Fano 3-folds

Shigeru MUKAI

Abstract: In the beginning of this century, G. Fano initiated the study of 3-dimensional projective varieties $X_{2g-2} \subset \mathbb{P}^{g+1}$ with canonical curve sections in connection with the Lüroth problem.¹ After a quick review of a modern treatment of Fano’s approach (§1), we discuss a new approach to Fano 3-folds via vector bundles, which has revealed their relation to certain homogeneous spaces (§§2 and 3) and varieties of sums of powers (§§5 and 6). We also give a new proof of the genus bound of prime Fano 3-folds (§4). In the maximum genus ($g = 12$) case, Fano 3-folds $X_{22} \subset \mathbb{P}^{13}$ yield a 4-dimensional family of compactifications of \mathbb{C}^3 (§8).

A compact complex manifold X is Fano if its first Chern class $c_1(X)$ is positive, or equivalently, its anticanonical line bundle $\mathcal{O}_X(-K_X)$ is ample. If $\mathcal{O}_X(-K_X)$ is generated by global sections and $\Phi_{|−K_X|}$ is birational, then its image is called the anticanonical model of X. In the case $\dim X = 3$, every smooth curve section $C = X \cap H_1 \cap H_2 \subset \mathbb{P}^{g-1}$ of the anticanonical model $X \subset \mathbb{P}^{g+1}$ is canonical, that is, embedded by the canonical linear system $|K_C|$. Conversely, every projective 3-fold $X_{2g-2} \subset \mathbb{P}^{g+1}$ with a canonical curve section is obtained in this way. The integer $1/2(-K_X)^3 + 1$ is called the genus of a Fano 3-fold X since it is equal to the genus g of a curve section of the anticanonical model.

A projective 3-fold $X_{2g-2} \subset \mathbb{P}^{g+1}$ with a canonical curve section is a complete intersection of hypersurfaces if $g \leq 5$. In particular, the Picard group of X is generated by $\mathcal{O}_X(-K_X)$. We call such a Fano 3-fold prime. If a Fano 3-fold X is not prime, then either $-K_X$ is divisible by an integer ≥ 2 or the Picard number ρ of X is greater than one. See [15], [7] and [9] for the classification in the former case and [24] and [25] in the latter case.

§1 Double projection The anticanonical line bundle $\mathcal{O}_X(-K_X)$ is very ample if X is a prime Fano 3-fold of genus ≥ 5 (cf. [15] and [41]). To classify prime Fano 3-folds $X_{2g-2} \subset \mathbb{P}^{g+1}$ of genus $g \geq 6$, Fano investigated the double projection from a line ℓ on X_{2g-2}, that is, the rational map associated to the linear system $|H − 2\ell|$ of hyperplane sections singular along ℓ.

Example 1 Let $X_{16} \subset \mathbb{P}^{10}$ be a prime Fano 3-fold of genus 9. Then the double projection $\pi_{2\ell}$ from a line $\ell \subset X_{16}$ is a birational map onto \mathbb{P}^3. The union D of conics which intersects ℓ is a divisor of X and contracted to a space curve $C \subset \mathbb{P}^3$ of genus 3 and degree 7. The inverse rational map $\mathbb{P}^3 \dashrightarrow X_{16} \subset \mathbb{P}^{10}$ is given by the linear system $|7H − 2C|$ of surfaces of degree 7 which are singular along C.

The key for the analysis of $\pi_{2\ell}$ is the notion of flop. Let $X^−$ be the blow-up of X along ℓ. Since other lines intersect ℓ, $X^−$ is not Fano. But $X^−$ is almost Fano in the sense that $|−K_{X^−}|$ is free and gives a birational morphism contracting no divisors. The anticanonical model \hat{X} of $X^−$ is the image of the projection $X^− \rightarrow \mathbb{P}^8$ from ℓ. The strict transform $D^− \subset X^−$ of D is relatively negative over \hat{X}. By the theory of flops ([33], [19]), there exists another almost Fano 3-fold X^+ which has the same anticanonical model as $X^−$ and such that the strict transform $D^+ \subset X^+$ of $D^−$ is relatively ample over \hat{X}. X^+ is called the $D^−$-flop δ^3 of $X^−$.

