Proceeding of the symposium "Moduli of algebraic varieties" Sapporo, 1999 Jan. 11-13

Moduli of abelian surfaces, and regular polyhedral groups

Shigeru MUKAI*

<u>Abstract</u>: Let A_d be the moduli space of polarized abelian surfaces of type (1, d). For d=2, 3 and 4, the Satake compactification of A_d is isomorphic to the quotient of \mathbb{P}^3 by an action of $PSL(2, \mathbb{Z}/d) \times PSL(2, \mathbb{Z}/d)$. Let $G_5 \subset PGL(2)$ be the icosahedral group and $PGL(2) \subset \mathbb{P}^3$ the natural embedding. A small resolution of the Satake compactification of A_5 at the point cusp is isomorphic to the quotient of the blow-up \mathbb{P}^3 of \mathbb{P}^3 at the 60 points G_5 by an action of $G_5 \times G_5$.

Let X(d) be the moduli of elliptic curves E with a full level d structure, i.e., a symplectic isomorphism between the standard symplectic module

$$2[z/d] := \left(z/d \oplus z/d, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right)$$

and the group $E_{\rm d}$ of d-torsion points with the Weil pairing. The modulr curve X(d) is rational if and only if d \leq 5. In particular, the finite group PSL(2, Z/d) is a regular poly-

^{*} Supported in part by the Monbusho Grant-in-Aid for Scientific Research (A)(2) 10304001.

hedral group $G_{\overline{d}} \subset PGL(2)$ for d=2, 3, 4 and 5. The compactified modular curve $\overline{X(d)}$ is identified with the circumscribed Riemann sphere of the regular polyhedron $P_{\overline{d}}$ with t vertices, where t is the number of cusps. The order of $G_{\overline{d}}$ is equal to dt.

Regular polyhedral groups are also closely related with Hilbert modular surfaces of small discriminant:

Example Let $0\sqrt{5}$ be the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{5})$ and put

$$\Gamma = \operatorname{SL}(2, 0, 5: \sqrt{5})$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv 1_2 \mod \sqrt{5}, \quad a, b, c, d \in 0, 5, ad - bc = 1 \right\}$$

Then Γ acts on the product $H \times H$ of two copies of the upper half planes. Let $\widetilde{\Gamma}$ be the group generated by Γ and the switch involution of $H \times H$. Then the Hilbert modular surface $Y_{\Gamma} = \widetilde{\Gamma} \backslash H \times H$ added with 6 point cusps is isomorphic to the projective plane \mathbb{P}^2 . This Y_{Γ} has an action of the icosahedral group G_5 .

Moreover, $X_{\Gamma} = \overline{\Gamma \backslash H \times H}$ is the double cover of Y_{Γ} with branch a G_5 -invariant plane curve of degree 10.

In the 3-fold case the wreath product $2 \wr G_d$ plays the role of G_d . Let $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ be the Segre embedding. The ambient space is the projectivization of the space of 2 by 2 matrices and the quadric $\mathbb{P}^1 \times \mathbb{P}^1$ paramatrizes the rank one matrices. Hence the complement is naturally identified with PGL(2). This \mathbb{P}^3 is an equivariant compactification of the algebraic group PGL(2) and the polyhedral group G_d acts on it from both sides. Let τ be the involution of this \mathbb{P}^3 interchanging $\binom{a}{c}$ and its cofactor matrix $\binom{d-b}{-c}$. The fixed locus is the union of $\mathbb{1}_2$ and the traceless matrices. τ interchanges the two factors of $\mathbb{P}^1 \times \mathbb{P}^1$. So the bipolyhedral group $2 \wr G_d$ acts on \mathbb{P}^3 .

For a polarized abelian surface (X, L) of type (1, d), a symplectic isomorphism between the standard module 2[Z/d] and the group

$$K(L) = \{x \in X \mid T_x^* L \simeq L\}$$

with the Weil pairing is called a <u>canonical level structure</u>. By a canonical <u>colevel</u> structure, we mean a symplectic isomorphism between 2[Z/d] and the quotient $X_d/K(L)$. We denote the moduli space of polarized abelian surfaces of type (1, d) with canonical level and colevel structure by A(1, d) and A(d, 1), respectively. The forgetful morphisms

$$A(1, d) \longrightarrow A_d$$
 and $A(d, 1) \longrightarrow A_d$

are both Galois covering with Galois group PSL(2, Z/d). The fibre product

$$\mathbb{A}_{\mathrm{d}}^{\mathrm{bl}} := \mathbb{A}(1, \ \mathrm{d}) \ \boldsymbol{x}_{\mathbb{A}} \ \mathbb{A}(\mathrm{d}, \ 1)$$

is called the moduli of abelian surfaces with a (weak) <u>bilevel</u> structure.

