Segre cubic 4-fold

Abstract: The cyclic triple covering of the projective 4-space with branch the Segre cubic is characterized by 10 cusps as the Segre 3 -fold is so by 10 nodes. The Fano variety of lines is birationally equivalent to the Hilbert square of a K3 surface studied by Vinberg(1983). I will discuss the binational automorphism group of this holomorphic symplectic 4-fold.

§1 Main motivation and side job
§2 K3^[2] 4-folds
§3 Vinberg's theorem and generalization to K3^[2] 4-folds
§4 Review of Vinberg's proof
§5 Proof of main theorem
References (8 items)

§1 Main motivation and side job

Main motivation: generalize Aut(K3) to Bir-Aut(HK) (replacing ne cone with movable cone).

Side job: Summer theory
IR|
(I start with) Kummer quartic surface, $\Phi: A / \pm 1 \xrightarrow{\mid 2 \Theta} P^{3}$
(1) $A=J(C), C$: curve of genus $2, \Phi$: embedding
$\left(16_{6}-16_{6}\right)$ configuration of nodes and tropes
(2) $A=E \not E_{2}: \Phi$ is of degree 2 onto a smooth quadric $P^{\prime} \times P^{\prime}$

$$
\tau^{2}=f_{4}(x) g_{4}(y)
$$

branch locus

Order 3 analogue
(A, σ) : Abelian surface \& symplectic automorphism of order 3
Quotient A / σ is a $K 3$ surface with 9 cusps, $9 A_{2}$
(1) $A=J(C), C: T^{2}=q\left(x^{3}\right), \sigma: x \mapsto \omega x, \omega^{3}=1$
(Barth-)Bertin-Vanhaecke sextic. $A / \sigma \subset \mathbb{P}^{4}$, Image $=(2,3)$ c.i. $\left(9_{4}-9_{4}\right)$ configuration of 9 cusps and 9 conics
(2) $A=E \times E$, E with $C M$ of order 3 $A / \sigma \rightarrow P^{\prime} \times P, r^{3}=\left(x^{2}-x\right)\left(y^{2}-y\right)$
$\left[A / \sigma \hookrightarrow \mathbb{P}^{4}\right]=$ (quadric cone) $\bigcap^{(3)}$ c.i.

Mini history of Aut S and Picard lattice in $U+$ (Leech)

Simplest higher dimensional analogue of a K3 surface is the Hilbert square of a K3 (and its deformations)
Let
$S^{\wedge}[2] \rightarrow S^{\wedge}(2)$ be the minimal resolution of symmetric product.
$\mathrm{S}^{\wedge}[2]=$ moduli of ideal sheaves of 2 points (allowing inf. nears) $=M_{s}(1,0,-1)$

$$
\begin{aligned}
\text { Pic } S^{\wedge}[2] & =\operatorname{Pic} S \oplus Z \delta, \quad \delta=(1,0,1) \\
& =(1,0,-1) \quad \text { in } Z \oplus \text { Pic } S \oplus Z
\end{aligned}
$$

Notation. a on S is identified with $(0, a, 0)$ on $S^{\wedge}[2]$.
Relation with cubic 4 -folds and K 3 sextic $S=(2,3)$, ci. in $\mathrm{P}^{\wedge} 4$.

$$
\begin{aligned}
& S: q(x, y, z, u, v)=d(x, y, z, u, v)=0 \text { in } P \wedge 4 \\
& X=X_{S}: q(x, y, z, u, v) w+d(x, y, z, u, v)=0 \text { in } P \wedge 5
\end{aligned}
$$

This cubic 4 -fold is singular at (100000).
Fact: Fane variety of lines $F\left(X_{S}\right)$ is binational with $S^{\wedge}[2]$
(1) S : Bertin-Vanhaecke $\Rightarrow X_{S}$ has $A_{1}+9 A_{2}$
(2) S : Vinberg $\Rightarrow X_{S}$ has $10 A_{2}$ since the quadric hull of S is a cone

Observation: X_{S} is a 4-dimensional analogue of Segre cubic 3-fold $\sum_{1}^{6} \sum_{2}^{6} y^{3}=0<\mathbb{D}^{5}$ when S: Vinberg.
$Y: \sum_{1} y_{i}=\sum_{1} y_{i}^{3}=0<J^{5}$
$X_{j}:\left(\sum_{1}^{6} x_{i}\right)\left(\sum_{1}^{6} x_{i}^{2}\right)=2 \sum_{1}^{6} x_{i}^{3}<\mathbb{P}^{5}$
Segre cubic 3 -fold Y is characterized by $10 A_{1}$ 4-fold X - $10 \mathrm{~A}_{2}$
X_{s} is a triple cyclic covering of $P \wedge 4$ with branch Segre cubic.