¹ A surface dominated by a rational variety is rational by Castelnuovo’s criterion. But this does not hold any more for 3-folds. See [5], [44] and [18].

² The existence of a line is proved by Shokurov [42].

³ The smoothness of X^+ follows from [19, 2.4] or from the classification [6, Theorem 15] of the singularity of X.
Theorem ([23], [17]) Let X, ℓ and D be as in Example 1. Then the D-flop X^+ of the blow-up X^- of X along ℓ is isomorphic to the blow-up of \mathbb{P}^3 along a space curve of genus 3 and degree 7.

For the proof, the theory of extremal rays ([22]) is applied to the almost Fano 3-fold X^+. If X is a prime Fano 3-fold of genus 10, then X^+ is isomorphic to the blow-up of a smooth 3-dimensional hyperquadric $Q^3 \subset \mathbb{P}^4$ along a curve of genus 2 and degree 7. In the case genus 12, X^+ is the blow-up of a quintic del Pezzo 3-fold $V_5 \subset \mathbb{P}^6$ along a quintic normal rational curve.

§2 Bundle method A line on $X_{2g-2} \subset \mathbb{P}^{g+1}$ can move in a 1-dimensional family. Hence the double projection method does not give a canonical biregular description of $X_{2g-2} \subset \mathbb{P}^{g+1}$. In the case $g = 9$, e.g., there are infinitely many different space curves $C \subset \mathbb{P}^3$ which give the same Fano 3-fold $X_{16} \subset \mathbb{P}^{10}$. By the same reason, the double projection method does not classify $X_{2g-2} \subset \mathbb{P}^{g+1}$ over fields which are not algebraically closed. Even when a Fano 3-fold X is defined over $k \subset \mathbb{C}$, it may not have a line defined over k. Our new classification makes up these defects. It is originated to solve the following:

Problem A: Classify all projective varieties $X_{2g-2}^{g+n-2} \subset \mathbb{P}^{g+n-2}$ of dimension $n \geq 3$ with a canonical curve section.

We restrict ourselves to the case that every divisor on X is cut out by a hypersurface. In contrast with the case $g \leq 5$, the dimension n cannot be arbitrarily large in the case $g \geq 6$. In each case $7 \leq g \leq 10$, the maximum dimension $n(g)$ is attained by a homogeneous space Σ_{2g-2}.

<table>
<thead>
<tr>
<th>g</th>
<th>$n(g)$</th>
<th>$\Sigma_{2g-2} \subset \mathbb{P}^{g+n(g)-2}$</th>
<th>$r(E)$</th>
<th>$\chi(E)$</th>
<th>$c_1(E)c_2(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>Hyperquadric section of the cone of the Grassmann variety $G(2,5) \subset \mathbb{P}^9$</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>10-dimensional spinor variety $SO(10,\mathbb{C})/P \subset \mathbb{P}^{15}$</td>
<td>5</td>
<td>10</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Grassmann variety $G(2,6) \subset \mathbb{P}^{14}$</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>$Sp(6,\mathbb{C})/P \subset \mathbb{P}^{13}$</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>$G_2/P \subset \mathbb{P}^{14}$</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>$G(V,3,N) \subset \mathbb{P}^{13}$ (See Theorem 3.)</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

We claim that every variety $X \subset \mathbb{P}$ with canonical curve section of genus $g \geq 6$ is a linear section of the above $\Sigma_{2g-2} \subset \mathbb{P}^{g+n(g)-2}$. Since each Σ_{2g-2} has a natural morphism to a Grassmann variety, vector bundles play a crucial role in our classification. Instead of a line, we show the existence of a good vector bundle E on X. Instead of the double projection, we embed X into a Grassmann variety by the linear system $|E|$ and describe its image. The vector bundle is first constructed over a general (K3) surface section S of X and then extended to X applying a Lefschetz type theorem (cf. [8]).

