In particular, X is pro-
Jjective if S is projective.

(2) If 4, is non-empty, then it is a curve with only ordinary double
points and Sing 4,=/{s e S| f~(s) is non-reduced}.

(3) If a smooth rational curve C is a connected component of 4,, then
SN C) is reducible.

(4) Afg _f*Kl%/S = “‘f*K?r“ 4K.

Proof. For (1) and (2) see Chapter I[1]. Let C be a smooth rational
curve which is a connected component of 4,. By (2), f~'(s) is 2 union of
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two smooth rational curves, for every s € C. Let CCHilb, be the para-
metrizing space of those rational curves. Since C= P and C is isomorphic
to an étale double cover of C, C is disconnected. Hence f ~}C) is reduci-
ble. This shows (3). Let C be a smooth curve on S intersecting 4, trans-
versally and such that the surface f~'(C) is smooth. It is easy to see that
rational equivalence classes of such curves generate Pic S. Y;=/-"(C)is
isomorphic to the blow-up of a P'-bundle ¥, over C. Since (K;,/c)* ~0,
— K% ¢ is rationally equivalent to the sum of the singular points of fibres
with all coefficients 1. It follows that —f, K} ,;~4,-C. Since w, is ca-
nonically isomorphic to wy/s|y, we have 4,-C~ —f K} ,c~ —f,(K%/s- ¥)
~ —f(K¥s f*C)~ —(fK%/s)-C. In particular, d;- C)y=—(fK%s-
C), thatis, 4, —f,K%,;s. On the other hand, since f, K, ~ — 28, we have
—[iK s~ =LKy —f*K) ~ —f, K% — 4K, which shows (4). q.ed.

Proposition 6.3. Let f: X—S be a conic bundle over a projective sur-
Sface S. Then we have

() p(X)—p(S)=1 if and only if f-(C) is irreducible for every irre-
ducible curve C on S.

(2) Assume that f~'(C) is reducible for an irreducible curve C on S.
Then 1) Cissmooth, ii) f~'(C) is a union of E, and E, such that f| PR
C is a P'-bundle for i=1, 2 and iii) there are a conic bundle g,: Y,— S
and a morphism a,: X—Y, which is the contraction of all fibres of f|g,, such
that g;o a,=f for both i=1, 2. Moreover 4,,=4,,, p(Y)=p(Y>), 4,=4,,
LI C and p(X)=p(Y,)+1 for i=1, 2.

By an induction on p(X)— p(S), we have

Corollary 6.4. 4, has n connected components C,, - - -, C, such that
C, is smooth and [~\(C,) is reducible for i=1, - - -, n, where n=p(X)— p(S)
-1

Proposition 6.5. Let the situation be the same as in (2) of Proposition
6.3 and assume, in addition, that X is a Fano 3-fold. Then we have

() IfY, isnot a Fano 3-fold, then C=P', E,=P'XP' and 0 (E)
=0(—1, —1).

(2) Either Y, or Y, is a Fano 3-fold.

Proof. (1) is an immediate consequence of Proposition 4.5. Assume
that neither ¥; nor Y, is a Fano 3-fold. Since every fibre of fis connected
s=E N E, is not empty. Since @,(E,) is negative by (1), (s.E)=(s- E,|5,)s,
is negative. On the other hand, since s moves in E,=P'x P!, (s-E) is
non-negative, which is a contradiction. q.e.d.

The following is another important property of Fano conic bundles.
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Proposition 6.6. Let f: X— S be a conic bundle and assume that X is
a Fano 3-fold. Let E be an irreducible reduced curve on S such that (E*)<0
and f-*(E) is irreducible. Then we have

(1) E is an exceptional curve of the first kind.

2) fli-use» is a trivial P'-bundle over E, and

() there are a Fano conic bundle f': X'—S’ and A: X—X’, the
contraction of the horizontal fibres of f|,-i g such that f'o A=waof, where
a: S—S’ is the blow down of E.

