幾何学 I 小テスト 第2回

担当: 中島 啓 TA: 佐々木建祀郎, 佐藤敬志, 中西克典 2012 年 5 月 16 日 (水) 午後 1:00 ~ 2:30

線形代数に自信があるものは、問題2を、そうでないものは、問題1を解け。ただし、解かなかった問題は、演習問題として自習すること。

問題 1. V を $\mathbf R$ 上の有限次元ベクトル空間とする。V の双対空間 V^* を V から $\mathbf R$ への線型写像の全体のなす空間 $\mathrm{Hom}(V,\mathbf R)$ と定める。

- (1) V^* は線型空間であることを示せ。ただし、 $a,b\in\mathbf{R},\,f,g\in V^*$ に対して $af+bg\in V^*$ を (af+bg)(v)=af(v)+bg(v) で定義する。
- (2) e_1,\ldots,e_n を V の基底とするとき、 $\theta_i\in V^*$ を $\theta_i(\sum_j x_je_j)=x_i$ によって定義する。 $\theta_1,\ldots,\,\theta_n$ は V^* の基底であることを示せ。 $(e_1,\ldots,\,e_n$ の双対基底という。)
- $(3)\ V,\ W$ を共に R 上の有限次元ベクトル空間とし、 $\Phi\colon V o W$ を線型写像とする。このとき $\Phi^*\colon W^* o V^*$ を

$$\Phi^*(f)(v) = f(\Phi(v)), \qquad f \in W^* = \text{Hom}(W, \mathbf{R}), \quad v \in V$$

によって定義する。 ◆* が線型写像であることを証明せよ。

- (4) Ψ : $V \to (V^*)^*$ を $v \mapsto \{V^* \ni f \mapsto f(v) \in \mathbf{R}\}$ によって定める。 Ψ が線型空間の同型写像であることを証明せよ。
- (5) e'_1,\ldots,e'_n を V の別の基底とする。 $e'_i=\sum_j a_{ij}e_j$ によって、基底の変換行列 $A=(a_{ij})$ を定める。 e'_1,\ldots,e'_n の双対基底を $\theta'_1,\ldots,\theta'_n$ とするとき、 θ_1,\ldots,θ_n と $\theta'_1,\ldots,\theta'_n$ の間の基底の変換行列を A を用いて表せ。

問題 2. V を R 上の有限次元ベクトル空間とする。 $V \times \cdots \times V$ から R への写像 α で、次の二つの性質を持つものの全体を $\bigwedge^k V^*$ で表す。

多重線型性 各成分について線型写像である。すなわち

$$\alpha(v_1,\ldots,av_i+bv_i',\ldots,v_k)=a\alpha(v_1,\ldots,v_i,\ldots,v_k)+b\alpha(v_1,\ldots,v_i',\ldots,v_k)$$

が成り立つ。

交代性 σ を $\{1,\ldots,k\}$ の置換とするとき、

$$\alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)})=\varepsilon(\sigma)\,\alpha(v_1,\ldots,v_k)$$

が成り立つ。ここで $\varepsilon(\sigma)$ は σ の符号である。

k=1 の場合は、 $\bigwedge^1 V^*$ は上の問の V^* に他ならない。また、k=0 のときは、 $\bigwedge^0 V^*=\mathbf{R}$ と理解する。

- $(1) \bigwedge^k V^*$ は線形空間であることを示せ。
- (2) $\alpha \in \bigwedge^k V^*, \, \beta \in \bigwedge^l V^*$ とするとき α と β の外積 $\alpha \wedge \beta \in \bigwedge^{k+l} V^*$ を

$$(\alpha \wedge \beta)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = \frac{1}{k! l!} \sum_{\sigma} \varepsilon(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

によって定義する。ただし、 σ は $\{1,\ldots,k+l\}$ の置換をすべて動かして和を取るものとする。 $\alpha \wedge \beta$ が確かに $\bigwedge^{k+l}V^*$ に入っていることを証明せよ。

(3) 上の ∧ について以下の性質を証明せよ。

$$(a\alpha + b\alpha') \wedge \beta = a\alpha \wedge \beta + b\alpha' \wedge \beta \tag{0.1}$$

$$\alpha \wedge \beta = (-1)^{kl} \beta \wedge \alpha \tag{0.2}$$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma) \tag{0.3}$$

三番目の式から三つの元の外積を $\alpha \wedge \beta \wedge \gamma$ と書いて問題がない。

(4) $\theta_1, \ldots, \theta_k \in V^* = \bigwedge^1 V^*$ とするとき、上の定義に基づいて

$$(\theta_1 \wedge \dots \wedge \theta_k)(v_1, \dots, v_k) = \det \begin{pmatrix} \theta_1(v_1) & \dots & \theta_1(v_k) \\ \vdots & & \vdots \\ \theta_k(v_1) & \dots & \theta_k(v_k) \end{pmatrix}$$

を証明せよ。

(5) e_1,\ldots,e_n を V の基底とし、 θ_1,\ldots,θ_n をその V^* の双対基底とする。このとき $\{1,\ldots,n\}$ の、k 個の元からなる部分集合 $I=\{i_1,\ldots,i_k\}$ $(i_1< i_2<\cdots < i_k)$ に対して

$$\theta_I = \theta_{i_1} \wedge \cdots \wedge \theta_{i_n}$$

と定義する。このとき $\{\theta_I\mid I\subset\{1,\ldots,n\},\#I=k\}$ は、 \bigwedge^kV^* の基底になることを証明せよ。

(6) e'_1,\ldots,e'_n を V の別の基底とする。 $e'_i=\sum_j a_{ij}e_j$ によって、基底の変換行列 $A=(a_{ij})$ を定める。 e'_1,\ldots,e'_n の双対基底を $\theta'_1,\ldots,\theta'_n$ とする。 θ'_I を上と同様に定める。 $\{\theta_I\mid I\subset\{1,\ldots,n\},\#I=k\}$ と $\{\theta'_I\mid I\subset\{1,\ldots,n\},\#I=k\}$ の間の基底の変換行列が、A の転置行列の小行列式で与えられることを証明せよ。