4 A smooth projective variety $V_d \subset \mathbb{P}^{d+n-2}$ with a normal elliptic curve section is called del Pezzo. The anticanonical class $-K_V$ is linearly equivalent to $(n-1)$ times hyperplane section. All quintic del Pezzo 3-folds are isomorphic to each other (see [15] and [9]).

5 The isomorphism classes of curves C are uniquely determined by the Torelli theorem since the intermediate Jacobian variety of X is isomorphic to the Jacobian variety of C.

6 Roth [36] [37] studied this problem by generalizing the double projection method.

7 The anticanonical class of X_{2g-2}^2 is $(n-2)$-times hyperplane section. In the case $n = 2$, X_{2g-2}^2 is a (polarized) K3 surface. The integer g is called the genus of X.

8 $G(s,n)$ denotes the Grassmann variety of s-dimensional subspaces of a fixed n-dimensional vector space.

9 By our assumption on X and [21], there exists a surface section with Picard number one. Hence every member of $|O_S(-K_X)|$ is irreducible. We use this property to analyze $\Phi_{|E|}$.
are as in the above table.\(^\text{10}\) All higher cohomology groups of \(E\) vanish and \(E\) is generated by its global sections. The morphism\(^\text{11}\) \(\Phi_{(E)} : X \rightarrow G(H^0(E), r(E))\) is an embedding if \(g \geq 7\). The first Chern class \(c_1(E)\) is equal to \(2c_1(X)\) if \(g = 7\) and equal to \(c_1(X)\) otherwise. \(E\) is characterized by the following two properties:

1) \(r(E), c_1(E)\) and \(c_2(E)\) are as above, and
2) the restriction\(^\text{12}\) of \(E\) to a general surface section is stable.

In the case \(g = 9, |E|\) embeds \(X\) into the 9-dimensional Grassmann variety \(G(V, 3)\), where \(V = H^0(X, E)\). Consider the natural map

\[\lambda_2 : \bigwedge^2 H^0(X, E) \rightarrow H^0(X, \bigwedge^2 E).\]

The kernel is generated by a nondegenerate bivector \(\sigma\) on \(V\). Hence the image of \(X\) is contained in the zero locus \(G(V, 3, \sigma)\) of the global section of \(\bigwedge^2 E\) corresponding to \(\sigma\), where \(E\) is the universal quotient bundle on \(G(V, 3)\). \(G(V, 3, \sigma)\) is a 6-dimensional homogeneous space of \(Sp(V, \sigma)\) and a projective variety \(\Sigma_{16} \subset \mathbb{P}^{13}\) with a canonical curve section of genus 9. In the case \(\dim X = 3\), we have

Theorem 2 A prime Fano 3-fold \(X_{16} \subset \mathbb{P}^{10}\) of genus 9 is isomorphic to the intersection of \(\Sigma_{16}\) and a linear subspace \(\mathbb{P}^{10}\) in \(\mathbb{P}^{13}\).

By the above characterization, \(E\) is defined over \(k \subset \mathbb{C}\) if \(X\) is so. Hence the theorem holds true for every Fano 3-fold \(X_{16} \subset \mathbb{P}^{10}\) over \(k \subset \mathbb{C}\) such that \(X \otimes \mathbb{C}\) is prime.

The results are similar for \(g = 7, 8\) and 10. In the case \(g = 7\) and 10, the natural mappings \(\sigma_2 : S^2 H^0(X, E) \rightarrow H^0(X, S^2 E)\) and \(\lambda_4 : \bigwedge^4 H^0(X, E) \rightarrow H^0(X, \bigwedge^4 E)\) are considered instead of \(\lambda_2\). In the case \(g = 6\), \(X\) is a double cover of a linear section of \(G(2, 5) \subset \mathbb{P}^9\) if the linear subspace \(P\) passes through the vertex of the Grassmann cone. Otherwise, \(X\) is isomorphic to the complete intersection of a 6-dimensional hyperquadric \(Q \subset P\) and \(G(2, 5) \subset \mathbb{P}^9\).