Proof. Let Z be a curve on X such that f(Z)=E. By (3.1), there
are irreducible reduced curves C,, 1<i<n, such that [C] is on an edge
of NE(X) and that Z& 3> 7., a,C, for some positive numbers a,. Since
(f4Z- E) is negative, (f,.C,- E) is negative for some i. It follows that there
is an irreducible reduced curve C such that [C] belongs to an extremal ray
R of X and f(C)=E. Since (C.f-}(E)) is equal to (f,.C- E) and negative,
Ris of type E,, E,, E,, E, or E, and f~}(E) is the exceptional divisor of R
by the classification of extremal rays. Since f~*(E) has a morphism o=
Sls-1s onto E =P which does not contract the curve C belonging to the
ray R, and since C and the fibre of ¢ are not numerically equivalent, R is
of E,-type. Hence f~'(E) is smooth and has a P'-bundle structure +:
f-Y(E)—T over a smooth curve T which contracts C to a point. It is easy
to see that the morphism (o, ¥): f~'(E)—EXT is an isomorphism and
both E and T are rational, which shows (2). By (2), C is a section of ¢
and we have (E*)=(fC- E)=(C-f~(E))=—1 from which (1) follows.
Since N,_y(g,y is isomorphic to ¢* N, and is not negative, the X’ in 4=
conty: X—X’, is a Fano 3-fold by Proposition 4.5. It will be clear that
the morphism f/: X’—S is well defined and is a conic bundle. g.ed.

Corollary 6.7. Let f: X—S be a Fano conic bundle. Then we have

(1) every irreducible curve E on S with (E*)<0 is an exceptional curve
of the first kind, and

(2) if Eis an exceptional curve of the first kind, then 4, is disjoint from
E or contains E as a connected component.

Proof. (1) follows from (1) of Proposition 6.6, (2) of Proposition 6.3
and (2) of Proposition 6.5. If f~'(E) is reducible then 4, contains E as a
connected component by Proposition 6.3. If f-'(E) is irreducible, then 4,
is disjoint from E by Proposition 6.6. Hence we have (2). g.e.d.

For the classification of imprimitive Fano 3-folds with B,>>3, it is
necessary to classify the curves C on a Fano conic bundle Y such that the
blow-up of Y along C is a Fano 3-fold. Propositions 6.8 and 6.10 give
strong necessary conditions on CCY.
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Proposition 6.8. Let g: Y—S be a Fano conic bundle and C a smooth
irreducible curve on Y. Assume that the blow-up X of Y along C is a Fano
3-fold. Then we have

(1) C does not meet any singular fibre of g; and (2) C is either (i) a
smooth fibre of g or (ii) a subsection of g, i.e., g|; is an embedding C=—>S.
In the case (i), X is a conic bundle over S’, the blow-up of S at g(C). In
the case (i), f=g o et is a conic bundle such that 4,=4,]]g(C), where a: X
— Y is the blowing-up along C.

Proof. (1) Assume that C meets a singular fibre. Then C meets /,
an irreducible component of a reducible fibre or the reduced part of a
multiple fibre. In both cases, (— K, -I)=1. Hence if C+£/, then X is not
a Fano 3-fold by Proposition 4.7. If C=/ and [ is an irreducible com-
ponent of a reducible fibre, C meets another component of the reducible
fibre and hence X is not a Fano 3-fold. If C=/and /is the reduced part
of a multiple fibre, then N, =O(1)®O(—2) and hence X is not a Fano
3-fold by Proposition 4.9.

(2) If g(C)is a point, then by (1), C is a smooth fibre of g. Assume
that g(C) is not a point and X is a Fano 3-fold. Let Z be the proper
transform of a fibre g-'(s). Then we have (D- Z)=(a*(—Ky)+Ky-Z)=
(—Ky-a,Z)—(—Ky- Z) <(—Ky-g7'(s))=2, where D is the exceptional
divisor of @. Hence, for every s € S, g-'(s) is disjoint from C or intersect
C transversally at one point. Therefore g|; is an embedding. The latter
part of (2) is almost clear. q.ed.