Both have an action of symmetric group \mathcal{G}_{6} of degree 6

$$
\begin{aligned}
& \text { Ant }\left(S \subset \mathbb{B}^{4}\right) \cong C_{3}\left[\left(\mathcal{S}_{3} \times \mathbb{G}_{3}\right) C_{2}\right] \\
& \bigcap_{\text {at }}\left(X_{S}<\mathbb{P}^{5}\right) \cong \mathcal{S}_{6} \Rightarrow(123)(466)=0
\end{aligned}
$$

§3 Vinberg's theorem and generalization to K3^[2] 4-folds
Theorem (Vinberg)

$$
\text { Alt S }=\text { (Free product of } 12 \text { involutions) } \boldsymbol{\varnothing} \text { Aut(S } \subset P \wedge 4)
$$

Main Theorem Bir-Aut($\mathrm{S}^{\wedge}[2]$) is semi-direct product of $<84+120$ involutions $>$ by symmetric group σ_{η} of degree 7 .
surprisingly,
S_{6}-action on S extends to a birational \mathcal{G}_{η}-action on $S^{\wedge}[2]$.
Reason: a symmetry of degree 7 induced by Lagrangian fibration

$$
S_{\wedge} \wedge[2] \cdots \rightarrow P^{\wedge} 2 \quad \text { (of } 3 \widetilde{A} _6 \text {-type). }
$$

Mordell-Weil group has a 7 -torsion (binational) section.
§4 Review of Vinberg's proof
Quick review on Alt S, Picard number 20, Pic $\mathrm{S}=\mathrm{U}+2 \mathrm{E} _8+\mathrm{A} _2$
Orhtogonal group $\mathrm{O}^{+}\left(\mathrm{U}+2 \mathrm{E}\right.$ _ $\left.8+\mathrm{A} _2\right)$

$$
T_{S}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

$=<24(-2)$-reflections, 12 (-6)-reflections $>\times$ Aut(ScP^4)
$24=6+9 \cdot 2$

Dual graph of 24 P^1's

6 circuits of length 18 $S \rightarrow P^{\wedge} 1$ elliptic fibration
with I_18 fiber, MW group $Z \oplus Z / 6$
$\Rightarrow 2$ anti-symplectic involutions
(-1)-mult. \&
its composite with 2-torsion translation Modulo Aut(Sc P^4), these act as
 (-6)-reflection.
§5 Proof of main theorem
Look at the action of Bir-Aut $S^{\wedge}[2]$ on Pic $S \oplus Z \delta$, and on the movable cone in it. The rest is basically the same as (Vinberg's) K3, but get complicated in two points:
(1) the orthogonal group is no more more reflective
(2) Divisibility should be taken into account. There are two types of (-2)-divisors:
a) (-2) effective divisor $\operatorname{Im}\left[E \times S \rightarrow S^{\wedge}[2]\right]$ for (-2)-curve
E on S (divisibility 1)
b) half δ of exceptional divisor class (divisibility 2)
(1) is overcome by Conway-Borcherds domain CB in the positive cone.
CB domain is surrounded by 309 walls:

(-2)-walls (-6)-walls (-42)-walls
(divisibility 1 \& 2,
respectively)

\uparrow	\uparrow	\uparrow
(1) (2)	(3)	\uparrow

$O^{+}\left(U+2 E _8+A _2+A _1\right)=\left\{\begin{array}{l}105(-2) \text {-reflections } \\ 84(-6) \text {-reflections } \\ 120 \text { quasi-reflections }\end{array}\right\rangle \times \tilde{U}_{\eta}$
symmetry of
CB domain
(1) Basic (-2)-divisors (of divisibility 1) $\quad \#=35=24+2+9$

24 are "pull-back" of (-2)'s from S.
Extra $11(=2+9)$ are $(1, f, 1)$ for elliptic pencil $|f|$ on S of minimal Coxter number ($=12$). Since f is isotopic, this divisor has Beauvillesquare (-2). Geometrically, (1, f, 1) is the Zariski closure of locus of $\{\mathrm{a}, \mathrm{b}\}$ with $\mathrm{a} \neq \mathrm{b}$ and $\Phi(\mathrm{a})=\Phi(\mathrm{b})$.

Two f's are of type $3 E _6$ and 9 of type $D _7+A _11$.

The dual graph of these $35(-2)$ divisors is the 4 -valent odd graph O_4.
(2) (-2) divisors of divisibility $2 \rightleftarrows 70$ edges of O_4
(3) (-6)-walls \rightleftarrows Induced automorphism from S
(4) (-42)-walls: Non-induced automorphism $\rightleftarrows(-1)$ multiplication of Lagrangian fibration of type $3 \tilde{A}_{6}\left(\bmod \mathcal{S}_{\boldsymbol{q}}\right)$

Final answer: Aut $S^{\wedge}[2]=<84+120$ involutions $>\star$ ®s, $_{7}$.

References

§1 Main motivation and side job
Bertin, J. and Vanhaecke, P.: The even system and generalized Kummer surfaces, Math. Proc. Camb. Phil. Soc., 116(1994), 131-142.

Barth, W.: K3 surfaces with nine cusps, Geom. Dedicata, 72(1998), 171-178.

Kondo, S.: The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. 7(1998), 589-609.

Keum, J-H. and Kondo, S.: The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Amer. Math. Soc., 353(2000), 1469-1487.

Vinberg, E.B.: The two most algebraic K3 surfaces, Math. Ann. 265(1983), 1-27.
§2 K3^[2] 4-folds
Dolgachev, I.: Corrado Segre and nodal cubic threefolds, in "From classical to modern algebraic geometry; Corrado Segre's mastership and legacy", Springer, 2016, pp. 429-450.
§3 Vinberg's theorem and generalization to K3^[2] 4-folds
Oguiso, K.: Picard number of the generic fiber of an abelian variety fingered hyperkahler manifold, Math. Ann., 344(2009), 929-937.
§5 Proof of main theorem
Borcherds, R.: Automorphism groups of Lorentzian lattices, J. Algebra, 111(1987), 133-153.

