PERVERSE SHEAVES ON INSTANTON MODULI
SPACES
PRELIMINARY VERSION (July 13, 2015)

HIRAKU NAKAJIMA

CONTENTS
Introduction 1
1. Uhlenbeck partial compactification — in brief 7
2. Heisenberg algebra action 8
3. Stable envelops 16
4. Sheaf theoretic analysis of stable envelops 24
5.  R-matrix 30
6. Perverse sheaves on Uhlenbeck partial compactification 34
References 40
INTRODUCTION

Let GG be an almost simple simply-connected algebraic group over C
with the Lie algebra g. Let h be a Cartan subalgebra of g. We assume
G is of type ADE, as there arise technical issues for type BCFG. (We
will remark them at relevant places.) At some points, particularly in
this introduction, we want to include the case G = GL(r). We will not
make clear distinction between the case G = SL(r) and GL(r).

Let G, denote a maximal compact subgroup of G. Our main player
is

UZ = the Uhlenbeck partial compactification

of the moduli spaces of framed G.-instantons on S* with instanton
number d. The framing means a trivialization of the fiber of the G-
bundle at oo € S*. Framed instantons on S* are also called instantons
on R*, as they extend across oo if their curvature is in L*(R*). We
follow this convention. These spaces were first considered in a differen-
tial geometric context by Uhlenbeck, Donaldson and others, for more
general 4-manifolds and usually without framing.
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The Uhlenbeck compactification has been used to define differential
topological invariants of 4-manifolds, i.e., Donaldson invariants, as in-
tegral of cohomology classes over moduli spaces of instantons: Moduli
spaces are noncompact, therefore the integral may diverge. Thus com-
pactification is necessary to make the integral well-defined. (See e.g.,
[D90].)

Our point of view here is different. We consider Uhlenbeck partial
compactification of instanton moduli spaces on R* as objects in geo-
metric representation theory. We study their intersection cohomology
groups and perverse sheaves in view of representation theory of the
affine Lie algebra of g or the closely related W-algebra.! We will be
concerned only with a very special 4-manifold, i.e., R* (or C? as we
will use an algebro-geometric framework). On the other hand, we will
study instantons for any group G, while G. = SU(2) is usually enough
for topological applications.

We will study equivariant intersection cohomology groups of Uhlen-
beck partial compactifications

[HEX(CX xXCx (Ug>7

where G acts by the change of the framing and C* x C* acts on
R* = C?. The G-action has been studied in topological context: it
is important to understand singularities of instanton moduli spaces
around reducible instantons. However the C* x C*-action is specific
for R*, or more generally 4-manifolds with group actions, but not ar-
bitrary 4-manifolds.

More specifically, we will explain the author’s joint work with Braver-
man and Finkelberg [ ] with an emphasis on its geometric part in
this lecture series. The stable envelop introduced by Maulik-Okounkov
[ ] and its reformulation in [ ] via Braden’s hyperbolic re-
striction functors are key technical tools. They also appear in other
situations in geometric representation theory. Therefore those will be
explained in a general framework.

Prerequisite.

e [ understand that the theory of perverse sheaves is introduced in
de Cataldo’s lectures. I will also use materials in | , §8.6],
in particular the isomorphism between convolution algebras and
Ext algebras.

f G is not of type ADE, we need to replace the affine Lie algebra of g by its
Langlands dual gYs. It is a twisted affine Lie algebra, and should not be confused
with the untwisted affine Lie algebra of the Langlands dual of g.
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e We assume readers are familiar with | |, at least for Chap-
ters 2, 3, 6. (Chapter 6 presents Hilbert-Chow morphisms as
examples of semi-small morphisms. They should be treated in
de Cataldo’s lectures.) Results explained there will be briefly
recalled, but proofs are omitted.

e We will use equivariant cohomology and Borel-Moore homology
groups. A brief introduction can be found in | ]. We
also use derived categories of equivariant sheaves. See [ ]
(and/or | , §1] for summary).

e We will not review the theory of W-algebras, such as | ,
Ch. 15]. It is not strictly necessary, but better to have some
basic knowledge in order to appreciate the final result.

History. Let us explain history of study of instanton moduli spaces
in geometric representation theory. We will present the actual content
of this lecture series on the way.

Historically relation between instanton moduli spaces and represen-
tation theory of affine Lie algebras was first found by the author in
the context of quiver varieties | |. The relation is different from
one we shall study in this paper.” Quiver varieties are (partial com-
pactifications of) instanton moduli spaces on R*/T" with gauge group
G = GL(r). Here I' is a finite subgroup of SL(2), and the correspond-
ing affine Lie algebra is not for G: it corresponds to I' via the McKay
correspondence. The argument in | ] works only for I' # {1}. The
case I' = {1} corresponds to the Heisenberg algebra, that is the affine
Lie algebra for gl(1). The result for I' = {1} was obtained later by
Grojnowski and the author independently | , | for r = 1,
Baranovsky | | for general r. This result will be recalled in §2,
basically for the purpose to explain why they were not enough to draw
a full picture.