If C is a subsection of a conic bundle g: Y—S such that g(C)dg=¢
and X is the blow-up of Y along C, then there are a conic bundle g’: ¥’
—S (the elementary transform of g along C) and a morphism a’: X— ¥’
such that 4,.=4,, p(Y)=p(Y"), satisfying the two conditions (a) goa=
g’ oo’ and (b) &’ is birational and an irreducible reduced curve Z on X is
contracted to a point by o’ if and only if Z is the proper transform of a
smooth fibre of g meeting C (Proposition 6.3).

[y
_ BN
12/
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6.9 (—Kyp)=(—Kp)*+ 2(g(C))s—H— Ky 5 C).
Proof. Applying (4.3) to « and &', we have

(— K7y =(—Kp)'—2{(— K, C)—p(C)+ 1}
=(=Kyp)'=2{(— Ky - C)—p(C)+ 1},

where C is the center of the blowing-up &’: X—Y’. Since C=C'=g(C)
and (g*K;- C)=(g’*K,- C’), we have

(=K P =(—Ky)—2(— Ky 5 C)+2(—Kyrys- C').

Since C and C’ are subsections, (—K,s- C) and (—Ky.,s- C’) are equal to
the self-intersection numbers (C*),-.15cy aNnd (C')gr-1gr(cry» TeSPECtively.
Hence our assertion follows from:

Claim. (CYg-1gcr+ (sz)g' g = (8(C))s.

Let E(resp. E’) be the exceptional divisor of & (resp. a’) and I' the
intersection of E and E’. Since E’ is the strict transform of g~'(C),
(CH-140cy is equal to (I¥),. In the same way, we have (C*)gi-ipic=
(I");. On the other hand, we have (I"%)z+ (") =(E”- E)+(E*- E')=
(E4+E-E-EN=(f*-I"=(fu I -f, s =(g(C)");, which shows the
claim. q.ed.

Proposition 6.10. Let g: Y—S be a Fano conic bundle and C a smooth
irreducible subsection of g. If the blow-up X of Y along C is a Fano 3-fold,
then the elementary transform g': Y'— S satisfies one of the following:

(1) Y’ is a Fano 3-fold, and

Q) C=P', glg-1g(cr s a trivial P'-bundle and (— K ;5- C)=2{(g(C))s
+1}

Proof. Applying Proposition 4.5 for «’, we have E’=P'XP' and
(—K;.-C’)=0if Y’ is not a Fano 3-fold. Hence C=P' and g-'g(C)isa
trivial P'-bundle. By the claim in the proof of (6.9), (— Ky, C)+
(—Kys- €)= (g(CP)s. Hence (—Kys:C)=(8(CH)s—(— Ky C) =
€(CP)—(g*K; C)—(— Ky C)=(8(C))— (K- g(C)) =2{(g(C))s+ l}ci

q.e.d.

§7. Classification of imprimitive Fano 3-folds with B.>3
We show how to classify the imprimitive Fano 3-folds with B,>3.

Prdposition 7.1. An imprimitive Fano 3-fold X with B,=3 satisfies
one of the following:
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(1) X is isomorphic to the blow-up of a Fano conic bundle over P, and
(2) X is isomorphic to the blow-up of P* or Q along a disjoint union
of two smooth irreducible curves on it.

Proof. Since X is imprimitive, X is isomorphic to the blow-up of a
Fano 3-fold Y with B,=2 along a smooth irreducible curve Con ¥, If
Y has a conic bundle structure, then X satisfies (1). Hence by Theorem
1.6, we may assume that Y is imprimitive. By Proposition 5.12 wv.e have
the following 3 cases:

Case in which Y is a blow-up of P*: Let a: Y—P* be the blow-up.
If C is disjoint from the exceptional divisor of «, then X satisfies (2). If
C meets the exceptional divisor, then C is an exceptional line of « by
Corollary 4.8. X is isomorphic to the blow-up of V; by the proper trans-
form of the center of « by 8, where 8: ¥,—P* is the blow-up at the point
a(C). Since V; is a P*-bundle over P?, X satisfies ().

Case in which Y is a blow-up of Q: Let a: Y—Q be the blow-up. If
C is disjoint from the exceptional divisor of @, then X satisfies (2). If C
is an exceptional line of @, then X is a blow-up of § along a curve, where
0 is the blow up of Q at «(C). Since Q is isomorphic to the blow-up of
P? along a conic, X satisfies (1) or (2) by the consideration in the above
case.