§3 Fano 3-fold of genus 12 A prime Fano 3-fold\(^\text{13}\) \(X\) of genus 12 cannot be an ample divisor of a 4-fold. But the vector bundle \(E\) gives a canonical description of \(X\) in the 12-dimensional Grassmann variety \(G(V, 3), V = H^0(X, E)\). Consider the natural map \(\lambda_2 : \bigwedge^2 H^0(X, E) \rightarrow H^0(X, \bigwedge^2 E)\) as in the case \(g = 9\). Its kernel \(N\) is of dimension 3. Let \(\{\sigma_1, \sigma_2, \sigma_3\}\) be a basis of \(N\).

Theorem 3 A prime Fano 3-fold \(X_{22} \subset \mathbb{P}^{12}\) of genus 12 is isomorphic to the common zero locus \(G(V, 3, N)\) of the three global sections of \(\bigwedge^2 E\) corresponding to \(\sigma_1, \sigma_2\) and \(\sigma_3\), where \(E\) is the universal quotient bundle on \(G(V, 3)\).

The third Chern number deg \(c_3(E)\) is equal to 2. Hence every general global section of \(E\) vanishes at two points. Conversely, since \(V\) is of dimension 7, there exists a nonzero global section \(s_{x,y}\) vanishing at \(x\) and \(y\) for every pair of distinct points \(x\) and \(y\). If \(x\) and \(y\) are general, then \(s_{x,y}\) is unique up to constant multiplications. The correspondence \((x, y) \mapsto [s_{x,y}]\) gives the birational mappings \(\Pi : S^2X_\ast \rightarrow \mathbb{P}_\ast(V) \simeq \mathbb{P}^6\) and \(\Pi_x : X_\ast \rightarrow \mathbb{P}_\ast(V_x) \simeq \mathbb{P}^3\) for general \(x\), where \(V_x \subset V\) is the space of global sections of \(E\) which vanish at \(x\). In particular, \(X\) is rational. The birational mapping \(\Pi_x\) is the same as the triple projection of \(X_{22} \subset \mathbb{P}^{13}\) from \(x\).

The bundle method gives another canonical description of prime Fano 3-folds of genus 12 in the variety of twisted cubics \((\text{[29, } \S 3]\)). This description is useful to analyze the double projection of \(X_{22} \subset \mathbb{P}^{13}\) from a line.

\(^{10}\) The bundle method works for other values of \(g\), e.g., 18 and 20 and gives a description of polarized K3 surfaces (see [30]).

\(^{11}\) For a vector space \(V\), \(G(V, r)\) denotes the Grassmann variety of \(r\)-dimensional quotient space of \(V\).

\(^{12}\) The restriction of \(E\) is rigid and characterized by its numerical invariants and stability \((\text{[27, } \S 3]\))

\(^{13}\) Prime Fano 3-folds of genus 12 were omitted in [38, Chap. V, §7] and first constructed by Iskovskih [16].
Remark 4 The third Betti number of a prime Fano 3-fold of genus $g \geq 7$ is equal $2(n(g) - 3)$. In particular, prime Fano 3-folds of genus 12 have the same homology group as \mathbb{P}^3.

§4 Genus bound The descriptions given in §§2 and 3 complete the classification of prime Fano 3-folds by virtue of Iskovskih’s genus bound:

Theorem 5 The genus g of a prime Fano 3-fold satisfies $g \leq 10$ or $g = 12$.

This is proved in the course of the classification by the double projection method. Here we sketch a simple proof using a correspondence between the moduli spaces of K3 surfaces and curves. Let \mathcal{F}_g be the moduli space of polarized K3 surfaces (S, h) of degree $2g - 2$. A smooth member of $|h|$ is a curve of genus g. Hence we obtain the rational map ϕ_g from the \mathbb{P}^g-bundle $\mathcal{P}_g := \bigsqcup_{(S, h) \in \mathcal{F}_g} |h|$ over \mathcal{F}_g to the moduli space \mathcal{M}_g of stable curves of genus g. The key observation is this.