In the context of quiver varieties, a C*-action naturally appears from
an action on R*/T". The equivariant K-theory of quiver varieties are re-
lated to representation theory of quantum toroidal algebras, where C*
appears as a quantum parameter q. (More precisely the representation
ring of C* is the Laurent polynomial ring Z[q, ¢'].) See | ]. The
corresponding result for equivariant homology /affine Yangian version,
which is closer to results explained in this lecture series was obtained
by Varagnolo | |. But these works covered only the case I' # {1}.

2 Results explained in this lecture series and the previous one for T' # {1} are
roughly level-rank dual to each other, but we still lack a precise understanding. It
is a good direction to pursue in future.
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It is basically because the construction relies on a particular presenta-
tion of quantum toroidal algebras and affine Yangian, which is available
only when I' # {1}.

In physics side, Nekrasov [ | introduced ‘partition functions’
which are roughtly considered as generating functions of equivariant
Donaldson invariants on R* with respect to the C* x C*-action. The
ordinary Donaldson invariants do not make sense for R* (or §*) as there
is no interesting topology on R*. But equivariant Donaldson invariants
are nontrivial, and contain interesting information. Nekrasov partition
functions have applications to ordinary Donaldson invariants, see e.g.,
[GNY0S, GNY11]

Another conjectural connection between affine Lie algebras and co-
homology groups of instanton moduli spaces on R*, called the geomet-
ric Satake correspondence for affine Kac-Moody groups, was found by
[ ].? In this connection, the C* x C*-action is discarded, but the
intersection cohomology is considered. The main conjecture says the
graded dimension of the intersection cohomology groups can be com-
puted in terms of the g-analog of weight multiplicities of integrable
representations of the affine Lie algebra of g.

In the frame work of quiver varieties, one can replace the Uhlenbeck
partial compactification UZ by the Gieseker partial compactification.
It is a symplectic resolution of singularities of . Then one can work
on ordinary homology/K-theory of the resolution. But this is possible
only for G = SL(r), and the intersection cohomology group of Ug, is an
appropriate object.

Despite its relevance for the study of Nekrasov partition function,
the equivariant K-theory and homology group for the case I' = {1}
were not understood for several years. They were more difficult than
the case I' # {1}, because of a technical issue mentioned above. In the
context of the geometric Satake correspondence, the role of C* x C*-
action was not clear.

In 2009, Alday-Gaiotto-Tachikawa | | has connected Nekrasov
partition for G = SL(2) with the representation theory of the Virasoro
algebra via a hypothetical 6-dimensional quantum field theory. This
AGT correspondence is hard to justify in a mathematically rigorous
way, but yet gives a very good view point. In particular, it predicts
that the equivariant intersection cohomology of Uhlenbeck space is a
representation of the Virasoro algebra for G = SL(2), and of the W-
algebra associated with g in general.

3The first version of the preprint was posted to arXiv in Nov. 2007. It was two
years before [ | was posted.
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On the other hand, in mathematics side, equivariant K and ho-
mology groups for the case I' = {1} had been understood gradu-
ally around the same time. Before AGT," Feigin-Tsymbaliuk and
Schiffmann-Vasserot | , | studied the equivariant K-theory
for the G = GL(1)-case. Then research was continued under the
influence of the AGT correspondence, and the equivariant homology
for the G = GL(r)-case was studied by Schiffmann-Vasserot, Maulik-
Okounkov | : ] for G = GL(r) and the homology group.

In particular, the approach taken in | | is considerably different
from previous ones. It does not use a particular presentation of an alge-
bra. Rather it constructs the algebra action from the R-matrix, which
naturally arises on equivariant homology group. This sounds close to a
familiar RTT construction of Yangians and quantum groups, but it is
more general: the R-matrix is constructed in a purely geometric way,
and has infinite size in general. Also for I # {1}, it defines a coprod-
uct on the affine Yangian. It was explicitly constructed for the usual
Yangian for a finite dimensional complex simple Lie algebra long time
ago by Drinfeld | ], but the case of the affine Yangian was new. °

In | |, the author reformulated the stable envelop, a geomet-
ric device to produce the R-matrix in | |, in a sheaf theoretic
language, in particular using Braden’s hyperbolic restriction functors
[ |. This reformulation is necessary in order to generalize the con-
struction of | | for G = GL(r) to other G. It is because the original
formulation of the stable envelop required a symplectic resolution. We
have a symplectic resolution of the Uhlenbeck partial compactification
for G = GL(r), as a quiver variety, but not for general G.

