Shigeru MUKAI

6/17/22(F) @Roma Univ. Tre

1

Abstract: The cyclic triple covering of the projective 4-space with branch the Segre cubic is characterized by 10 cusps as the Segre 3-fold is so by 10 nodes. The Fano variety of lines is birationally equivalent to the Hilbert square of a K3 surface studied by Vinberg(1983). I will discuss the binational automorphism group of this holomorphic symplectic 4-fold.	
 §1 Main motivation and side job §2 K3^[2] 4-folds §3 Vinberg's theorem and generalization to K3^[2] 4-folds §4 Review of Vinberg's proof §5 Proof of main theorem References (8 items) 	
§1 Main motivation and side job	
Main motivation: generalize Aut(K3) to Bir-Aut(HK) (replacing nef cone with movable cone).	
Side job: Kummer theory	
(I start with) Kummer quartic surface, $\Phi: A/\pm 1 \longrightarrow P^{-}$ (1) A= J(C), C: curve of genus 2, Φ : embedding (16 - 16) configuration of nodes and tropes	
(2) $A = F \times F$. Φ is of degree 2 onto a smooth quadric $P^{I} \times P^{I}$	
$\tau^2 = f_4(x)g_4(y)$	
branch locus	
· · · · · · · · · · · · · · · · · · ·	

3 §2. K3^[2] 4-folds Simplest higher dimensional analogue of a K3 surface is the Hilbert square of a K3 (and its deformations) Let $S^{2} \rightarrow S^{2}$ be the minimal resolution of symmetric product. $S^{2} = moduli of ideal sheaves of 2 points (allowing inf. nears)$ $= M_{c}(1, 0, -1)$ Pic S^[2] = Pic S Θ Zδ, δ = (1, 0, 1) = (1, 0, -1) in $Z \oplus Pic S \oplus Z$ Notation. α on S is identified with (0, α , 0) on S^[2]. Relation with cubic 4-folds and K3 sextic S = (2, 3), c.i. in P⁴. S : q(x, y, z, u, v) = d(x, y, z, u, v) = 0 in P^4 $X = X_{S}$: q(x, y, z, u, v)w + d(x, y, z, u, v) = 0 in P^5 This cubic 4-fold is singular at (100000). Fact: Fano variety of lines $F(X_{\mathbf{x}})$ is birational with S^{2} (1) S : Bertin-Vanhaecke \Rightarrow X has A + 9A (2) S : Vinberg \implies X has 10A since the quadric hull of S is a cone Observation: X₃ is a 4-dimensional analogue of Segre cubic 3-fold when S: Vinberg. $A: \sum_{i} A: = \sum_{i} A_{i}^{i} = 0 \subset \mathbb{D}_{\mathbf{z}}$ $X_{i}: (\tilde{\Sigma}, \pi_{i})(\tilde{\Sigma}, \pi_{i}^{2}) = 2 \tilde{\Sigma} \pi_{i}^{2}$ $< \mathcal{P}_{z}$ Segre cubic 3-fold Y is characterized by 10A 4-fold X 10Az. X_{S} is a triple cyclic covering of P^4 with branch Segre cubic.

Both have an action of symmetric group G of degree 6

Aut $(S \subset \mathbb{P}^4) \cong \mathbb{C}_3[(\mathbb{G}_3 \times \mathbb{G}_3), \mathbb{C}_2]$ Normalizer of o Aut $(X_{S} < \mathbb{P}^{S}) \cong \mathbb{G}_{\delta} \ni (123)(456) =: \sigma$ §3 Vinberg's theorem and generalization to K3^[2] 4-folds Theorem (Vinberg) Aut S = (Free product of 12 involutions) \mathbf{X} Aut(SCP^4) Main Theorem Bir-Aut(S^[2]) is semi-direct product of <84+120 involutions> by symmetric group $\mathfrak{S}_{\mathbf{b}}$ of degree 7. Surprisingly, $\mathfrak{S}_{\boldsymbol{\ell}}$ -action on S extends to a birational $\mathfrak{S}_{\boldsymbol{\eta}}$ -action on S^[2]. <u>Reason</u>: a symmetry of degree 7 induced by Lagrangian fibration S^[2] $\cdots \rightarrow \mathfrak{P}^2$ (of 3Å_6-type). Mordell-Weil group has a 7-torsion (birational) section.

