幾何学II演習問題

担当: 中島 啓

2006年11月8日(水)

- 問題 14. (1) S^1 を \mathbf{R}/\mathbf{Z} と見なす. 整数 n に対して、写像 $f: S^1 \to S^1$ を f(t) = nt で定義する. このとき f の写像度が n であることを、積分を使って証明せよ. ただし写像度とは、 $H^1(S^1,\mathbf{R}) \cong \mathbf{R}$ に f^* が誘導する写像が、何倍する写像かで定義される. もう少し詳しくいうと、 $H^1(S^1,\mathbf{R}) \cong \mathbf{R}$ の同型が、 $[\alpha] \mapsto \int_{S^1} \alpha$ で与えられることに注意して、 $f^*[\alpha]$ の積分を計算して証明する.
- (2) $S^n = \{x \in \mathbf{R}^{n+1} \mid |x| = 1\}$ とし、 $f \colon S^n \to S^n$ を、f(x) = -x で定義する.このとき f の写像度を求めよ.**ヒント**.Stokes の定理を使って、 $D^{n+1} = \{x \in \mathbf{R}^{n+1} \mid |x| \leq 1\}$ 上のn+1 次微分形式から、 S^n 上のn 次微分形式で積分が計算できるものを構成せよ.
- (3) S^2 を $\mathbf{C} \cup \{\infty\}$ と思い、さらに一次元複素射影空間 $\mathbf{C}P^1$ とみなす。多項式写像 $f(z)=z^n+a_1z^{n-1}+\cdots+a_n$ が、 $\tilde{f}([z_0:z_1])=[z_0^n:z_1^n+a_1z_0z_1^{n-1}+\cdots+a_nz_0^n]$ によって、 $\mathbf{C}P^1$ の間の写像に拡張されることに注意する。 \tilde{f} の写像度が n であることを証明せよ。 $\mathbf{E}\mathbf{V}\mathbf{F}$. 積分を用いて具体的に計算するのは面倒なので、問題 9 の方法を使え。
- 問題 **15.** コンパクト台の Mayer-Vietoris 完全列を用いて、メビウスの帯 M の $H_c^*(M,\mathbf{R})$ を計算せよ. ただしメビウスの帯とは、 $[0,1]\times (-1,1)$ を、 $(0,x)\sim (1,-x)$ から生成される 同値関係で貼り合わせてできる多様体である. 一方、 $H^*(M,\mathbf{R})$ は、M が S^1 とホモトピックであることから、 $H^*(S^1,\mathbf{R})$ と同型になる. これから、メビウスの帯については、Poincaré 双対性が成立していないことをチェックせよ.
- 問題 16. X を [0,2] × (-1,1) を (0,x) ~ (2,x) から生成される同値関係で貼り合わせてできる多様体とする。これは、 S^1 × (-1,1) に他ならない。 $f: X \to X$ を、 $f(t,x) = ((t+1) \bmod 2, -x)$ で定義する。f は well-defined で、 $f^2 = \operatorname{id}$ であり、これにより、X には、群 $\{\pm\}$ が作用する。 $X/\{\pm 1\}$ は、メビウスの帯 M である。 商写像を $\pi: X \to M$ とする。 $H_c^*(M,\mathbf{R})$ は、 π^* によって、 $H_c^*(X,\mathbf{R})$ の群作用で不変な部分空間 $H_c^*(X,\mathbf{R})^{\pm 1}$ (群は f^* で作用する)であることをを証明し、これを用いて、 $H_c^*(M,\mathbf{R})$ を計算せよ。
- 問題 17. n次元トーラス $T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ } @}$ を $\mathbf{R}^n/\mathbf{Z}^n$ と思うことにする. $x = (x_1, \ldots, x_n)$

を \mathbf{R}^n の座標とする. $A=(a_{ij})$ を $n\times n$ の整数成分の行列とする. $f_A\colon T^n\to T^n$ を $f_A(x \bmod \mathbf{Z}^n)=Ax \bmod \mathbf{Z}^n$ によって定義する. (well-defined であることに注意しよう.) このとき $H^*(T^n,\mathbf{R})\cong \bigwedge^*\mathbf{R}^n$ と表わしたときに, $f_A^*\colon H^*(T^n,\mathbf{R})\to H^*(T^n,\mathbf{R})$ を求めよ.

コホモロジ―の係数 ', R' は省略することにする.

略解 14. (1) $\alpha = dt$ とおく. $\int_0^1 \alpha = 1$ である. $f^*(\alpha) = n\alpha$ より, $\int_0^1 f^*(\alpha) = n$ であり, 写像度は n である.