Then the author together with Braverman, Finkelberg | | stud-
ies the equivariant intersection cohomology of the Uhlenbeck partial
compactification, and constructs the W-algebra action on it. Here the
geometric Satake correspondence for the affine Lie algebra of g gives a
philosophical background: the reformulated stable envelop is used to
realize the restriction to the affine Lie algebra of a Levi subalgebra of g.
It nicely fits with Feigin-Frenkel description of the W-algebra | ,
Ch. 15].

Convention.

(1) A partition A is a nonincreasing sequence A; > Ay > --- of
nonnegative integers with Ay = 0 for sufficiently large N. We

4Preprints of those papers were posted to arXiv, slightly before | | was
appeared on arXiv.

5Tt motivated the author to define the coproduct in terms of standard generators
in his joint work in progress with Guay.
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set |Al = Do, (N = #{i | Ay # 0}. We also write A =
(101292 ... ) with oy, = #{i | \; = k}.

(2) For a variety X, let D’(X) denote the bounded derived category
of complexes of constructible C-sheaves on X. Let IC(Xy, L)
denote the intersection cohomology complex associated with a
local system L over a Zariski open subvariety Xy in the smooth
locus of X. We denote it also by IC(X) if £ is trivial. When X
is smooth and irreducible, Cx denotes the constant sheaf on X
shifted by dim X. If X is a disjoint union of irreducible smooth
varieties X,, we understand Cx as the direct sum of Cx,.

(3) We make a preferred degree shift for Borel-Moore homology
groups, and denote them by H,(X), where Hp,(X) = Hyaim x (X)
for a smooth variety X. More generally, if L is a closed subvari-
ety in a smooth variety X, we consider Hj,j(L) = H.yaim x(L).

Post-requisite. Further questions and open problems are listed in
[ , 1(xi)]. In order to do research in those directions, the fol-
lowings would be necessary besides what are explained in this lecture
series.

e The AGT correspondence predicts a duality between 4d N = 2
SUSY quantum field theories and 2d conformal field theories.
In order to understand it in mathematically rigorous way, one
certainly needs to know the theory of vertex algebras (e.g.,
[ ). In fact, we still lack a fundamental understanding
why equivariant intersection cohomology groups of instanton
moduli spaces have structures of vertex algebras. We do want
to have an intrinsic explanation without any computation, like
checking Heisenberg commutation relations.

e The AGT correspondence was originally formulated in terms of
Nekrasov partition functions. Their mathematical background
is given for example in | ].

e In view of the geometric Satake correspondence for affine Kac-
Moody groups | |, the equivariant intersection cohomology
group TH}, ., cx for the Uhlenbeck partial compactification
of instanton moduli spaces of R*/Z, should be understood in
terms of representations of the affine Lie algebra of g and the
corresponding generalized W-algebra. We believe that neces-
sary technical tools are more or less established in | 1,
but it still needed to be worked out in detail. Anyhow, one
certainly needs knowledge of W-algebras in order to study their
generalization.
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1. UHLENBECK PARTIAL COMPACTIFICATION — IN BRIEF

I suppose that Uhlenbeck partial compactification of an instanton
moduli space on R* is introduced in Braverman’s lectures. We do not
use its detailed properties much.

We will use its stratification:

(1.1) Ui = | | Bunf x5+ (C?),

0<d’'<d

where BundG/ is the moduli space of framed holomorphic (or equiva-
lently algebraic) G-bundles F over P? of instanton number d’, where
the framing is the trivialization ¢ of the restriction of F at the line /.,
at infinity.

By an analytic result due to Bando | |, we can replace instanton
moduli spaces on R* by BundG. We use algebro-geometric approaches
to instanton moduli spaces hereafter.

Here the instanton number is the integration over P? of the charac-
teristic class of G-bundles corresponding to the invariant inner product
on g, normalized as (6,6) = 2 for the highest root 6.°

Let us refine the stratification in the symmetric product S (C?)
part:

(1.2) Us = |_| Bunf, xS, (C?),
d=|\|+d’

where S)(C?) consists of configurations of points in C* whose multi-
plicities are given by the partition .

6When an embedding SL(2) — G corresponding to a coroot aV is gives, we
can induction a G-bundle F from a SL(2)-bundle Fgr,2) Then we have d(F) =
d(Fsr(2)) % (@¥,a")/2. Instanton numbers are preserved if G is type ADE, but
not in general.
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We also use that Bung, is a smooth locus of U2, and its tangent space
at (F, ) is
Hl <P27 g]‘—(_goo))7
where gr is the associated vector bundle F x4 g.
We will also use the factorization morphism

7t UL — SiC.

The definition is given in | , §6.4]. It depends on a choice of the
projection C?> — C!. We do not recall the definition, but its crucial
properties are
(1) On the factor S?~¢(C?), it is given by the projection C* — C*.
(2) Consider C1+Csy € S4C! such that C; € SLCt, Cy € S©C! are
disjoint. Then (7¢)~1(C} + Cy) is isomorphic to (7%)~1(C}) x
(m%2)H(Cy).

