A generalization of Mumford’s example (joint work with H. Nasu)

Shigeru Mukai

Let \(\text{Hilb}^{sc} V \) be the Hilbert scheme parametrizing smooth curves in a smooth projective variety \(V \). In [3], Mumford showed that \(\text{Hilb}^{sc} \mathbb{P}^3 \) has a generically non-reduced component. More precisely the following is proved:

Example A Let \(S \) be a smooth cubic surface in \(\mathbb{P}^3 \), \(E \) a \((-1)\)-\(\mathbb{P}^1 \) in \(S \) and \(C \subset S \) a smooth member of the linear system \(|4h + 2E| \cong \mathbb{P}^{37} \) on \(S \). (\(C \) is of degree 14 and genus 24.) Such curves \(C \) are parametrized by \(W^{56} \subset \text{Hilb}^{sc} \mathbb{P}^3 \), an open subset of a \(\mathbb{P}^{37} \)-bundle over \(|3H| \cong \mathbb{P}^{19} \). \(H \) is a plane in \(\mathbb{P}^3 \) and \(h \) is its restriction to \(S \). Then \(W^{56} \) is an irreducible component of \((\text{Hilb}^{sc} \mathbb{P}^3)_{\text{red}} \) and \(\text{Hilb}^{sc} \mathbb{P}^3 \) is nowhere reduced along \(W^{56} \).

It is well known that every infinitesimal (embedded) deformation of \(C \subset V \) is unobstructed if \(H^1(N_C/V) = 0 \). Conversely we find a sufficient condition for a first order infinitesimal deformation of a curve \(C \) in a 3-fold \(V \) to be obstructed, abstracting an essence from the arguments in [1] and [4]. As application we construct generically non-reduced components of the Hilbert schemes of uniruled 3-folds \(V \) including Examples A and B as special cases:

Example B \([2]\) Let \(V_3 \) be a smooth cubic 3-fold in \(\mathbb{P}^4 \), \(S \) its general hyperplane section, \(E \) a \((-1)\)-\(\mathbb{P}^1 \) in \(S \) and \(C \subset S \) a smooth member of \(|2h + 2E| \cong \mathbb{P}^{12} \). (\(C \) is of degree 8 and genus 5.) Such curves \(C \) in \(V_3 \) are parametrized by \(W^{16} \subset \text{Hilb}^{sc} V_3 \), an open subset of a \(\mathbb{P}^{12} \)-bundle over the dual projective space \(\mathbb{P}^4, \vee \). Then \(W^{16} \) is an irreducible component of \((\text{Hilb}^{sc} V_3)_{\text{red}} \) and \(\text{Hilb}^{sc} V_3 \) is nowhere reduced along \(W^{16} \).

The curves \(C \) of genus 24 in Example A are not (moduli-theoretically) general but the curves \(C \) of genus 5 in Example B are general. Hence, with the help of Sylvester’s pentahedral theorem \([5]\), Example B gives a counterexample to the following problem:

Problem 1 Is every component of the Hom scheme \(\text{Hom}(X, V') \) generically smooth for a smooth curve \(X \) with general modulus and for a general member \(V' \) in the Kuranishi family of \(V \)?

Let \(\text{Hom}_8(X_5, V_3) \) be the Hom scheme of morphisms of degree 8 from a curve \(X_5 \) of genus 5 with general modulus to a smooth cubic 3-fold \(V_3 \subset \mathbb{P}^4 \).

Theorem \([2]\) If \(V_3 \) is also moduli-theoretically general, then \(\text{Hom}_8(X_5, V_3) \) has a generically non-reduced component of expected dimension \((= 4)\).

The following seems still open:

Problem 2 Let \(G/P \) be a projective homogeneous space, e.g., a Grassmann variety and \(X \) a curve with general modulus. Is every component of \(\text{Hom}(X, G/P) \) generically smooth?

The answer is affirmative for the projective space \(\mathbb{P}^n \) by virtue of Gieseker’s theorem (= Petri’s conjecture).
REFERENCES