- (2) $\alpha=x_1dx_2\wedge\cdots\wedge dx_{n+1}$ とおく. $d\alpha=dx_1\wedge\cdots\wedge dx_{n+1}$ であり、Stokes の定理により、 $0\neq\int_{D^{n+1}}d\alpha=\int_{S^n}\alpha$ である. このとき $f^*(d\alpha)=f^*(dx_1\wedge\cdots\wedge dx_{n+1})=(-1)^{n+1}dx_1\wedge\cdots\wedge dx_{n+1}$ であるから、再び Stokes の定理を用いて $\int_{S^n}f^*(\alpha)=(-1)^{n+1}\int_{S^n}\alpha$ である. よって写像度は $(-1)^{n+1}$ である.
- (3) $f_0(z)=z^n$ とおき, \tilde{f}_0 を $\mathbf{C}P^1$ への拡張とすると, 問題 9 と同じやり方で, \tilde{f} と \tilde{f}_0 はホモトピックである. (この場合は, 固有写像であることをチェックする必要がなくなるので, より簡単である.) したがって写像度は等しい. \tilde{f}_0 については 1 の逆像を調べて, 問題 9 と同様にして, 写像度が n であることが分かる. (詳細略)

略解 15. 問題 12 のように, $[0,1] = I_+ \cup I_-$ と分け, $M = M_+ \cup M_-$ と分ける. $M_+ \cap M_- = M_0 \cup M_1$ と二つの連結成分に分かれる. コンパクト台の Mayer-Vietories 完全列により,

$$H^{k}(M) \longleftarrow H^{k}(M_{+}) \oplus H^{k}(M_{-}) \stackrel{\varphi}{\longleftarrow} H^{k}(M_{0}) \oplus H^{k}(M_{1})$$

$$H^{k-1}(M) \stackrel{d_{*}}{\longleftarrow} H^{k-1}(M_{+}) \oplus H^{k-1}(M_{-}) \stackrel{\varphi}{\longleftarrow} H^{k-1}(M_{0}) \oplus H^{k-1}(M_{1})$$

を得る. ここで、 M_{\pm} 、 M_0 、 M_1 はすべて \mathbf{R}^2 と微分同相であることに注意し、 $H^k(\mathbf{R}^2) = \mathbf{R}$ (k=2 のとき)、=0 (それ以外のとき) であり、 $H^2(\mathbf{R}^2) \cong \mathbf{R}$ は、積分 $[\alpha] \mapsto \int_{\mathbf{R}^2} \alpha$ で与えられることを思い出しておく、そうすると $H^2(M_+) \oplus H^2(M_-) \stackrel{\varphi}{\leftarrow} H^2(M_0) \oplus H^2(M_1)$ として、 $H^2(M) \cong \operatorname{Coker} \varphi$ 、 $H^1(M) \cong \operatorname{Ker} \varphi$ となる。 φ を行列表示すると、 $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ となる。(詳細略) したがって、 $\operatorname{Coker} \varphi = 0$ 、 $\operatorname{Ker} \varphi = 0$ であり、 $H^*_c(M) = 0$ となる。

略解 16. π の微分 $d\pi_x$: $T_xX \to T_{\pi(x)}M$ を考える. π が定義域を小さくすると微分同相になることから, $d\pi_x$ は同型写像である. また, $y \in M$ に対し, $\pi(x) = y$ となる x は丁度二個, x と f(x) であることを注意する. (X は M の二重被覆であるということである.) このとき, $T_xX \xrightarrow[d\pi_x]{\cong} T_{\pi(x)}M \xleftarrow[d\pi_{f(x)}]{\cong} T_{f(x)}X$ の合成を考えると, これは df_x で与えられることが分かる.

主張 $H^*_c(M)\ni [lpha]\mapsto \pi^*[lpha]\in H^*_c(X)$ を考える。その値域は、 $H^*_cc(X)^{\pm 1}$ であり、 $H^*_c(M)\xrightarrow{\pi^*}_{\cong}H^*_c(X)^{\pm 1}$ と同型写像を誘導する。

まず微分形式のレベルで、 $A_c^k(M) \ni \alpha \mapsto \pi^*\alpha \in A_c^k(X)^{\pm 1}$ が同型写像であることを示す。 α を M 上の微分形式とする。 $\pi^*\alpha$ は、X 上の微分形式である。さらに、 $f^*\pi^*\alpha = (\pi \circ f)^*\alpha = \pi^*\alpha$ であるから、 $\pi^*\alpha$ は、 f^* で不変である。逆に ω が f^* で不変であるとする。このとき、 $T_yM \to \mathbf{R}$ を、 $\pi^{-1}(y) = x$ を取って、上の $(d\pi_x)^{-1}$ を通じて $T_{\pi(x)}M \xrightarrow[(d\pi_x)^{-1}]{} T_xX \xrightarrow{\omega_x} \mathbf{R}$ によって定義する。上の注意により、x を取っても、f(x) を取っても、 ω が f^* で不変であるこ

とから同じ値になる. さらに, $y = \pi(x)$ を動かしたときに, y について滑らかに依存することが, $y \mapsto x$ が定義域を小さく取り直せば微分同相であることから従う.