Case in which Y satisfies (¢) in Proposition 5.12: We show that no
blow-up of Y along a smooth irreducible curve is a Fano 3-fold. Let
a: Y=V, be the blow-up. Y has a del Pezzo fibering f: Y—P', and a
one-dimensional family of curves / with (—K,-/)=1 and contained in
fibres of . Let S be the union of such /’s.

Assume that CN S#¢. Then C meets an / with the above property.
If C£1, then we have (— K- 1)< 0 for the proper transform /’ and X is
not a Fano 3-fold. If C=/ and C is contained in a smooth fibre of f,
then C meets another !/ with (—K,-/’)=1 and contained in the same
fibre because the degree of the del Pezzo surface is equal to d and <5.
Hence X is not a Fano 3-fold. In the case C=/ and C is contained in a
singular fibre, we have a deformation of C whose general members C’ are
contained in smooth fibres. Since the blow-up X’ along C” is not a Fano
3-fold, X is not a Fano 3-fold because the ampleness of — K, is an open
condition.

Assume that CNS=¢. Since S is not contained in the exceptional
divisor of @ and p(V,)=1, a(S) is an ample divisor of V,. Hence C is
an exceptional line of «. X is isomorphic to the blow-up of V; by the
proper transform Z’ of Z by 3, where 8: V;—V, is the blowing up at a(C).
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Since V, is of index 2 and —K,, ~ g*(—K,,)—2D for the exceptional
divisor D of 8, — K, is divisible by 2 in Pic V;. ByIof §2, ¥; isnota
Fano 3-fold. Since Z’ =Z is an elliptic curve and irrational X is not a
Fano 3-fold by Proposition 4.5. g.ed.

X satisfying (1) in Proposition 7.1 are classified by Proposition 4.7,
6.8, 6.9 and 6.10. X satisfying (2) are classified by Corollary 4.6 and Pro-
position 4.7.

Example 7.2. Let Y be a Fano 3-fold in 2) of Theorem 1.7. Then
Y is terminal, i.e., the blow up of Y along no smooth irreducible curve
is a Fano 3-fold.

Proof. Y has two conic bundle structures z and = with ample dis-
criminant locus. By Proposition 6.8, if the blow-up X of Y along Cisa
Fano 3-fold, then both z(C) and #(C) would be a point. But such a curve
C does not exist. Hence Y is terminal. q.e.d.

Example 7.3. Let g be the P'-bundle Y=P(0D(2))—P* and D the
negative section of /. If the blow-up X of Y along a smooth irreducible
curve C is a Fano 3-fold, then we have

() C s a subsection disjoint from D, and

(2) degg(C)<4

Proof. Assume that X'is a Fano 3-fold. Since (—KX,-/)=1 for every
line /in D, C is disjoint from D. Hence we have (1) by Proposition 6.8.
Put m=degg(C). Since —K,;p~2D4g*¥0p(2), (—Ky,ps-C) is equal
to 2m by (1). Since (— Ky pa- C)=2m=£2(m*+ 1), the elementary trans-
form g’: Y'—P? is a Fano P'-bundle by Proposition 6.10 and (—K,.)’=
(—K,)+2m*—8m=624-2m*—8m by (6.9). On the other hand by the
classification of Fano 3-folds with B,=2, for a Fano P'-bundle Z over P*
we have (—K,;)*=62, 56, 54, 48, 46, 38 or 30 (cf. the forthcoming paper).
Therefore we have m<4. q.e.d.

For every C satisfying (1) and (2) of Example 7.3, the blow-up of Y
along C is a Fano 3-fold and we have

deg g(C) 1 2 3 4
(—Kz* 50 40 32 26
Y’ V, PixXP* ¥V, PODOQ))

All Fano 3-folds with B,>4 are imprimitive. They can be classified
by Propositions 4.7 and 6.8.
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§8. Proof of Theorem 1.6.

Let X be a primitive Fano 3-fold with B,>2. By definition, X has
no extremal ray of E, ,-type.