Intuitively 7 is given as follows. By (1), it is enough to consider the
case of genuine framed G-bundles (F, ). Let 2 € C! and consider the
line P! = {2 = x2p} in P2. If x = oo, we can regard P! as the line /.,
at infinity. If we restrict the G-bundle F to /., it is trivial. Since the
triviality is an open condition, the restriction F|p1 is also trivial except
for finitely many = € C!, say xy, x3..., 2. Then 7¢(F, ¢) is the sum
r1 + T9 + - - - + xp if we assign the multiplicity appropriately.

2. HEISENBERG ALGEBRA ACTION

This section is an introduction to the actual content of lectures. We
consider instanton moduli spaces when the gauge group G is SL(r). We
will explain results about (intersection) cohomology groups of instanton
moduli spaces known before the AGT correspondence was found. Then
it will be clear what were lacking, and readers are motivated to learn
more recent works.

2(i). Gieseker partial compactification. When the gauge group G
is SL(r), we denote the corresponding Uhlenbeck partial compactifica-
tion UZ by U

For SL(r), we can consider a modification grd of U¢, called the
Gieseker partial compactification. It is a moduli space of framed tor-
sion free sheaves (F, ) on P?, where the framing ¢ is a trivialization
of the restriction of E to the line at infinity ¢,. It is known that Zjl?fl
is a smooth (holomorphic) symplectic manifold. It is also known that
there is a projective morphism 7: 4% — Y%, which is a resolution of
singularities.
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When r = 1, the group SL(1) is trivial. But the Giesker space is non-
trivial: 22 is the Hilbert scheme (C2)4) of d points on the plane C2, and
the Uhlenbeck partial compactification” U{ is the d*® symmetric prod-
uct S4(C?) of C2. The former parametrizes ideals I in the polynomial
ring Clz,y] of two variables with colength d, i.e., dim Clz,y]/I = d.
The latter is the quotient of the Cartesian product (C?)? by the sym-
metric group Sy of d letters. It parametrized d unordered points in C2,
possibly with multiplicities. We will use the summation notation like
pL+pe+ -+ pgord-ptoexpress a point in S¢(C?).

B, G Ct O By

1)

CT
FIGURE 1. Quiver varieties of Jordan type

For general r, these spaces can be understood as quiver varieties
associated with Jordan quiver. It is not our intension to explain the
theory of quiver varieties, but here is the definition in this case: Take
two complex vector spaces of dimension d, r respectively. Consider
linear maps Bi, By, I, J as in Figure 1. We impose the equation

(By, By, 1,.0) S [By, By + 1J =0
Then we take two types of quotient of p~1(0) by GL(d). The first
one corresponds to U?, and is the affine algebro-geometric quotient
1~ 1(0)JGL(d). It is defined as the spectrum of C[u~(0)]S™%) the
ring of GL(d)-invariant polynomials on ;~1(0). Set-theoretically it is
the space of closed GL(d)-orbits in p~'(0). The second quotient cor-
responds to LNIf, and is the geometric invariant theory quotient with
respect to the polarization given by the determinant of GL(d). It is
Proj of @, C[~1(0)] (@4t “the ring of GL(d)-semi-invariant poly-
nomials. Set-theoretically it is the quotient of stable points in p=1(0)
by GL(d). Here (By, Bo, I, J) is stable if there is no proper subspace T’
of C? which is invariant under B;, B, and is containing the image of I.
From this description, we can check the stratification (1.1). If (By, By, I, J)
has a closed GL(d)-orbit, it is semisimple, i.e., a ‘submodole’ (in ap-
propriate sense) has a complementary submodule. Thus (By, By, I, J)
decomposes into a direct sum of simple modules, which do not have
nontrivial submodules. There is exactly one simple summand with

"Since BunéL(l) = () unless d = 0, this is a confusing name.
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nontrival I, J, and all others have I = J = 0. The former gives a point
in Bung. The latter is a pair of commuting matrices [By, By] = 0,
and the simplicity means that the size of matrices is 1. Therefore the
simultaneous eigenvalues give a point in C2. _

Let us briefly recall how those linear maps determine points in /%

and U?. The detail was given in | , Ch. 2]. Given (B, Bs,1,J),
we consider the following complex
Ol
@ b
0% (—1) & 0% 2 0%(1),
S
o
where
Z(]Bl — 21
a = ZQBQ — 29 5 b= (—(Z()BQ — ZQ) Z()Bl — 21 Z()]) .
Z()J

Here [2g : 21 : 23] is the homogeneous coordinate system of P? such that
lso = {20 = 0}. The equation . = 0 guarantees that this is a complex,
i.e., ba = 0. One sees easily that a is injective on each fiber over
[20 : 21 29 except for finitely many. The stability condition implies
that b is surjective on each fiber. It implies that £ “ Ker b/Ima is a
torsion free sheaf of rank r with ¢y = d. Considering the restriction to
2o = 0, one sees that E has a canonical trivialization ¢ there. Thus we
obtain a framed sheaf (E, ) on P2.