4

6 §5 Proof of main theorem Look at the action of Bir-Aut S^[2] on Pic S \oplus Z δ , and on the movable cone in it. The rest is basically the same as (Vinberg's) K3, but get complicated in two points: (1) the orthogonal group is no more more reflective (2) Divisibility should be taken into account. There are two types of (-2)-divisors: a) (-2) effective divisor $Im[E \times S \rightarrow S^{2}]$ for (-2)-curve E on S (divisibility 1) b) half δ of exceptional divisor class (divisibility 2) (1) is overcome by Conway-Borcherds domain CB in the positive cone. CB domain is surrounded by 309 walls: + 120309 = 35 + 70+ 84 (-2)-walls (-6)-walls (-42)-walls (divisibility 1 & 2, respectively) $(1)^{*}$ (2) 3 ★ $O^{\dagger}(U+2E_8+A_2+A_1) = \begin{pmatrix} 105 (-2) - reflections \\ 84 (-6) - reflections \\ 120 quasi-reflections \end{pmatrix}$ symmetry of **CB** domain

Geometrization of 🛨	 7												
1) Basic (-2)-divisors (of divsibility 1) $\# = 35 = 24 + 2 + 9$													
24 are "pull-back" of (-2)'s from S.													
Coxter number (= 12). Since f is isotopic, this divisor has Beauville-													
square (-2). Geometrically, (1, f, 1) is the Zariski closure of locus of $\{a, b\}$ with $a \neq b$ and $\Phi(a) = \Phi(b)$.													
The first of the 0^{-1} can also of the D 7 A 11	· ·												
Two its are of type $3E_6$ and 9 of type D_7+A_11 .													
	• •												
• 🔍 • • • • • • • • • • • • • • • • • •	· ·												
	• •												
• • • • • • • • • • • • • • • • • • • •													
\rightarrow $D_{1} + \dot{A}_{1}$	• •												
	• •												
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• •												
The dual graph of these 35 (-2) divisors is the 4-valent odd graph	• •												
O_4.	• •												
	• •												
	• •												
· · · · · · · · · · · · · · · · · · ·	•••												
	• •												

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	<u>ع</u>	3
(2) (-2) divisors of divisibility 2 \rightleftharpoons 70 edges of O_4															•	•	•																				
③ (-6)-walls \rightleftharpoons Induced automorphism from S															•	•																					
④ (-42)-walls: Non-induced automorphism \rightleftharpoons (-1) multiplication of Lagrangian fibration of type $3A_{\epsilon}$ (mod \bigotimes_{η}) Einal answer: Aut SA[2] = <84 ± 120 involutions \sim															•	0	•																				
Final answer:								r:	Aut S^[2] = $\langle 84 + 120 \text{ involutions} \rangle \times \mathfrak{S}_{\eta}$.														•	•	•	•	•	•									
•		•	•	•		•	•	•	•	•	•		•			•	•	•	•		•	•	•			•		•	•		•	•	•	•		•	•
•	•					•						•	•	•																•		•	•	•	•	•	•
																																			•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•													•							•											•			•	•		•
						•						•		•		•	•					•						•	•	•					•	•	
•	•				•	•					•	•		•	•		•		•	•	•			•	•	•	•		•	•				•	•	•	•
																																		•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																				•														•			
•	•	•	•	•		•	•	•	•	•		•	•	•		•	•	•		•		•	•			•	•	•	•	•	•	•	•		•	•	•
																																		•			
•	•		•		•	•		•	•			•		•	•	•		•	•	•	•	•		•	•	•		•		•	•	•	•	•	•	•	•
						•																															
																																				•	
•	•				•	•					•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•			•	•	•	•
																																		•			
•	•		•		•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	
	1																																				

§1 Main motivation and side job

Bertin, J. and Vanhaecke, P.: The even system and generalized Kummer surfaces, Math. Proc. Camb. Phil. Soc., **116**(1994), 131-142.

Barth, W.: K3 surfaces with nine cusps, Geom. Dedicata, **72**(1998), 171-178.

Kondo, S.: The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. **7**(1998), 589-609.

Keum, J-H. and Kondo, S.: The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Amer. Math. Soc., **353**(2000), 1469-1487.

Vinberg, E.B.: The two most algebraic K3 surfaces, Math. Ann. **265**(1983), 1-27.

§2 K3^[2] 4-folds

Dolgachev, I.: Corrado Segre and nodal cubic threefolds, in "From classical to modern algebraic geometry; Corrado Segre's mastership and legacy", Springer, 2016, pp. 429-450.

§3 Vinberg's theorem and generalization to K3^[2] 4-folds

Oguiso, K.: Picard number of the generic fiber of an abelian variety fingered hyperkahler manifold, Math. Ann., **344**(2009), 929-937.

§5 Proof of main theorem

Borcherds, R.: Automorphism groups of Lorentzian lattices, J. Algebra, **111**(1987), 133-153.