(8.1) X has an extremal ray of type C,, C,, D,, D, or D,

Proof. Let R,, --., R, be the extremal rays of X of type E, ,, E,, E,
E,or E; and D,, . - -, D, their exceptional divisors.

Claim: D,ND,=¢ if D,+#D,.

Assume that s=D,N D, is not empty. Then (s-D,)=(s-D,[,),, is
negative because @,,(D,) is negative and (s-D,) is nonnegative because s

moves in D,, which is a contradiction. Hence D,N D,=4¢.
Let I" be the subcone of NE(X) generated by R,, - - -, R,.

Claim: (Z-D)<0forevery Ze I andi.

We may assume that Z belongs to R, for some j. If D,=D, then
(Z-D)=(Z-D)<0. If D,#D,, then (Z-D,)=0 because D,N D,=4.

By the claim, we have I's NE(X), e.g. (—K;)* ¢ I'. Therefore, by
(3.1), NE(X) has an extremal ray not of type E, ,, E,, E,, E, or E,. q.e.d.

(8.2) If X has an extremal ray R of type D,, D, or D,, then X has another
one of type C, or C,.

Proof. By definition of D-type, p(X)=2. Let R’ be another ex-
tremal ray of X,

Claim: R’ is not of type E,, E;, E, or E,.

Assume to the contrary. By (3.4), the exceptional divisor D of R’ is
mapped to a point by cont,: X—P'. Since every fibre of cont,, is irreduci-
ble, D is a fibre of contg, which contradicts (3.3).

Claim: R’ is not of type D,, D, or D,.

Assume to the contrary. Since R+ R’, the morphism (cont,,conty.): X—P
X P! is surjective, which contradicts p(X)=2.
By the above two claims, R’ is of type C, or C.. q.e.d.

By (8.1) and (8.2), X has an extremal ray R of C, or C,-type. By
definition of C-type, the conic bundle f=cont,: X—S satisfies

8.3) p(X)=p(S)+1 and f-(C) is irreducible for every irreducible curve
Con S.

3.9 S=P* or P'XP!
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Proof. By Proposition 3.5 and (3) of Proposition 6.6, S is a minimal
rational surface. Hence S is isomorphic to P* or P'-bundle F,=P(@®D
O(n)) over P(n+#+1). By (1) of Proposition 6.6, S is isomorphic to P*
or F,=P'X P q.e.d.

(8.5) If B,=3, X has an extremal ray R'£R of type E,,, C,, or C,.
Moreover if R’ is of type C, or C,, then cont,. is a conic bundle
over P'X P

Proof. Let R’ be an extremal ray = R. It suffices to show that R’
is not of type E,, E,, E, or E,. Assume to the contrary and let D be the ex-
ceptional divisor of R’. By (3.4), D is mapped to a point by f: X—P'X
P*, which is a contradiction. The latter part follows from (8.4). g.ed.

Theorem 1.6 follows from (8.3), (8.4) and (8.5).

§9. Fano 3-folds with B,>6

In this section, we prove Theorem 1.2. The following is the first step
of the proof.

(9.1) An arbitrary Fano 3-fold Y with B,=3 satisfies one of the following:

i) Y has a conic bundle structure.

ii) Y is isomorphic to the blow-up of P* along a disjoint union of
a line and a conic.

Proof (Outline). By Propositions 7.1 and 6.8, we may assume that ¥’
is isomorphic to the blow-up of ¥=P* or Q along the disjoint union of
two smooth curves C, and C,. Let ¥, be the blow-up of V along C, for
i=1,2. Since p(Y,)=2, Y, has a unique extremal ray whose contraction
f: is not the above map Y,—V. We may assume that f, is not a conic
bundle by Proposition 6.8. If both f; and f; are morphisms onto P*, then
Y has a morphism onto P'XP' and hence Y is a conic bundle over
P'x P'. Hence we may assume that £ is a birational morphism. Let D
be the exceptional divisor of ;. If D is not of E,-type, then D is covered
by curves Z with (—K,,-Z)=1. On the other hand, since the image
DcV is ample, (D- C)>0 for the proper transform C; of C,. Hence X
is not a Fano 3-fold by Proposition 4.7, which contradicts our assumption.
Hence D is of E-type. Then we have (D-C))=1. For otherwise, there
is a line in D which intersects C; in at least 2 points. For the proper
transform Z of the line, we have (Z. — K,)<0 which contradicts our as-
sumption. Hence V is isomorphic to P*, the image D is a plane in V
and C} is the proper transform of a line C, in V. Since O,(D)=@x(—1)
and Ox(D)=0x(1), C, is a conic in D. g.e.d.
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By the following fact, we can apply the results in § 6 to prove Theorem
1.2,

(9.2) A Fano 3-fold X with B,=4 has a conic bundle structure.