Proposition 2.1 (| , Exercise 5.15)). m: U% — U is semi-small
with respect to the stratification (1.2). Moreover the fiber n=1(x) is
irreducible®at any point x € UL,

Recall that a (surjective) projective morphism 7: M — X from a
nonsingular variety M is semi-small if X has a stratification X =
|| X such that 7|;-1(x,) is a topological fibration, and dim 7! (z,) <
%Codim X, for z, € X,.

This semi-smallness result is proved for general symplectic resolu-
tions by Kaledin | ].

[ , Exercise 5.15] asks the dimension of the central fiber 7!(d -
0). Let us explain why the estimate for the central fiber is enough. Let
us take x € U? and write it as (F, p, > \iz;), where (E, @) € BunglL(T),

8The (solution of) exercise only shows there is only one irreducible component of
71 (24) with dimension %codim X 4. The irreducibility was proved by Baranovsky
and Ellingsrud-Lehn.
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z; # xj. The morphism 7 is assigning (EVY, ¢, Supp(EYV/E)) to a
framed torsion free sheaf (E,¢) € UL See | , Exercise 3.53].
Then 7~ (x) parametrizes quotients of EVY with given multiplicities
Ai at ;. Then it is clear that 7—!(z) is isomorphic to the product of
quotients of O®" with multiplicities ); at 0, i.e., [T, 77 *(\; - 0). If one
knows each 77!(); - 0) has dimension r)\; — 1, we have dim 7~ !(z) =
> (rA; — 1) = 3 codim BunglL(r) xS\(C?). Thus it is enough to check
that 7='(d - 0) = rd — 1.

We have an action of a group G on U%, U? by the change of framing.
We also have an action of GL(2) on U%, ¢ induced from the GL(2)
action on C2. In this paper, we only consider the action of the subgroup
C* x C* in GL(2). Let us introduce the following notation: G =
G x C* x C*. Taking a maximal torus T of GG, we also introduce
T=TxC*xC*.

We will study the equivariant cohomology groups of Gieseker spaces

HE (U, HEL(U)
with arbitrary and compact support respectively. We will also consider
T-equivariant cohomology groups.

We take the following convention on the degree: The degree 2dr,
which is the complex dimension of ¢, in the usual convention is our
degree 0. The same applies to Hg]x CX (C?). The degree 2 in the usual
convention is our degree 0.

We denote the equivariant variables by @ = (a4, ...,a,) with a; +
-+ 4+a, =0 for T, and €1, g9 for C* x C*. Therefore

H;(pt) = C[LleT] = C[(j}, H(éx % CX (pt) = C[517€2].

We have the intersection pairing

1Y U @ Hg}c@g) — Hi(pt)ie®d — (=1 /u cuc.

This is of degree 0. The sign (—1)% is introduced to save (—1)* in the
later formula. The factor dr should be understood as the half of the
dimension of 2. Similarly the intersection form on Hgixcx (C?) has

the sign factor (—1)! = (_1)dim02/2'

Exercise 1. (a) We define the factorization morphism 7¢ for G = SL(r)
in terms of (By, By, I,J). Let #¢([By, B, I, J]) € SC be the spectrum
of B; counted with multiplicities. Check that 7 satisfies the properties
(1),(2) above.

(b) Check that Flp: is trivial if By —  is invertible.
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More generally one can define the projection as the spectrum of
a1 By + ay By for (ay,as) € C*\ {0}, but it is enough to check this case
after a rotation by the GL(2)-action.

2(ii). Heisenberg algebra via correspondences. Let n > 0. Let
us consider
P S (Br 1, By pa,) € UL < Ul X €| By € By, Supp(B/By) = {a}}
Here the condition Supp(E»/E;) = {z} means the quotient sheaf
Ey/FE; is 0 outside . In the left hand side the index d is omitted:
we understand either P, is the disjoint union for various d, or d is im-
plicit from the situation. It is known that P, is a lagrangian subvariety
in U x YT x C2.
We have two projections q;: P, — U™, q: P, — U4 x C?, which
are proper. The convolution product gives an operator

P2 (a): HEUD) — HE U™ e qua (g5(c @ a) N [B])

fora € H([C*]X .cx (C?). The meaning of the notation ‘A’ will be explained

later. We also consider the adjoint operator
P (o) = (P3,(a)": HE (U™) — Hg ).

A class € H([C*]X X C(Cz) with compact support gives operators
P2,(8): HEL(U) = Hg P U™), and B(B) = (P4,(8))": Hg U —
*+de ) 7
HE 0 ).

Theorem 2.2 (] : | for r =1, | | for r > 2). As op-
erators on @, Hg] U or P, Hg}c(blﬁ), we have the Heisenberg com-
mutator relations

(2.3) [P (a), PR (B)] = rmém, (e, ) id.

