幾何学 [演習問題

担当: 中島 啓 TA: 佐々木建祀郎, 佐藤敬志, 中西克典 2012年4月18日(水)

問題 7. n 次元球面 S^n を \mathbf{R}^{n+1} の部分集合と考えて、包含写像を $i\colon S^n\to\mathbf{R}^{n+1}$ で表わす. i が C^∞ 級写像であることを証明せよ.

問題 8. 問題 $2 \circ n = 2 \circ$ 場合の立体射影

$$\varphi^{\pm}(x_1, x_2, x_3) = (\frac{x_1}{1 \mp x_3}, \frac{x_2}{1 \mp x_3})$$

の座標変換 $\varphi^+ \circ \varphi^-$ を考える. また, 一次元複素射影空間 $\mathbf{C}P^1 = \{[z_0:z_1]\}$ の $U_0 = \{z_0 \neq 0\}$, $U_1 = \{z_1 \neq 0\}$ における非同次座標 $\psi^+ \colon U_0 \to \mathbf{C}, \ \psi^- \colon U_1 \to \mathbf{C}$

$$\psi^+([z_0:z_1]) = z_1/z_0, \qquad \psi^-([z_0:z_1]) = z_0/z_1$$

とその座標変換 $\psi^+ \circ (\psi^-)^{-1}$ を考える. 両者を比較することによって, S^2 と ${\bf C}P^1$ との間の 微分同相写像を作れ.

問題 9. 一次元射影空間 ${\bf C}P^1$ から, [0:1] を除いたものは非同次座標によって, 複素平面 ${\bf C}$ と微分同相である. 複素多項式 $f(z)=a_nz^n+a_{n-1}z^{n-1}+\cdots+z_0$ を ${\bf C}$ から ${\bf C}$ への C^∞ 級写像と考える. このとき, f は ${\bf C}P^1$ から ${\bf C}P^1$ への C^∞ 級写像に拡張されることを証明 せよ.

問題 10. 問題 5 のように ${f R}$ に φ で C^∞ 級多様体の構造を入れたものを M とし, ${f R}$ に通常のように C^∞ 級多様体の構造を入れたものを N とする. 写像 $F\colon M\to N$ を $F(x)=x^3$ で定義すると, M と N の間の微分同相になっていることを証明せよ.

問題 11. n 次元実射影空間 $\mathbf{R}P^n$ は, n 次元球面 S^n をある同値関係で割った空間であるから, 自然な写像 $\pi\colon S^n\to\mathbf{R}P^n$ が与えられる. この写像が C^∞ 級であることを示せ. 同様に定義される $\pi\colon S^{2n+1}\to\mathbf{C}P^n$ が C^∞ 級であることを示せ.

問題 12. 二次元トーラス T^2 を $\mathbf{R}^2/\mathbf{Z}^2$ として定義する. $f\colon T^2\to T^2$ を $(x,y)\mapsto (2x,2y)$ で定義する. f が well-defined であることを示した上で, C^∞ 級写像であることを証明せよ. また f は逆写像を持つか?