数学基礎演習 - 幾何学入門演習問題

担当: 中島 啓

2009年1月8日(木)

問題 二次元球面 $S^2=\{(a,b,c)\in {\bf R}^3\mid a^2+b^2+c^2=1\}$ の北極からの立体射影 $\varphi\colon S^2\setminus\{(0,0,1)\}\to {\bf C}$

$$\varphi(a,b,c) = \frac{a}{1-c} + i \frac{b}{1-c}$$

を考える. (i は虚数単位.) φ が全単射であることは断りなしに使ってよい. 複素数係数の n 次式 $f(z)=z^n$ に対して、写像 $\widetilde{f}\colon S^2\to S^2$ を

で定義する. \widetilde{f} が C^{∞} 級写像であることは証明なしに使ってよい. このとき、 \widetilde{f} の写像度が n であることを証明せよ。

ヒント: φ によって S^2 の向きを $\mathbf{C}=\mathbf{R}^2$ の向きの移し、f の微分が向きを保つかどうか調べよ。

略解 $\zeta = \exp(2\pi i/n)$ とすると、 $f^{-1}(1) = \{1, \zeta, \ldots, \zeta^{n-1}\}$ である。また, $\widetilde{f}($ 北極) $\neq 1$ であるから、北極は考慮に入れる必要はない。

$$\frac{\partial f}{\partial z}|_{z=\zeta^k} = n\zeta^{k(n-1)} = n\left(\cos(\frac{2\pi i k(n-1)}{n}) + i\sin(\frac{2\pi i k(n-1)}{n})\right)$$

であるから、授業でやったように、f を \mathbb{R}^2 から \mathbb{R}^2 への写像と思ったときのヤコビアンは、

$$n \begin{bmatrix} \cos(\frac{2\pi i k(n-1)}{n}) & -\sin(\frac{2\pi i k(n-1)}{n}) \\ \sin(\frac{2\pi i k(n-1)}{n}) & \cos(\frac{2\pi i k(n-1)}{n}) \end{bmatrix}$$

であり、行列式は >0 である。ヒントにあるように \mathbf{R}^2 の標準的な向きについて、向きが保たれるかどうかを考えればよい (証明略) から、 $\mathrm{sgn}(\varphi;\zeta^k)=1$ である。よって写像度はn である。