そこで, $H_c^*(M) \ni [\alpha] \mapsto \pi^*[\alpha] \in H_c^*(X)$ を考える. 上の考察から, $\pi^*[\alpha] \in H_c^*(X)^{\pm 1}$ である. このとき, $\pi^*: H_c^*(M) \to H_c^*(X)^{\pm 1}$ が同型であることを示す.

まず単射であることをいう. $[\pi^*\alpha]=0$ であるとすると, $\pi^*\alpha=d\omega$ となる, $\omega\in H^*_c(N)$ が存在する. このとき, $\tilde{\omega}=\frac{1}{2}(\omega+f^*\omega)$ とおくと, $f^*\tilde{\omega}=\tilde{\omega}$ であるから, 上の議論により, $\tilde{\omega}$ は M 上の微分形式 β を定める. さらに $d\tilde{\omega}=\frac{1}{2}d\omega+f^*d\omega=\pi^*\alpha$ であるから, $d\beta=\alpha$ である. よって $[\alpha]=0$ であり, π^* は単射である.

次に全射であることをいう. $[\omega] \in H_c^*(X)$ が, $f^*[\omega] = [\omega]$ を満たすとする. $f^*\omega = \omega + d\tau$ となる $\tau \in H_c^*(X)$ が存在する. このとき, $d(f^*\tau) = f^*d\tau = \omega - f^*\omega = -d\tau$ に注意して, $f^*(\omega + \frac{1}{2}d\tau) = \omega + d\tau - \frac{1}{2}d\tau = \omega + \frac{1}{2}d\tau$ である. したがって, $\omega + \frac{1}{2}d\tau$ は, M 上の微分形式 α で, $\pi^*\alpha = \omega + \frac{1}{2}d\tau$ となるものを定める. $[\omega] = [\omega + \frac{1}{2}d\tau]$ であるから, これは全射であることを示している.

さて、 $H_c^k(X) \overset{\cong}{\leftarrow} H_c^{k-1}(S^1) = \mathbf{R} \ (k=1,2), = 0 \ (それ以外)$ である。ただし、 $e_*[\alpha] = [p^*\alpha \wedge e] \ (p: X \cong S^1 \times (-1,1) \to S^1, e$ は (-1,1) 上のコンパクト台を持ち積分が 1 の 1 次微分形式)である。このとき、 $f^*e = -e$ である。(何故か?)よって $f^*(p^*\alpha \wedge e) = -(p \circ f)^*\alpha \wedge e$ である。ところが、 $p \circ f(t,x) = (t+1) \mod 2$ は、p とホモトピックである。(何故か?)したがって、 $[(p \circ f)^*\alpha] = [p^*\alpha]$ であり、よって、 $f^*[p^*\alpha \wedge e] = -[p^*\alpha \wedge e]$ である。そうすると、不変部分空間 $H_c^*(X)^{\pm 1}$ は 0 しか含まない。

略解 17. T^n の i 番目の S^1 は, x_i を 0 から 1 まで動かすと得られる. したがって, i 番目の S^1 の $H^1(S^1)$ の基底として $[dx_i]$ が得られる. $(x_i$ は, T^n 上では well-defined ではないが, dx_i は well-defined であることに注意する.) よってテンソル積の i 番目の成分 $H^*(S^1)$ は, $\mathbf{R} \cdot 1 \oplus \mathbf{R}[dx_i]$ となる. Künneth の公式から $H^*(T^n)$ は,

$$[dx_{i_1} \wedge \cdots \wedge dx_{i_p}] \qquad (i_1 < \cdots < i_p)$$

を基底とする $\bigwedge^* \mathbf{R}^n$ と同型であった.このとき $A=(a_{ij})$ とすると, \mathbf{R}^n では, $f_A^*(x_i)=x_i\circ f_A=\sum_j a_{ij}x_j$ である.よって, $f_A^*dx_i=\sum a_{ij}dx_j$ である.すなわち, dx_1,\cdots,dx_n を基底と思うと,表現行列が A で与えられるものである. f_A^* は, $H^1(T^n)\cong \mathbf{R}^n$ 上では A に他ならない.

 $H^k(T^n)$ の基底は, $[dx_{i_1} \wedge \cdots \wedge dx_{i_k}]$ $(i_1 < \cdots < i_k)$ であったことに注意すると, f_A^* は, $H^k(T^n) \cong \bigwedge^k \mathbf{R}$ 上では, $A \circ k \times k \circ h$ の小行列式でできる行列で与えられる.