Here o, 3 are equivariant cohomology classes on C? with arbitrary
or compact support. When the right hand side is nonzero, m and n
have different sign, hence one of a, 5 is compact support and the other
is arbitrary support. Then («, ) is well-defined.

Historical Comment 2.4. As mentioned in Introduction, the author
[ ] found relation between representation theory of affine Lie al-
gebras and moduli spaces of instantons on C?/T"; where the affine Lie
algebra is given by I' by the McKay correspondence. It was motivated
by works by Ringel | | and Lusztig [ ], constructing upper tri-
angular subalgebras of quantum enveloping algebras by representations
of quivers.
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The above theorem can be regarded as the case I' = {1}, but the
Heisenberg algebra is not a Kac-Moody Lie algebra, and hence it was
not covered in | ], and dealt with later [ , , -
Note that a Kac-Moody Lie algebra only has finitely many generators
and relations, while the Heisenberg algebra has infinitely many.

A particular presentation of an algebra should not be fundamental,
so it was desirable to have more intrinsic construction of those repre-
sentations. More precisely, a definition of an algebra by convolution
products is natural, but we would like to understand why we get a
particular algebra, namely the affine Lie algebra in our case. We do
not have a satisfactory explanation yet. The same applies to Ringel,
Lusztig’s constructions.

When r = 1, it is known that the generating function of dimension
of HE'((C2)) (over HE(pt)) for d > 0is

oo oo 1
: o2yl ,d
> dim HE(@) " = [ 1=
d=0 d=1
(See | , Chap. 5].) This is also equal to the character of the

Fock space’of the Heisenberg algebra. Therefore the Heisenberg algebra
action produces all cohomology classes from the vacuum vector |vac) =
1(C2)[0] € Hg]((C2)[O]).

On the other hand we have

[o.¢] . . (o] 1
(2.5) S dim B U =] ——
d=0 d=1 (1—q)

for general r. Therefore the Heisenberg algebra is smaller than the
actual symmetry of the cohomology groups.

Let us explain how to see the formula (2.5). Consider the torus T'
action on U?. A framed torsion free sheaf (E, ) is fixed by T if and
only if it is a direct sum (Ey,¢1) & --- @ (E,, ¢,) of rank 1 framed
torsion free sheaves. Rank 1 framed torsion free sheaves are nothing
but ideal sheaves on C?, hence points in Hilbert schemes. Thus

26) G =[] @ x (e,

d1++dr:d

9The Fock space is the polynomial ring of infinitely many variables z1, o, ....
The operators P2 (a) act by either multiplication of z, or differentiation with
respect to x,, with appropriate constant multiplication. It has the highest weight
vector (or the vacuum vector) 1, which is killed by P2 (a) with n > 0. The Fock
space is spanned by vectors given by operators PnA(oz) successively to the highest
weight vector.
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To compute the dimension of Hg] (UL over HE(pt) = C[LieG]%, we
restrict equivariant cohomology groups to generic points, that is to
consider tensor products with the fractional field C(Lie T) of Hi(pt) =
C[Lie T]. Then the localization theorem for equivariant cohomology
groups gives an isomorphism between Hg] U?) and Hg]((uf)T) over
C(Lie T). Therefore the above observation gives the formula (2.5).

In view of (2.5), we have the action of r copies of Heisenberg alge-

bra on €, Hg]((ljﬁ)T) and hence on @, Hg] (U sty C(Lie T) by
the localization theorem. It is isomorphic to the tensor product of r
copies of the Fock module, so all cohomology classes are produced by
the action. This is a good starting point to understand €, Hg} (Zjﬁ)
However this action cannot be defined over non localized equivariant
cohomology groups. In fact, P2 () is the ‘diagonal’ Heisenberg in the
product, and other non diagonal generators have no description like
convolution by P,.

The correct algebra acting on €0, Hg] (U is the W-algebra W(gl(r))
associated with gl(r). It is the tensor product of the W-algebra W(sl(r))
and the Heisenberg algebra (as the vertex algebra). Its Verma module
has the same size as the tensor product of r copies of the Fock module.

This result is due to Schiffmann-Vasserot | | and Maulik-Okounkov
[ ] independently.
Exercise 2. | , Remark 8.19] Define operators P£,(a) acting on

D, H*(S"X) for a (compact) manifold X in a similar way, and check
the commutation relation (2.3) with r = 1.

2(iii). Intersection cohomology group. Recall that the decompo-
sition theorem has a nice form for a semi-small resolution 7: M — X:

(2.7) m.(Cur) = EPIC(Xa, x) ® Higy(7 " (2a))x

where we have used the following notation:

e Cy; denotes the shifted constant sheaf Cy;[dim M].

e 1C(X,, x) denotes the intersection cohomology complex associ-
ated with a simple local system x on X,.

o Hy(m(z4)) is the homology group of the shifted degree 0,
which is the usual degree codim X,. When z, moves in X,,
it forms a local system. Hyy(m~'(z,)), denotes its x-isotropic
component.