Proposition 6 If a prime Fano 3-fold of genus g exists, then the rational map $\phi_g : \mathcal{P}_g \to \mathcal{M}_g$ is not generically finite.

By a simple deformation argument, we have that the generic hyperplane section (S, h) of the generic prime Fano 3-fold is generic in \mathcal{F}_g. Take a generic pencil P of hyperplane sections of $X_{2g - 2} \subset \mathbb{P}^{g+1}$. The isomorphism classes of the members of P vary since the pencil P contains a singular member. But every member of P contains the base locus of P, which is a curve of genus g. This shows the proposition.

Since $\dim \mathcal{P}_g = g + 19$ and $\dim \mathcal{M}_g = 3g - 3$, $\dim \mathcal{P}_g \leq \dim \mathcal{M}_g$ holds if and only if $g \geq 11$. We recall the proof of the generic finiteness of ϕ_{11} in [25]. Let $C \subset \mathbb{P}^5$ be a sextic normal elliptic curve and S a smooth complete intersection of three hyperquadrics containing C. Let H be a general hyperplane section of S and put $\Gamma = H \cup C$. The S is a K3 surface and Γ is a stable curve of genus 11.

Theorem([25, (1.2)]) For every embedding $i : \Gamma \to S'$ of Γ in to a K3 surface S', there exists an isomorphism $I : S \to S'$ whose restriction to Γ coincides with i.

This implies that the point $\xi \in \mathcal{P}_{11}$ corresponding to (S, Γ) is isolated in $\phi_{11}^{-1}(\phi_{11}(\xi))$. Hence ϕ_{11} is generically finite and a prime Fano 3-fold of genus 11 does not exist. The non-existence of prime Fano 3-folds of genus ≥ 13 is proved in a similar way. Note that the elliptic curve C induces an elliptic fibration of S, which we denote by $\pi : S \to \mathbb{P}^1$. We consider the case in which π has two singular fibers of the following types:

i) $E_1 \cup E_2 \cup E_3$ with $(E_2, E_3) = (E_3, E_1) = (E_1, E_2) = 1$, and

ii) $E_2' \cup E_4$ with $(E_2', E_4) = 2$,

where E_ν is isomorphic to \mathbb{P}^1 and satisfies $(E_\nu, H) = \nu$ for every $1 \leq \nu \leq 4$. It is easy to construct a stable curve Γ_g of genus ≥ 13 on S from Γ by adding fibers of π. For example, $\Gamma \cup E_3$, $\Gamma \cup E_4$ and $\Gamma \cup E_2 \cup E_3$ are of genus 13, 14 and 15, respectively. Note that to add one general fibre of π increases the genus by 6. By the above theorem, it is easy to show that every embedding of Γ_g into a K3 surface S' is extended to an isomorphism from S' onto S'. Hence we have

Theorem 7 The rational map $\phi_g : \mathcal{P}_g \to \mathcal{M}_g$ is generically finite if and only if $g = 11$ or $g \geq 13$.

This completes the proof of Theorem 5.

Remark 8 The map ϕ_g is generically of maximal rank except for $g = 10, 12$. In the case of $g = 10$, the image of ϕ_{10} is is a divisor of \mathcal{M}_{10} (See [28]).
§5 Theory of polars Prime Fano 3-folds of genus 12 are related to the classical problem on sums of powers, which is a polynomial version of the Waring problem. Let \(F_d \) be a homogeneous polynomial of degree \(d \) in \(n \) variables.

1) Are there \(N \) linear forms \(f_1, \ldots, f_N \) such that \(F_d = \sum_1^N f_i^d \)?

2) If so, then how many?

In the following cases, every general \(F_d \) is a sum of \(d \)-th powers of \(N \) linear forms and the expression is unique:

1. \(n = 2 \) and \(d = 2N \) (Sylvester[43]),
2. \(n = 4, d = 3 \) and \(N = 5 \) (Sylvester’s pentahedral theorem [34] [39]), and
3. \(n = 3, d = 5 \) and \(N = 7 \) (Hilbert [14, p. 153], Richmond [34] and Palatini [32]).