Proof. By Theorem 1.6, X is imprimitive. Hence X is isomorphic
to the blow-up of a Fano 3-fold ¥ with B,=3 along a smooth irreducible
curve C. If Y satisfies i) of (9.1), then X has a conic bundle structure by
(2) of Proposition 6.8. Assume that Y satisfies ii) of (9.1) and let «: Y—
P? the blowing up along a disjoint union of a line L and a conic Q.

Claim: C is an exceptional line of .

Assume to the contrary. Then by Corollary 4.8, C is disjoint from the
exceptional divisor of «. Let Z be a line which meets L and «(C) and is
contained in the plane containing Q. Since Z meets Q at two points
counted with multiplicity, we have (—Ky-Z')=(8*0p(4)- Z')—(8-'(Q)-
Z)—(B"'(L)-Z)— (B C))- Z')<4—2—1—1=0 for the proper trans-
form Z’ of Z by p, where 8: X—P* is the blowing-up along Q[] L][«(C).
This contradicts our assumption that X is a Fano 3-fold.

By the claim, X is isomorphic to the blow-up of V,, the blow-up of
P? at a point, along the proper transform of L[| Q. Since V, is a P'-bundle
over P?, X has a conic bundle structure by Proposition 6.8. q.ed.

We prepare the following two lemmas for the proof of (9.5), a
stronger version of (9.2).

Lemma 9.3. Let f: X—S be a P*-bundle over S such that S has a P'-
bundle structure w: S—P'. If f|,-.y, is trivial for every fibre | of &, then X
is isomorphic to ZX p, S for a P'-bundle Z over P*.

Proof. Let E be a vector bundle such that P(E)=X. By assump-
tion, twisting E by some line bundle, we may assume that E|,=@®* for
every fibre of . By the base change theorem, we have E=z*z E. It
follows that X = P(z E)X p: S- g.e.d.

Lemma 94. Let f: X—S be a Fano P'-bundle over S which has a P'-
bundle structure w: S—P'. Then one of the following holds:

@) f'(Dz=P'xXP' for every fibre | of x, and

) f'(D)=F, for every fibre | of x.

Proof. The P'-bundle f-'(/) over / is a fibre of = o : X— P! and hence
a del Pezzo surface. Therefore f-'(I)=P' X P' or F,. Since P'XP' and
F, cannot be deformed to each other, we have either (a) or (b). q.e.d.
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(9.5) An arbitrary Fano 3-fold with B,=4 has a conic bundle structure
[ X— S satisfying one of the following:

() S%P'xP', and
(2) Sz=P'XP'and 4, is ample.

Proof. By (9.2), we may assume that X has a conic bundle structure
J: X—P' X P* with 4, not ample. 4, is a disjoint union [[7., s, X P! (or
i P'Xxs)fors, ---,s, € P. By (3) of Proposition 6.2 and Proposi-
tion 6.3, X is isomorphic to the blow-up of a Fano P'-bundle g: Y—P'X
P' along a disjoint union of subsections C, over s,XP!, i=1,...,n.
Since B(X)=4, we have n=1. By Lemma 9.4, we have either (a)
g (P'Xt)=P'X P! forevery t e P' or (b) g '(P' X t)=F, forevery t ¢ P'.
C, meets g-'(P' X t) transversally at one point. Since X is a Fano 3-fold,
the point does not lic on the exceptional curve of the first kind on F, in
the case (b). Let g’: Y’—P'X P' be the elementary transform of g with
center C;. g'~'(P'X 1) is isomorphic to the elementary transform of
g '(P' X t) with center C,Ng '(P'Xt). Therefore in the case (b),
g'"Y(P'Xt)=P'X P! for every t € P'. Therefore by Lemma 9.3, Y = P!
X Z in the case (a) and Y'=P' X Z in the case (b) for a P!-bundle Z over
P'. In both cases, X is isomorphic to the blow-up of P'X Z along a
smooth irreducible curve C.

