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1. Motivation. Braverman-Finkelberg [1] recently proposed the geometric Sa-
take correspondence for the affine Kac-Moody group Gaff . They conjecture that
intersection cohomology sheaves on the Uhlenbeck compactification of the framed
moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of repre-
sentations of the Langlands dual group G∨

aff at level r. When G = SL(l), the
Uhlenbeck compactification is the quiver variety of type sl(r)aff , and their conjec-
ture follows from the author’s earlier result [5] and I. Frenkel’s level-rank duality
[4]. They further introduce a convolution diagram which conjecturally gives the
tensor product multiplicity [2]. Since the tensor product multiplicy corresponds
to the branching multiplicity under the level-rank duality, the author develop the
theory for the branching in quiver varieties and check this conjecture for G = SL(l)
in the paper [6].

2. Quiver varieties. Suppose that a finite graph is given. Let I be the set of
vertices and E the set of edges. Suppose that there are no edge loops. Let C
be the Cartan matrix. Let g be the corresponding (symmetric) Kac-Moody Lie
algebra. Let H be the set of oriented edges (hence #H = 2#E), and we choose
an orientation Ω of the graph (I, E).

Suppose that I-graded vector spaces V , W are given. Then we consider the
vector space

M(V,W ) =
⊕
h∈H

Hom(Vo(h), Vi(h)) ⊕
⊕
i∈I

Hom(Wi, Vi) ⊕ Hom(Vi,Wi),

where o(h), i(h) are the outgoing and incoming vertices of h. We denote the
corresponding componets of the above decomposition by Bh, ai, bi. Let GV =∏

i∈I GL(Vi). It acts on M(V,W ) by conjugation. The choice of the orientation
gives us the symplectic form invariant under the GV -action. Let µ : M(V,W ) →
(Lie GV )∗ be the corresponding moment map vanishing at the origin. It is given
by

µ(Bh, ai, bi) =
∑

h:i(h)=i

ε(h)BhBh + aibi

if we identify (LieGV )∗ with Lie GV by the trace. Here ε(h) is 1 if h ∈ Ω and
−1 otherwise, and h is the same edge with h but equipped with the opposite
orientation.

We consider a quotient of µ−1(0) by GV in the sense of the geometric invariant
theory. It depends on the choice, called the stability parameter. Let ζ = (ζi) ∈ ZI .
We define the character χζ of GV given by χζ(g) =

∏
i∈I(det gi)−ζi , and we con-

sider the semi-invariants A(µ−1(0))G,χn
ζ = {f ∈ A(µ−1(0) | f(gx) = χζ(g)nf(x)}.

Then
⊕∞

n=0 A(µ−1(0))G,χn
ζ is a graded ring, and we define the quiver variety by

Mζ(V,W ) = Proj(
∞⊕

n=0

A(µ−1(0))G,χn
ζ ).
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By a general result for the geometric invariant theory, Mζ(V,W ) is the set of
ζ-semistable points modulo the so-called S-equivalences. (See [6] for the precise
statement.) It contains the open subscheme Ms

ζ(V,W ) consisting of GV -orbits of
ζ-stable points. For example, if ζ = 0, all points are ζ-semistable, and two points
are S-equivalent if and only if their closure intersect. In this case, M0(V,W ) is an
affine algebraic variety given by Spec(A(µ−1(0))GV ).

The quiver variety depends on the choice of the stability parameter ζ, but
its dependence is through the face F containing ζ. Here a face is given by the
decomposition of the set R+(V ) of positive roots with α =

∑
miαi with mi ≤

dim Vi into three parts R+(V ) = R+
+(V ) t R−

+(V ) t R0
+(V ) as

F = {ζ ∈ QI |ζ · α > 0, < 0, = 0 for α ∈ R+
+(V ), ∈ R−

+(V ), R0
+(V ) respectively}.

We say a face F is a chamber if R0
+(V ) = ∅. For example, in [5] we use the

parameter ζ+ in the face given by R+
+(V ) = R+(V ). If ζ is in a chamber, we have

Mζ(V,W ) = Ms
ζ(V,W ) and Mζ(V,W ) is nonsingular of dimension

dim Mζ(V,W ) = 2(dim V, dimW ) − (dimV,Cdim V ),

where dim V , dim W are dimension vectors (in ZI) and ( , ) is the natural inner
product on ZI .