Exercise 3. Let Gr(d,r) be the Grassmannian of d-dimensional sub-
spaces in C", where 0 < d < r. Let M = T*Gr(d,r). Deter-
mine X = Spec(C[M]). Study fibers of the affinization morphism
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m: M — X and show that 7 is semi-small. Compute graded dimensions

of TH* of strata, using the well-known computation of Betti numbers
of T* Gr(d, R).

Consider the Gieseker-Uhlenbeck morphism 7 : Z],fl — U, By Propo-
sition 2.1, any fiber 77!(z,) is irreducible. Therefore all the local sys-
tems are trivial, and

m.(Cqa) = €D IC(Bundy, xSH(C?) ® Clr(2f)],
d=|\|+d’

where 2¢ denotes a point in the stratum BunglL(T) xS\(C?), and [r~(2¢)]

denotes the fundamental class of 7'(2¢), regarded as an element of
Hig) (™ (2))-

The main summand is IC(Bun‘SlL(T)), and other smaller summands
could be understood recursively as follows. Let us write the partition
Aas (191222 ), when 1 appears a4 times, 2 appears a times, and so
on. We set [(\) = a3 +as + -+ and Stab(\) = S,, X Sa, X ---. Note
that we have total [(\) distinct points in S5 (C?). The group Stab(}) is
the group of symmetries of a configuration in S\(C?). We have a finite
morphism

€ UGy % (C*)'WV/Stab(A) — Bundy ) xS5(C?)

extending the identity on BunglL(T) X S\(C?). Then IC(BunSL x5\ (C?))
is the direct image of IC of the domain. We have the Kunneth decom-
position for the domain, and the factor (C?)"™ /Stab()) is a quotient
of a smooth space by a finite group. Therefore the IC of the second
factor is the (shifted) constant sheaf. We thus have

IC(Bung ) xSy(C%)) 2 €. (IC(Bund, ) B Cezyon suapi ) -
Thus

HYWUH = P 1HS (Bundy,)
d=|\|+d’

© HE((C)'™/ Stab())) @ Clr~ (29)].
This decomposition nicely fits with the Heisenberg algebra action.
Note that the second and third factors are both 1-dimensional. Thus
we have 1-dimensional space for each partition A. If we take the sum
over d, it has the size of the Fock module, and it is indeed the sub-

module generated by the vacuum vector |vac) = 17, € H (U%). This
statement can be proved by the analysis of the convolution algebra in
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[ , Chap. 8], but it is intuitively clear as the 1-dimensional space
corresponding to A is the span of P2 (1)*1 P4,(1)%2 - - |vac).
The Heisenberg algebra acts trivially on the remaining factor

EB ]Hg] (BUHgL(T))‘
d

The goal of this paper is to see that it is a module of W(sl(r)), and the
same is true for ADE groups G, not only for SL(r).

Exercise 4. Show the above assertion that the Heisenberg algebra acts
trivially on the first factor @, I Hg](BungL(r)).

3. STABLE ENVELOPS

The purpose of this lecture is to explain the stable envelop intro-
duced in | |. It will nicely explain a relation between Hq[r*] (U
and HI((U?T). This is what we need to clarify, as we have explained
in the previous lecture. The stable envelop also arises in many other
situations in geometric representation theory. Therefore we explain it
in a wider context, as in the original paper | ].

3(i). Setting — symplectic resolution. Let 7: M — X be a reso-
lution of singularities of an affine algebraic variety X. We assume M
is symplectic. We suppose that a torus T acts on both M, X so that
7 is T-equivariant. We suppose T-action on X is linear. Let T be a
subtorus of T which preserves the symplectic form of M.

Example 3.1. Our basic example is M = Z]ﬁ, X =U? and 7 is the
Gieseker-Uhlenbeck morphism with the same T, T as above. In fact,
we can also take a larger torus 7' x ngp in T, where C}fyp Cc C* xC~
is given by t — (t,t71).

Example 3.2. Another example is M = T*(flag variety) = T*(G/B),
X = (nilpotent variety) and 7 is the Grothendieck-Springer resolution.
Here T is a maximal torus of GG contained in B, and T = T x C*, where
C* acts on X by scaling on fibers.

We can also consider the same 7: M — X as above with smaller T,
T.

Let MT be the T-fixed point locus in M. It decomposes M1 =
| | F,, to connected components, and each F,, is a smooth symplectic
submanifold of M. Let i: MT — M be the inclusion. We have the
pull-back homomorphism

i Hq[;] (M) - Hj[;w#codim XT) (MT) _ @ Hj[;@%codim Fo) (Fa)-

«
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Here we take the degree convention as before. Our degree 0 is the usual
degree dim¢ M for Hq[r*](M), and dimc F,, for Hj[r*](Fa). Since i* pre-
serves the usual degree, it shifts our degree by codim F,,. Each F,, has
its own codimension, but we denote the direct sum as Hy "™ X7 (MT)
for brevity.