We consider the case \(n = 3 \). Let \(C \) and \(\Gamma \) be the plane curves defined by \(F_d \) and \(\prod_1^N f_i \), respectively. \(\Gamma \) is called a polar \(N \)-side of \(C \) if \(F_d = \sum_1^N f_i^d \). The name comes from the following:

Example 9 Let \(C \) be a smooth conic and \(\ell_1, \ell_2 \) and \(\ell_3 \) three distinct lines. Then the following are equivalent:

1. \(\Delta = \ell_1 + \ell_2 + \ell_3 \) is a polar 3-side of \(C \) in the above sense, and
2. the triangle \(\Delta \) is self polar with respect to \(C \), that is, each side is the polar of its opposite vertex.

§6 Variety of sums of powers We regard the set of polar \(N \)-sides of \(C : F_d(x, y, z) = 0 \) as a subvariety of the projective space of plane curves of degree \(N \). We denote its closure\(^{14} \) by \(VSP(C, N) \) or \(VSP(F_d, N) \). The homogeneous forms of degree \(N \) form a vector space of dimension \(\frac{1}{2}(d+1)(d+2) \). The \(N \)-ples of linear forms form a vector space of dimension \(3N \). Hence the dimension of \(VSP(C, N) \) is expected to be \(3N - \frac{1}{2}(d+1)(d+2) \) for general \(C \).

In the case \((d, N) = (2, 3) \), this is true.

Proposition 10 If \(C \) is a smooth conic, then \(VSP(C, 3) \) is a smooth quintic del Pezzo 3-fold.

Let \(V_2 \) be the vector space of quadratic forms. If \(\Delta : f_1 f_2 f_3 = 0 \) is a polar 3-side of \(C \), then the defining equation \(F_2 \) of \(C \) is contained in the subspace \(\langle f_1^2, f_2^2, f_3^2 \rangle \) of \(V_2 \). Therefore, \(\Delta \) determines a 2-dimensional subspace \(W \) of \(V^* := V_2/C F_2 \). Hence we have the morphism from \(VSP(C, 3) \) to the 6-dimensional Grassmann variety \(G(2, V^*) \subset P^9 \). Let \(q : V_2 \rightarrow C \) be the linear map associated to the dual conic of \(C \). For a pair of quadratic forms \(f \) and \(g \), consider the three minors \(J_i(f, g), i = 1, 2, 3 \), of the Jacobian matrix

\[
\begin{pmatrix}
 f_x & f_y & f_z \\
 g_x & g_y & g_z
\end{pmatrix}
\]

and put \(\sigma_i(f, g) = q(J_i(f, g)) \). Then \(\sigma_i \) are skew-symmetric forms on \(V_2 \) and \(F_2 \) is their common radical. Therefore, each \(\sigma_i, i = 1, 2, 3 \), determine three hyperplanes \(H_i \) of \(P^9 = P_*(A^2 V^*) \). \(VSP(C, 3) \) is isomorphic to the quintic del Pezzo 3-fold \(G(2, V^*) \cap H_1 \cap H_2 \cap H_3 \).

Now we consider plane quartic curves \(C : F_4(x, y, z) = 0 \). The dimension count

\[
3N - 15 \leq \dim VSP(C, N)
\]

does not hold for \(N = 5 \):

Let \(\{ \partial_1 = \partial^2/\partial x^2, \ldots, \partial_6 = \partial^2/\partial z^2 \} \) be a basis of the space of homogeneous second order partial differential operators.

\(^{14}\) The closure is taken in the symmetric product \(\text{Sym}^N P^2 \). But this is a temporary definition. In practice, we choose a suitable model of \(\text{Sym}^N P^2 \) to define \(VSP(C, N) \).
Theorem (Clebsch [4]) If a plane quartic curve \(C : F_4(x, y, z) = 0 \) has a polar 5-side, then
\[
\Omega(F) := \det(\partial_i \partial_j F)_{1 \leq i, j \leq 6} = 0.
\]
In particular, general plane quartic curves have no polar 5-sides.

