Abstract.

Invariants of topological spaces of dimension three play a major role in many areas, in particular...

Mathematics Subject Classification (2000): AMS-CLASSIFICATION.

Introduction by the Organisers

The workshop Invariants of topological spaces of dimension three, organised by Max Muster (München) and Bill E. Xample (New York) was held March 1st–March 6th, 2005. This meeting was well attended with over 30 participants with broad geographic representation from all continents. This workshop was a nice blend of researchers with various backgrounds . . .
Workshop: Moduli Spaces in Algebraic Geometry

Table of Contents

Shigeru Mukai
Polarized K3 surfaces of genus 16 .. 5

Frédéric François Déchamps, Peter Mustermann
Computing other invariants of topological spaces of dimension three 5
Abstracts

Polarized K3 surfaces of genus 16
Shigeru Mukai

Let $\mathcal{T} = G(2; 3; \mathbb{C}^4)$ be the EPS-moduli space of the twisted cubics in \mathbb{P}^3 constructed in [1]. \mathcal{T} is the GIT-quotient of $\mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^4$ by the action of $GL(2) \times GL(3)$ on the first and second factors. There exist two tautological vector bundles \mathcal{E}, \mathcal{F} of rank 3, 2 and the universal homomorphism $\mathcal{E} \otimes \mathbb{C}^4 \rightarrow \mathcal{F}$ on \mathcal{T}. The vector bundle \mathcal{E} embeds \mathcal{T} into the 21-dimensional Grassmannian $G(S^2 \mathbb{C}^4, 3)$.

Theorem (1) A general complete intersection S with respect to the rank 10 vector bundle $\mathcal{E}^{\otimes 2} \oplus \mathcal{F}^{\otimes 2}$ in the EPS-moduli space \mathcal{T} is a $K3$ surface, and $\det \mathcal{E}|_S$ is a polarization of genus 16, that is, degree 30.

(2) Moreover, a moduli-theoretically general polarized $K3$ surface (S, h) of genus 16 is obtained in this way.

Let \mathcal{F}_g be the moduli space of primitively (quasi-)polarized K3 surfaces (S, h) of degree $2g - 2$, and \mathcal{S}_g be the (quasi-)universal family over it. The theorem yields a dominant rational map $P^{36} \cdots \rightarrow \mathcal{F}_{16}$ from a $G(2, 12)$-bundle P^{36} over the 16-dimensional Grassmannian $G(2, S^2 \mathbb{C}^4)$ of pencils of quadrics to \mathcal{F}_{16}.

Corollary The moduli space \mathcal{F}_{16} is unirational.

See [2] and [3] for the birational type of other \mathcal{F}_g’s.

Since $\mathcal{E}|_S$ is a stable semi-rigid vector bundle with Mukai vector $v = (3, h, 5)$, the rational map factors through \mathcal{S}_{16}.

Conjecture The induced rational map $P^{36}//PGL(4) \cdots \rightarrow \mathcal{S}_{16}$ between 21-dimensional varieties is birational.

REFERENCES

Computing other invariants of topological spaces of dimension three
Frédéric Francois Déchamps, Peter Mustermann

The computation of ...