幾何学Ⅱ試験問題

担当: 中島 啓

2001年2月2日(金)9:30~10:50

問題 1 C^{∞} 級多様体 (微分可能多様体) の定義を書け.

問題 2 M, N を C^{∞} 級多様体とする.

写像 $F\colon M\to N$ が微分同相であるとは, F は全単射であり, F もその逆写像 F^{-1} も C^∞ 級であるときを言う.

M と N の間に微分同相写像 $F\colon M\to N$ が存在するとき, M と N の次元が同じであることを証明せよ.

問題 3 一次元複素射影空間 ${\bf C}P^1$ を考える. 同次座標 $[z_0:z_1]$ を導入し, $U_0=\{z_0\neq 0\}$ とおく. このとき, 写像 $U_0\ni [z_0:z_1]\mapsto z_1/z_0\in {\bf C}$ は, U_0 と ${\bf C}$ との間の微分同相写像である. また, ${\bf C}P^1\setminus U_0$ は一点 [0:1] からなる. (これらは証明しなくてよい.)

C上のベクトル場Xを

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$

で定める. ただし, z=x+iy として (x,y) を ${\bf C}$ の座標と考えた. このベクトル場 X が上の写像を通じて ${\bf C}P^1$ 上のベクトル場 $\widetilde X$ に拡張されることを証明し, また, そのベクトル場の値 $\widetilde X_p$ が 0 になる点 p を全て求めよ.

問題 4 二次元球面 $S^2=\{(x,y,z)\in\mathbf{R}^3\mid x^2+y^2+z^2=1\}$ を考える. 包含写像を $i\colon S^2\to\mathbf{R}^3$ とする.

- $(1) i^*(dx \wedge dy \wedge dz)$ を求めよ.
- (2) $i^*(dx)$ の値が 0 になる球面の点を全て求めよ. すなわち, $\alpha=i^*(dx)$ とおいたときに, $\alpha_p=0$ となるような $p\in S^2$ を全て求めよ.