In other words, polar 5-sides are not equally distributed to quartic curves. Once a quartic curve has a polar 5-side, it has a 1-dimensional family of polar 5-sides. (The same happens for polar 2-sides of conics.)

Polar 6-sides of plane quartics was studied by Rosanes [35] and Scorza [40]. The dimension count is correct for \(N = 6 \) and we obtain 3-folds.

Theorem 11 (1) If a quartic curve \(C \) has no polar 5-sides or no complete quadrangles as its polar 6-sides, then the variety \(VSP(C, 6) \) of polar 6-sides of \(C \) is a prime Fano 3-fold of genus 12.

(2) Conversely every prime Fano 3-fold \(X \) of genus 12 is obtained in this way. The isomorphism class of \(C \) is uniquely determined by that of \(X \).

By virtue of Theorem 3, it suffice to show that \(G(V, 3, N) \) is isomorphic to \(VSP(C, 6) \). Let \(V_3 \) be the vector space of cubic forms. If \(\Gamma : f_1 f_2 \cdots f_6 = 0 \) is a polar 6-side of \(C \), then the partial derivatives \(F_x, F_y \) and \(F_z \) of the defining equation \(F_4 \) are contained in \(-\langle f_1^3, f_2^3, \cdots, f_6^3 \rangle \). Hence \(\Gamma \) determines a 3-dimensional subspace of \(V^* := V_3/\langle F_x, F_y, F_z \rangle \) and we obtain a morphism \(\phi \) from \(VSP(C, 6) \) to \(G(3, V^*) \). Three skew-symmetric forms \(\sigma_1, \sigma_2 \) and \(\sigma_3 \) on \(V^* \) are defined as in the case of \(VSP(F_2, 3) \) and the image of \(\phi \) is contained in \(G(3, V^*, \sigma_1, \sigma_2, \sigma_3) \).

Conversely, let \(V \) and \(N \subset \Lambda^2 V \) be as in Theorem 3. The multiplication in the exterior algebra \(\Lambda^* V \) induces the map \(\sigma_3 : S^3 N \to \Lambda^6 V \). This is surjective and its kernel is of dimension 3.

Lemma 12 There exists a quartic polynomial \(F(x, y, z) \in S^4 N \) whose partial derivatives \(F_x, F_y \) and \(F_z \) form a basis of the kernel of \(\sigma_3 \), where \(\{x, y, z\} \) is a basis of \(N \) and \(\{X, Y, Z\} \) is its dual.

The conics on (the anticanonical model of) \(G(V, 3, N) \) is parametrized by the projective plane\(^{15} \mathbb{P}_*(N) \) For every point \(x \) of \(G(V, 3, N) \), there exist exactly six conics \(\{Z_{\lambda_i}\}_{1 \leq i \leq 6} \), \(\lambda_i \in \mathbb{P}_*(N) \), passing through \(x \), counted with their multiplicities. Let \(\Lambda_i, 1 \leq i \leq 6 \), be the lines on \(\mathbb{P}(N) \) with coordinates \(\lambda_i \). Then \(\Gamma = \sum_1^6 \Lambda_i \) is a polar 6-side of the plane curve \(C \) on \(\mathbb{P}(N) \) defined by the quartic form \(F(x, y, z) \) in the lemma. This correspondence \(x \mapsto \Gamma \) gives the inverse of the above morphism \(\phi \).

Remark 13 (1) Assume that a plane quartic \(C' \) has a polar 5-side and that the 5lines are in general position.

When \(C \) in Theorem 11 deforms to \(C' \), the variety \(VSP(C, 6) \) deforms to a Fano 3-fold \(X' \) with an ordinary double point. \(X' \) is isomorphic to the anti canonical model of \(\mathbb{P}(E) \), where \(E \) is a stable vector bundle on \(\mathbb{P}^2 \) with \(c_1 = 0 \) and \(c_2 = 4 \) (cf. [2]).

(2) If \(C \) is a general plane septic curve, then the variety \(VSP(C, 10) \) is a polarized K3 surface of genus 20.

