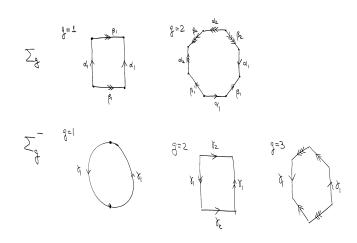
幾何学II演習問題

担当: 中島 啓

2009年1月14日(水)

問題 49. (1) g 個の穴のあいた曲面 Σ_g (問題 14 参照) を、下図のように 4g 角形の境界を貼り合わせて作る。(頂点はすべて一つに合わせる。) Σ_g に CW 複体としての構造を与え、ホモロジー群を計算せよ。

(2) 2g 角形の境界を図のように貼り合わせ、(向きづけのできない) 曲面 Σ_g^- を作る. Σ_1^- は、二次元実射影空間 $P^2(\mathbf{R})$ であり、 Σ_2^- はクラインの壷である. Σ_g^- の整係数ホモロジー群を求めよ.



問題 **50.** S^2 の一点 p を取る. $S^2 \times S^2$ の (p,x) と (x,p) をすべての $x \in S^2$ について同一視してできる商空間を X とする. X の整係数特異ホモロジー群を求めよ.

問題 51. 3次元球面を $S^3=\{(z_1,z_2)\in {\bf C}^2\mid |z_1|^2+|z_2|^2=1\}$ とし、巡回群 ${\bf Z}/n{\bf Z}$ が S^3 に

$$(z_1, z_2) \mapsto (\exp(\frac{2\pi ik}{n})z_1, \exp(\frac{2\pi ik}{n})z_2)$$
 $(k = 0, 1, \dots, n-1)$

によって作用するものとする. (群の作用とは、群の元 g に対して写像 $\varphi_g: X \to X$ が定まって、 $\varphi_{gh} = \varphi_g \varphi_h, \varphi_{g^{-1}} = (\varphi_g)^{-1}$ が成り立つもののことをいう. 今の場合は、 φ_g は同相写像になっている.) このとき、 $\mathbf{Z}/n\mathbf{Z}$ の作用で移りあう点を同一視してできる商空間 $S^3/(\mathbf{Z}/n\mathbf{Z})$ をレンズ空間といい、 L_n で表わす. その整係数特異ホモロジー群を求めよ.

略解 49. (1) e^2 を 4g 角形の内部, e^0 を頂点, α_1 , β_1 , ..., α_g , β_g を図の通りにとって, CW 複体の構造を入れる. 図より $\partial \alpha_i = \partial \beta_i = 0$, $\partial e^2 = 0$ である. よって

$$H_q(\Sigma_g) = egin{cases} \mathbf{Z} & q = 0, 2 \\ \mathbf{Z}^{\oplus 2g} & q = 1 \\ 0 & その他 \end{cases}$$

を得る.

(2) (1) と同様にして

$$H_q(\Sigma_g^-) = egin{cases} \mathbf{Z} & q = 0 \ \mathbf{Z}^{\oplus g-1} \oplus \mathbf{Z}/2 & q = 1 \ 0 & その他 \end{cases}$$

を得る.

略解 50. S^2 の CW 複体の構造 $S^2 = e^0 \cup e^2$ を, $e^0 = p$ となるように取る. $S^2 \times S^2$ は, $e^0 \times e^0$, $e^0 \times e^2$, $e^2 \times e^0$, $e^2 \times e^2$ という CW 複体の構造を持つ. $(e^n \times e^m$ は e^{n+m} と同相である.) このとき $e^0 \times e^2$ と $e^2 \times e^0$ を貼り合わせて, 一枚の2-セルにしたものが X の CW 複体の構造となる. したがって.

$$H_q(X) = \begin{cases} \mathbf{Z} & q = 0, 2, 4 \\ 0 & その他 \end{cases}$$

となる.

略解 51. 射影 π : S^3 \ni (z_1,z_2) \mapsto z_1 \in D = $\{z_1$ \in \mathbf{C} | $|z_1|$ \leq $1\}$ を考える. $|z_1|$ \neq 1 のとき, すなわち z_1 が D の境界にないときは, $\pi^{-1}(z_1)$ は S^1 で, 境界にあるときは, z_2 = 0 となって一点になる. また, $\mathbf{Z}/n\mathbf{Z}$ の作用が, D にも, z_2 \mapsto $\exp(\frac{2\pi i k}{n})z_2$ によって定義されて, $\pi\varphi_g(x) = \varphi_g\pi(x)$ が成り立つ. (このとき π は $\mathbf{Z}/n\mathbf{Z}$ 同変であるという.) D を $\mathbf{Z}/n\mathbf{Z}$ で割った商空間は, 図のn 個に分けられた扇のうちの一個の両端を貼り合わせたものだるが, D 自身に同相である. S^3 を 0, 1, 2, 3-セルがそれぞれn 個ずつで, 群の作用でセルがセルに写されるように CW 複体の構造を入れる. (図参照) このとき $S^3 \to L_n$ によって, L_n に CW 複体の構造が入り, 3-セル e^3 , 2-セル e^2 , 1-セル e^1 , 0-セル e^0 ができる. このとき, $\partial e^3 = 0$, $\partial e^1 = 0$ は明らかである. e^2 の特性写像を境界に制限すると

$$\varphi_2|_{\partial e^2} \colon S^1 \to \{(0, z_2) \in S^3\}/(\mathbf{Z}/n\mathbf{Z}) \cong S^1$$

を得るが、定義域の方で一回回ると、値域の方では n 回回っている. したがって $\partial e^2 = ne^1$ である. よって

$$H_q(L_n) = \begin{cases} \mathbf{Z} & q = 0, 3 \\ \mathbf{Z}/n & q = 1 \\ 0 & その他 \end{cases}$$

を得る.

