Inose quartic surfaces & type Il degeneration
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@ Aut (Inose) & type Il degeneration of K3 surfaces

@ Bir-Aut (Inosem) & type Il degeneration of hol. symp. 4-folds
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A 2-parameter family of K3 surfaces whose Picard lattice
contains Il
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Explicitly given by Inose(1978) as quartic surface
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Simpler realization is
y*= X - at®™ + tS(tL+ 1-2bt),

elliptic K3 surface with ZFE;-fibers at t=0,2 and a section




- =
We assume a,b are very general and Picard number p = 18.

i section

By vinberg's computation,
these 19 (-2) classes define
a fundamental domain in
the positive cone.
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Geometric implication

(1) No other (-2)P 's other than
what we see.

(2) Nef cone is polyhedral with 19 facets.
The Tl1-diagram is the Coxeter diagram.

3) Aut(Sq ‘ {,) is finite.




§2 II 38 type Il K3 lattice AIL

Kulikov model of type Il degeneration of K3
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One difficulty of (compact) moduli construction of polarized K3 (X, L) is
that naive

{RDP}U {type I}/ isom

is not Hausdorff by the following reason. (Another reason caused by
flop is discussed in other lectures and omitted here.)

(T) Assume that the central fiber is reducible,
say, A B. Then tensoring line bundle

changes the d'Strlbutlormw‘”
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Which one among two (or more) polarized type Il K3 surfaces
should we take when (partially) compactifing moduli?

My proposal in 1989: Choose it following Vinberg's fundamental
domain (or diagram) since II |s the Picard lattice of the standard

type Il K3 surface.

3-8, P U 30, P

and the fundamental domain commdes Wlth the new cone.

Standardization of type Il K3's to make moduli Hausdorff.
The next page shows [1-diagram in A&, the Picard lattice of KSH_.

Thus for Example above, our choice is the union TUP, not a
rational surface with an elliptic singularity of type
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Before moving to §3, recall some
basics of holomorphic symplectic manifold of K3-type

k3
N ;
Rey S PeX=PeS*2ZY

with Beauville Ly 08 Ry
form S5 We d{\\).u-k
(s)=-2




§3 Bir-Aut ( Inosem)
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Inose quartic S;,=yzt+ - - =0 < [P
/

s (U+2Ey)-K3 surface embedded into P?‘ by H= W°+ Ws"

A,
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( Rl ’b Cubic-plaqe, i..e., TUp- )

degeneration in Example

S, L 2 A,-RDP & E,-RDP &2 lines
A
A=

Image(a R
Image(aé)
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This quartic polarization plays a key role in the proof of the following:

Theorem Bir-Aut (Inosetﬂ is finite.

Proof: Similar to the Inose surface case after replacing nef cone,
(-2) P!, Vinberg's diagram by movable cone, Q-effective (-2)
effective divisor, KLS-diagram, respectively.

KLS diagram = l-diagram + 5 vertices 24=19+5
Vertices are (-2) classes in the Picard lattice of Inoset*)
Basis is written, using double BIQ‘P" model, on the next
page.
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Remark KLS stands for Kondo-Looijenga-Scattone. Kondo uses |_
the diagram to compute the automorphism group of a K3 surface.
Others, including the recent sophisticated construction by Alexeev-
Engel-Thompson, use for type Il degeneration of K3's of degree 2.

Proof (cont'd) (*) Show all classes are Q-effective.

1. 19 (-2) classes in sub-I1-diagram comes from (-2)P! on Inose
surface. Easy to prove their effectiveness.

2. Two comes from the Lagrangian fibration of Inose,,_, induced
from the elliptic fibration of Inose . Also easy.

3. 8" and &". Here Inose quartic is crucial. From a pair of points
p,q, one obtain new pair p',q"' in the following way. q

Thus one gets an involution of
InoseC‘,’Which is called Beauville inv.

6' and &" are the image of & by
Beauville inv's. Since 6 is Q- effective ¢
soare &' and &". Note that both &' and
6" are of the form 2(Inose pol) - 30.

By (*), cone of movable divisors Mov(Inose 1 is finite polyhedral.
Hence Bir—Aut(InoseCf) is finite. QED

[2]
§4 Type Il degeneration of holomorphic symplectic 4-fold of K3 -type

We still do'nt have a good theory like Kulikov's about this. | just pose

Problem: Find a standardization of}, similar to K3, replacing Vinberg's
M by KLS-diagram.

Seems difficult to answer since geometric meaning of s3. symmetry
of KLS-diagram is still unclear.
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