幾何学II演習問題

担当: 中島 啓

2008年10月8日(水)

今回は、計算問題が主なので、時間内にできなかった場合は、うちでもう一回やってみよう.

問題 4. $X = \mathbf{R}$ とする.

$$H_c^p(X, \mathbf{R}) = egin{cases} \mathbf{R} & p = 1 \, \text{のとき} \\ 0 & \\ \text{それ以外のとき} \end{cases}$$

を証明せよ.

問題 5. V を有限次元実ベクトル空間とし, V^* の二つの基底を $\{\theta_i\}$, $\{\theta_i'\}$ とし, 基底の変換行列を

$$\theta_i' = \sum_j a_{ij} \theta_j$$

とする. このとき, $\bigwedge^k V^*$ の二つの基底 $\{\theta_{i_1} \wedge \cdots \wedge \theta_{i_k} \mid i_1 < \cdots < i_k\}$, $\{\theta'_{i_1} \wedge \cdots \wedge \theta'_{i_k} \mid i_1 < \cdots < i_k\}$ の間の基底の変換行列が, 行列 $A = (a_{ij})$ の小行列式を集めてできる行列 (サイズは, $\binom{\dim V}{k}$) であることを証明せよ.

問題 6. α を k 次微分形式とし, X_1, \ldots, X_{k+1} をベクトル場とするときに

$$d\alpha(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i+1} X_i \alpha(X_1, \dots, \widehat{X}_i, \dots, X_{k+1})$$
$$+ \sum_{i < j} (-1)^{i+j} \alpha([X_i, X_j], X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, X_{k+1})$$

を証明せよ. ただし, \widehat{X}_i は, 変数 X_i を省いていることを意味する.

注意. 外積の定義によっては、左辺にk+1が出てくるものもあるので注意すること。

問題 7. \mathfrak{g} を Lie 環とし, A をその表現とする. すなわち, \mathfrak{g} は実ベクトル空間で, Lie 括弧と呼ばれる二項演算 $[\ ,\]$: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ が定義されており, それは双線形で反可換であり, Jacobi 律

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0$$

を満たすものである。また、その表現とは線形空間 A であって、双線形写像 $:: \mathfrak{g} \times A \to A$ であって、 $[X,Y] \cdot a = X \cdot (Y \cdot a) - Y \cdot (X \cdot a)$ を満たすものが与えられているものをいう。 例えば、 \mathfrak{g} を多様体 M 上のベクトル場の全体、A を C^∞ 級関数の全体 $C^\infty(M)$ として、作用を微分によるものとすれば、これらの性質を満たす.

k 個

このとき, α : $\mathfrak{g} \times \mathfrak{g} \times \cdots \times \mathfrak{g} \to A$ で多重線形写像であり, 変数を入れ替えると符号が代わるものとする. (上の例では微分形式が例である.) そのようなものの全体を $\Omega^k(\mathfrak{g};A)$ で表わす.

(k+1) 個

(1) 問題 $\mathbf{6}$ の式で、 $d\alpha$: $\mathbf{g} \times \mathbf{g} \times \cdots \times \mathbf{g} \to A$ を定義する。 ただし、 $X_i\alpha(\dots)$ の部分は、 $X_i \cdot \alpha(\dots)$ と作用を通じて解釈する。 問題 $\mathbf{6}$ の式は、Lie 括弧 $[\ ,\]$ と作用が定義されていれば意味をもつことに注意しよう。このとき $dd\alpha=0$ を証明せよ。

次に, p次コホモロジー $H^p(\mathfrak{g};A)$ を, ドラームコホモロジーのときと同様の式で定義する. (Lie 環のコホモロジーと呼ばれる.)

- (2) $H^0(\mathfrak{g}; A)$ は、 $\{a \in A \mid X \cdot a = 0 \ \forall X \in \mathfrak{g}\}$ に等しいことを示せ.
- (3) A が自明な一次元表現, すなわち A は一次元ベクトル空間で, $X \cdot a = 0$ が任意の X, a について成り立つものとする. このとき, $H^1(\mathfrak{g};A)$ は何か?

略解 4. p=0 のとき定数関数でコンパクト台を持つものは 0 しかない. したがって $H^0(X,\mathbf{R})=0$.

p=1のとき,写像

$$\Omega_c^1(X) \ni \alpha \mapsto \int_{-\infty}^{\infty} \alpha \in \mathbf{R}$$

を考える. α はコンパクト台を持つから積分できることに注意して、写像は定義されている. これが全射であることは明らか. 完全形式の全体がこの写像の核になることをチェックしよう. $\alpha = d\beta$ ($\beta \in C_c^\infty(X)$) とすると、部分積分の公式から

$$\int_{-\infty}^{\infty} \alpha = \int_{-R}^{R} \alpha = \beta(R) - \beta(-R) = 0$$

ただし, R は, [-R,R] が α と β の台を含むように十分に大きく取った. また, α がこの写像 の核に入っているとし, $\beta \in C^{\infty}(X)$ を

$$\beta(x) = \int_{-\infty}^{x} \alpha$$

によって定義する. このとき, 条件から十分大きな R に対しては $\beta(x)=0$ for $x\notin [-R,R]$ である. つまり $\beta\in C_c^\infty(X)$. また定義式から $d\beta=\alpha$ である.

略解 5. 略

略解 6. 略

略解 7. (1) 略

(2) 定義に従うと, $\alpha \in \Omega^0(\mathfrak{g}; A)$ に対して

$$d\alpha(X) = X \cdot \alpha$$

だから明らか.

 $(3) \alpha \in \Omega^1(\mathfrak{g}; A)$ とする. A が自明であるから

$$d\alpha(X,Y) = \alpha([X,Y])$$

である. また $\beta \in \Omega^0(\mathfrak{g}; A)$ に対して, $d\beta = 0$ である. よって

$$H^1(\mathfrak{g}; A) = \{ \alpha \in \operatorname{Hom}(\mathfrak{g}, \mathbf{R}) \mid \alpha([X, Y]) = 0 \ \forall X, Y \in \mathfrak{g} \}$$

である. 右辺の元を、g の指標という.