Case ZZP'XP'. P'XZ is a P'-bundle over Z. Hence X is iso-
morphic to a conic bundle over Z or the blow-up of Z at a point. Hence
X satisfies (1).

Case Z=P'XP'. X isisomorphic to the blow-up of P'X P! X P’
along C. P'XP'XP' has three P'-bundle structure z,, 7, 73: P' X P'X
P'—P'xXP'. 1t is easily seen that z,(C) is a point or an ample divisor
for some i=1, 2 or 3. By Proposition 6.8, if z,(C) is a point, then X
satisfies (1) and if z,(C) is ample, then X satisfies (2). q.e.d.

Since a Fano 3-fold with B,>35 is imprimitive, we have by Proposi-
tion 6.8 and (9.5):

(9.6) A Fano 3-fold X with B,>5 has a conic bundle structure f: X—S
such that S P! x P'.

Let f: X—S be an arbitrary Fano conic bundle. By (1) of Corollary
6.7 and the classification of relatively minimal rational surface, we have

.7 S=PL,F, or P'XP' if p(S)<2 and
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(9.8) there is a morphism «: S—P' X P! which is a blowing-up at
p(S)—2 points on P' X P! if p(S)>3.

Lemma 9.9. If p(S)>3, then f is a P'-bundle.

Proof. Let z,=(x,, 1)), - - -, 2,=(x,, ¥,) € P' X P' be the center of a.
Put E,;=a"'(z,) and let L, and M, be the proper transforms of x, X P'Jand
P'X y, by «, respectively, for i=1, -- ., n. Both L, and M, are exceptional
curves of the first kind by (1) of Corollary 6.7.

Claim: 4, is disjoint from E,, L, and M, for every i.

Assume that 4, meets E,. Then by (2) of Corollary 6.7, 4, contains
E, as a connected component. Hence 4, meets L,. But L, is a connected
component of neither E, nor 4,— E,, which contradicts Corollary 6.7. It
follows that 4,N E;=¢. In the cases of L, and M,, the proof is the same.

By the calim, 4, is contained in S— UE,— UL,— UM,=P'XP'—
Ux;XP'— UP'Xy, Since this surface is affine and 4, is complete, 4,
is empty, which shows the lemma. q.e.d.

The following is a key to the proof of Theorem 1.2.

Proposition 9.10. If f: X— S is a Fano conic bundle and p(S)>3,
then f is a trivial P'-bundle.

Proof. By Lemma 9.9 and (3) of Proposition 6.6, X is isomorphic to
YX,S for a Fano P'-bundle g: Y—P'XP'. Since both f|,-,,, and
Sly-1qry are trivial P'-bundles, so are both g,-iz,xpn and gl/-spixyy. BY
Lemma 9.4, gl,-isxpy iS trivial for every x e P'. By Lemma 9.3, Y=Z
X P! for a P'-bundle Z over P'. Since Zz=g-'(P'Xy)=P'XP!, g is
trivial. It follows that f'is a trivial P'-bundle. q.ed.

Proof of Theorem 1.2. Let X be a Fano 3-fold with B,>>6. By (9.6),
X has a conic bundle structure f* X—S with S22 P! X P*.

Claim: p(S)>3.

Assume to the contrary. Then, by Corollary 6.4, the number of con-
nected components of 4, is not less than p(X)—p(S)—1>3. Since every
curve on P? is connected, S P% Since every curve on F, disjoint from
the exceptional curve of the first kind is connected, .S % F, by Corollary
6.7. This contradicts (9.7).

By the claim and Proposition 9.10, f'is a trivial P'-bundle. Hence X
is isomorphic to P' X S. Since X is a Fano 3-fold, S is a del Pezzo surface,
which completes the proof of Theorem 1.2,
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