If F ′ is in the closure of F , and if we take ζ ′ ∈ F ′, ζ ∈ F , we have a projective
morphism

πζ,ζ′ : Mζ(V,W ) → Mζ′(V,W ).

In particular, ζ ′ = 0 is contained in the closure of any face, we always have
Mζ(V,W ) → M0(V,W ).

3. Convolution algebra. For the parameter ζ = 0, we have a closed embedding
M0(V,W ) ⊂ M0(V ′,W ) for V ⊂ V ′ by setting the data 0 on a subspace of
V ′ complementary to V . We denote the direct limit by M0(W ). If ζ is in a
chamber, there is no obvious relation among different Mζ(V,W )’s, and we set
Mζ(W ) =

⊔
V Mζ(V,W ) where V runs all isomorphism classes of I-graded vector

spaces. For a general ζ, we have the closed embedding Mζ(V,W ) ⊂ Mζ(V ′,W ) for
V ⊂ V ′, when the data 0 ∈ M(V ′/V, 0) is ζ-semitable. We denote the inductive
limit by Mζ(W ). We consider the fiber product

Zζ,ζ′(W ) = Mζ(W ) ×Mζ′ (W ) Mζ(W ),

when the faces F ′, F containing ζ ′, ζ satisfy F ′ ⊂ F for any choice of V . This
is a union Mζ(V 1, W ) ×Mζ′ (V,W ) Mζ(V 2,W ) of various V 1, V 2 and a big vector
space V containing both V 1 and V 2. Any irreducible component has at most
dim Mζ(V 1,W ) × Mζ(V 2,W )/2.

We assume ζ is in a chamber and consider

Htop(Zζ,ζ′(W )),

where top means the degree dim Mζ(V 1, W ) × Mζ(V 2,W ) for each summand
Mζ(V 1, W ) ×Mζ′ (V,W ) Mζ(V 2, W ). This has a structure of the algebra given by
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the convolution product

c ∗ c′ = p13∗(p∗12(c) ∩ p∗23(c
′)),

where pab is the projection from the triple fiber product to the fiber product of
ath and bth factors.

In [5] the author constructed an algebra homomorphism

(1) U(g) → Htop(Zζ,0(W ))

for ζ = ζ+ as above. By the general theory of the convolution algebra (see [3]) the
algebra Htop(Mζ(W )) is the endomorphism algebra

EndPerv(M0(W ))(πζ,0∗(CMζ(W )[dim Mζ(W )])),

where the shift dim Mζ(W ) means that we shift dim Mζ(V,W ) for each compo-
nent Mζ(V,W ). One can show that πζ,0∗(CMζ(W )[dimMζ(W )])) is canonically
isomorphic to each other independent of the choice of the chamber (containing ζ)
by using a one parameter deformation of M0(W ) and its similtaneous resolution.
So we have a homomorphism (1) for any ζ.

Theorem 1. (1) Choose a subdiagram I◦ ⊂ I. Take ζ ′ so that ζ ′i = 0 for i ∈ I◦

and ζ ′i > 0 for i /∈ I◦. Then we have a commutative diagram

U(gI◦) −−−−→ Htop(Zζ,ζ′(W ))y y
U(g) −−−−→ Htop(Zζ,0(W )),

where gI◦ is the Levi subalgebra of g corresponding to I◦ and the bottom horizontal
arrow is (1).

(2) Suppose that the graph (I, E) is affine. We choose a subdiagram I◦0 ⊂ I0 of
the corresponding finite type graph I0 = I \ {0}. Take ζ ′ so that ζ ′i = 0 for i ∈ I◦0
and ζ ′i > 0 for i ∈ I0 \ I◦ and ζ ′ · δ = 0 for the imaginary root δ. And take ζ from
a chamber containing ζ ′ in its closure. Then we have a commutative diagram as
above replacing U(gI◦) by U(ĝI0

0
) the enveloping algebra of the affine Lie algebra

of the Levi subalgebra gI0
0

of the finite dimensional Lie algebra gI0 .
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