A generalization of Mumford's example (joint work with H. Nasu) SHIGERU MUKAI

Let $\operatorname{Hilb}^{sc} V$ be the Hilbert scheme parametrizing smooth curves in a smooth projective variety V. In [3], Mumford showed that $\operatorname{Hilb}^{sc} \mathbb{P}^3$ has a generically non-reduced component. More precisely the following is proved:

Example A Let S be a smooth cubic surface in \mathbb{P}^3 , $E \neq (-1)$ - \mathbb{P}^1 in S and $C \subset S$ a smooth member of the linear system $|4h + 2E| \simeq \mathbb{P}^{37}$ on S. (C is of degree 14 and genus 24.) Such space curves C are parametrized by $W^{56} \subset \operatorname{Hilb}^{sc} \mathbb{P}^3$, an open subset of a \mathbb{P}^{37} -bundle over $|3H| \simeq \mathbb{P}^{19}$. Here H is a plane in \mathbb{P}^3 and h is its restriction to S. Then W^{56} is an irreducible component of $(\operatorname{Hilb}^{sc} \mathbb{P}^3)_{red}$ and $\operatorname{Hilb}^{sc} \mathbb{P}^3$ is nowhere reduced along W^{56} .

It is well known that every infinitesimal (embedded) deformation of $C \subset V$ is unobstructed if $H^1(N_{C/V}) = 0$. Conversely we find a sufficient condition for a first order infinitesimal deformation of a curve C in a 3-fold V to be obstructed, abstracting an essence from the arguments in [1] and [4]. As application we construct generically non-reduced components of the Hilbert schemes of uniruled 3-folds Vincluding Examples A and B as special cases:

Example B ([2]) Let V_3 be a smooth cubic 3-fold in \mathbb{P}^4 , S its general hyperplane section, $E \ a \ (-1)-\mathbb{P}^1$ in S and $C \subset S$ a smooth member of $|2h+2E| \simeq \mathbb{P}^{12}$. (C is of degree 8 and genus 5.) Such curves C in V_3 are parametrized by $W^{16} \subset \operatorname{Hilb}^{sc} V$, an open subset of \mathbb{P}^{12} -bundle over the dual projective space $\mathbb{P}^{4,\vee}$. Then W^{16} is an irreducible component of $(\operatorname{Hilb}^{sc} V_3)_{red}$ and $\operatorname{Hilb}^{sc} V_3$ is nowhere reduced along W^{16} .

The curves C of genus 24 in Example A are not (moduli-theoretically) general but the curves C of genus 5 in Example B are general. Hence, with the help of Sylvester's pentahedral theorem ([5]), Example B gives a counterexample to the following problem:

Problem 1 Is every component of the Hom scheme Hom(X, V') generically smooth for a smooth curve X with general modulus and for a general member V' in the Kuranishi family of V?

Let $\operatorname{Hom}_8(X_5, V_3)$ be the Hom scheme of morphisms of degree 8 from a curve X_5 of genus 5 with general modulus to a smooth cubic 3-fold $V_3 \subset \mathbb{P}^4$.

Theorem ([2]) If V_3 is also moduli-theoretically general, then $Hom_8(X_5, V_3)$ has a generically non-reduced component of expected dimension (= 4).

The following seems still open:

Problem 2 Let G/P be a projective homogeneous space, *e.g.*, a Grassmann variety and X a curve with general modulus. Is every component of Hom(X, G/P) generically smooth?

The answer is affirmative for the projective space \mathbb{P}^n by virtue of Gieseker's theorem (= Petri's conjecture).

References

- D. Curtin: Obstructions to deforming a space curve, Trans. Amer. Math. Soc. 267(1981), 83–94.
- [2] S. Mukai and H. Nasu: Obstructions to deforming curves on a 3-fold, I, preprint.
- [3] D. Mumford: Further pathologies in algebraic geometry, Amer. J. Math. 84(1962), 642–648.
- [4] H. Nasu: Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, math.AG/0505413, Publ. Res. Inst. Math. Sci., 42(2006), 117–141.
- [5] B, Segre: The non-singular cubic surfaces, Oxford University Press, Oxford, 1942.