 $\underline{\text{Remark}}$ The moduli space $A_{ ext{d}}$ is the quotient of the Siegel upper half space of degree 2 by the full paramodular group

$$\begin{pmatrix}
z & z & z & dz \\
dz & z & dz & dz \\
z & z & z & dz \\
z & \frac{1}{d}z & z & z
\end{pmatrix}$$

$$\begin{pmatrix}
z & z & z & dz \\
z & z & z & dz
\end{pmatrix}$$

and \mathbb{A}_{d}^{bl} is the quotient by the subgroup generated by

$$\mathbb{1}_{4} + \begin{pmatrix} d\mathbb{Z} & d\mathbb{Z} & d\mathbb{Z} \\ d\mathbb{Z} & d\mathbb{Z} & d\mathbb{Z} & d^{2}\mathbb{Z} \\ d\mathbb{Z} & d\mathbb{Z} & d\mathbb{Z} \end{pmatrix} \cap \underset{d\mathbb{Z}}{\operatorname{Sp}_{4}} (\mathbb{Z}_{*}) \text{ and } \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & & 1 & \\ & & & & -1 \end{pmatrix}.$$

For a polarized abelian surface (X, L) of type (1, d), its dual \hat{X} has a natural polarization \hat{L} of the same type such

that $\phi_L \circ \phi_L = d_X$. The colevel structure of (X, L) is equivalent to the level structure of its dual (\hat{X} , \hat{L}) and vice versa. Therefore, the moduli space A_d^{bl} has an action of the wreath product $2\langle PSL(2, Z/d) \rangle$.

Theorem (1) For d=2, 3 and 4, the Satake compactification of A_d^{bl} is $(2\langle G_d\rangle)$ -equivariantly isomorphic to the projective 3-space $\mathbb{P}(M_{2\times 2} \ \mathbb{C})$.

(2) There exists a $(2/G_5)$ -eqivariant morphism

$$\psi : \overset{\sim}{\mathbb{P}}^3 \longrightarrow \overline{\mathbb{A}}_5^{\mathrm{bl}, \, \forall}$$

onto the Satake compactification and ψ contracts the strict transform of the 72 special lines (see below) to the 72 point cusps. ψ is an isomorphism elsewhere. Moreover, the exceptional divisors over the 60 points G_5 are the Hilbert modular surface Y_T in Example and parametrize the Comesatti surfaces, i.e., abelian surfaces with real multiplication by $O_{\sqrt{5}}$. ($\widetilde{\mathbb{P}}^3$ is the blow-up of \mathbb{P}^3 at the 60 points G_5 .)

(3) In both cases $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}(M_{2 \times 2} \mathbb{C})$ parametrizes the products of two elliptic curves (of degree 1 and d).

Let p_1, \dots, p_t be the cusps of $\overline{X(d)}$. Then, by the theorem, the 2t lines $p_i \times \mathbb{P}^1$ and $\mathbb{P}^1 \times p_i$, $1 \le i \le t$, on $\mathbb{P}^1 \times \mathbb{P}^1$ are 1-dimensional boundaries of A_d^{bl} . A_2^{bl} and A_3^{bl} are the complement of these 2t lines. In order to describe A_4^{bl} and

 A_5^{bl} , we need the following:

Definition A line in \mathbb{P}^3 joining two points $\left[\mathbf{g}_1\right]$ and $\left[\mathbf{g}_2\right]$ of $\mathbf{G}_{\mathbf{d}}\subset\mathrm{PGL}(2)$ is special if $\mathbf{g}_1\mathbf{g}_2^{-1}\in\mathbf{G}_{\mathbf{d}}$ is of order d.

The number of special lines is equal to 9, 16, 18 and 72 for d = 2, 3, 4 and 5. In the case d = 2, 3, the special lines parametrize the polarized abelian surfaces (X, L) which have symplectic automorphisms of order d.

<u>Proposition</u> (1) The moduli space A_4^{bl} is the complement of 12 lines $p_i \times \mathbb{P}^1$ and $\mathbb{P}^1 \times p_i$, and the 18 special lines in \mathbb{P}^3 .

(2) The moduli A_5^{bl} is the complement of the strict transform of the 24 lines $p_i \times \mathbb{P}^1$, $\mathbb{P}^1 \times p_i$ and the 72 special lines in the blow-up $\widetilde{\mathbb{P}}^3$.

Let K_4 be the Klein's subgroup of the octahedral group G_4 . The action of $K_4 \times K_4$ on \mathbb{P}^3 is the projectivization of the Schrödinger representation of the Heisenberg group. There are 15 involutions in $K_4 \times K_4$ and each has the union of two skew lines as its fixed locus. The 18 and 12 lines in (1) of the proposition coincide with these 30 fixed lines. Hence $\overline{A}_4^{\text{bl}, \#}$ is identified with the common ambient space of all Kummer's quartic surfaces. The quotient of $\overline{A}_4^{\text{bl}, \#} \mathbb{P}^3$ by the action of $K_4 \times K_4$ is the moduli space $\overline{A}_1(2)^{\#}$ of principally polarized abelian surfaces with a full level 2 structure.

I close this note with a remark on the Voronoi (troidal) compactification \bar{A}_d^{bl} , Vor of \bar{A}_d^{bl} . There exists a natural morphism

$$\overline{A}_d^{\text{bl,Vor}} \longrightarrow \overline{A}_d^{\text{bl,\dagger}}$$
.

In the case d=2, 3, this morphism is the composition of the blowing up along t lines $p_i \times \mathbb{P}^1$ and the blowing up along the st_rict transform of the remaining t lines $\mathbb{P}^1 \times p_i$. The universal family of abelian surfaces over A_d^{bl} , which exists in the sense of stack, extends to the family of semi-abelian surfaces over \overline{A}_d^{bl} , Vor the blow-up in the reverse order is \overline{A}_d^{bl} , Vor but the family of dual abelian surfaces extends to semi-abelian surfaces over it.

Graduate School of Mathematics
Nagoya University
Furo-cho, Chikusa-ku
Nagoya 464-8602
JAPAN