\(^{15}\) For a vector space \(V \), \(\mathbb{P}_*(V) \) is the projective space of 1-dimensional subspaces of \(V \). \(\mathbb{P}(V) \), or \(\mathbb{P}^*(V) \), is its dual.
§7 Almost homogeneous Fano 3-fold Varieties of sums of powers give two examples of almost homogeneous spaces of $SO(3, \mathbb{C})$ and their compactifications. Apply Theorem 11 to a double conic, say $2C_0 : (XZ + Y^2)^2 = 0$.

The variety $VSP(2C_0, 6)$ is a Fano 3-fold and has an action of $SO(3, \mathbb{C})$. It is easy to check
\[
30(XZ + Y^2)^2 = 25Y^4 + \sum_{i=0}^{4}(\zeta^i X + Y + \zeta^{-i}Z)^4,
\]
where ζ is a fifth root of unity. The polar 6-side
\[
\Gamma : Y \prod_{i=0}^{4}(\zeta^i X + Y + \zeta^{-i}Z) = 0
\]
intersects the 2-sphere C_0 at the 12 vertices of a regular icosahedron. The stabilizer group at Γ of $SO(3, \mathbb{C})$ is the icosahedral group $\cong A_5$. Hence we have

Theorem 14 The variety $VSP(2C_0, 6)$ is a smooth equivariant compactification of $SO(3, \mathbb{C})/Icosa$.

Similarly the quintic del Pezzo 3-fold $VSP(C_0, 3)$ is a smooth equivariant compactification of the quotient of $SO(3, \mathbb{C})$ by an octahedral group $\cong S_4$ by Proposition 10. These two compactifications are described in [31, §§3 and 6] by another method. We remark that Q^3 and P^4 are also almost homogeneous spaces of $SO(3, \mathbb{C})$. The stabilizer groups are tetrahedral group $\cong A_4$ and a dihedral group of order 6 $\cong S_3$, respectively.

§8 Compactification of \mathbb{C}^3 There are four types of Fano 3-folds with the same homology groups as P^3: P^3 itself, $Q^3 \subset P^4$, $V_5 \subset P^6$ and the 6-dimensional family of prime Fano 3-folds $X_{22} \subset P^{13}$ of genus 12 (see Remark 4). These Fano 3-folds are related to not only $SO(3, \mathbb{C})$ but also \mathbb{C}^3, the affine 3-space. It is well-known that P^3 and Q^3 are smooth compactifications of \mathbb{C}^3 with irreducible boundary divisors. The quintic del Pezzo 3-fold $V_5 \subset P^6$ is a compactifications of \mathbb{C}^3 in two ways (see [10] and [13]).

Furushima has found that the almost homogeneous Fano 3-fold $U_{22} := VSP(2C_0, 6)$ also is a Compactification of \mathbb{C}^3. This fact is proved in three ways using

i) the defining equation ([31] p.506) of $U_{22} \subset P^{12}$ (see [11]),

ii) the double projection of $U_{22} \subset P^{13}$ from a line (see [12]), and

iii) the action of a torus $\mathbb{C}^* \subset SO(3, \mathbb{C})$ on U_{22} (see [1] and [20]).

In the last case, U_{22} is decomposed into a disjoint union of affine spaces by virtue of [3]. The four compactifications by P^3, Q^3 and V_5 are rigid but that by U_{22} is not. In fact, by a careful analysis of the double projection of $VSP(C, 6) \subset P^{13}$ from a line, we have

Theorem 15 The variety $VSP(C, 6)$ in Theorem 11 is a compactification of \mathbb{C}^3 if C has a non-ordinary singular point.

The variety $VSP(C, 6)$ has a line ℓ (on its anticanonical model) with normal bundle $O(1) \oplus O(-2)$ corresponding to a non-ordinary singular point of C. Let D be the union of conics which intersect ℓ as in Example 1. Then the complement of D is isomorphic to \mathbb{C}^3.

References

[38] Roth, L.: Algebraic threefold with special regard to problems of rationality, Springer Verlag, 1955.