The stable envelop we are going to construct goes in the opposite

direction Hq[;](MT) — Hq[r*}(M) and preserves (our) degree.
In the above example M = Y%, the T and T x (leyp—ﬁxed point loci
are

eht = || s

d1++d'r:d
(Z;{Vﬁ)TXCf:yp = |_| {]Al @...@I)\T}’
[A1 |4 Ar]

where \; is a partition, and I, is the corresponding monomial ideal
sheaf (with the induced framing).
Also

T*(G/B)T =W,
where W is the Weyl group.

3(ii). Chamber structure. Let us consider the space Homg,,(C*,T")
of one parameter subgroups in 7', and its real form Homg,,(C*, T)®@zR.
A generic one parameter subgroup p satisfies M?(©*) = M. But if p
is special (the most extreme case is p is the trivial), the fixed point
set MP(€) could be larger. This gives us a ‘chamber’ structure on
Hom,,,(C*,T)®z R, where a chamber is a connected component of the

complement of the union of hyperplanes given by p such that M*(C™) £
MT.

Exercise 5. (1) In terms of T-weights on tangent spaces T,M at var-
ious fixed points p € M7, describe the hyperplanes.

(2) Show that the chamber structure for M = T*(flag variety) is
identified with usual Weyl chambers. B

(3) Show that the chamber structure for M = U? is identified with
the usual Weyl chambers for SL(r).

(4) Compute the chamber structure for M = 1%, but with the larger

X
torus T x Gy .

For a chamber C, we have the opposite chamber —C consisting of one
parameter subgroups t — p(t~!) for p € C.
The stable envelop depends on a choice of a chamber C.
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3(iii). Attracting set. Let C be a chamber and p € C. We define the
attracting set Ax by

Ax = {x € X‘EI mp(t)x}.

li

t—0
We similarly define the attracting set Ay, in M in the same way. As
7 is proper, we have Ay = 771 (Ax). We put the scheme structure on

Ay as m1(Ax) in this paper.

Example 3.3. Let X = U¢. In the quiver description, Ax consists of
closed GL(d)-orbits GL(d) (B, Be, I, J) such that J f(By, B2)I is upper
triangular for any noncommutative monomial f € C(z,y). It is the
tensor product variety introduced in | ], denoted by m(3) therein.

As framed sheaves, Ay, consists of (E, ) which are written as an
extension 0 — £y - E — Ey — 0 (compatible with the framing) for

some By € UM, By € U with d = dy + dy.

We have the following diagram

(3.4) XPC) = XTS5 Ay L X,
where i, j are natural inclusion, and p is given by Ax 3 = — lim;_,o p(t)z.
Since MT = || F,, we have the corresponding decomposition of
Ay = |p '(F,). Let Leaf, = p~!(F,). By the Bialynicki-Birula
theorem ([?], see also [?]), p: Leaf, — F, is a vector bundle. Similarly
Leaf, — F, denote the corresponding vector bundle for the opposite
chamber —C.
Let us consider the restriction of the tangent bundle T'M to a fixed
point component F,. It decomposes into weight spaces with respect to

p:
(35)  TMl|p, =@ T(m), T(m)={v]p(t)y=1t"v}.

Then Leaf, = ,,.,7(m). Note also T'(0) = T'F,. Since T preserves
the symplectic form, T'(m) and T'(—m) are dual to each other. From

these, one can also check that Leaf, =% M x F, is a lagrangian
embedding.

Example 3.6. Let m7: M = T*P! — X = C?/+. Let T = C* act on X
and C?/ 4 1 so that it is given by #(z1, 22) mod & = (tz1,t2; ") mod =.
Then X7 consists of two points {0, 0o} in the zero section P! of T*P!. If
we take the ‘standard’ chamber containing the identity operator, Leaf,
is the zero section P! minus co. On the other hand Leaf,, is the (strict
transform of) the axis zo = 0. See Figure 2.
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For the opposite chamber, Leaf) is the axis z; = 0, and Leaf, is the
zero section minus 0.

FIGURE 2. Leaves in T*P!

Definition 3.7. We define a partial order > on the index set {a} for
the fixed point components so that

Leafs N F, #0 — o < 6.
We have oo < 0 in Example 3.6.
Let
Au<a = | | Leafs.
B:B<a

Then Ay <, is a closed subvariety. We define Ay <, in the same way.
Proposition 3.8. (1) H[E] (Aprr<a) vanishes in the odd degree.

(2) We have an ezact sequence

0 = Hiy(An<a) = Hly(An<a) = Hpj(Leaf,) — 0.
Proof. Consider the usual long exact sequence
HE(Anrca) = HE (Anza) — HE (Leafs) 2 HE (Au<a)-
Recall that Leaf,, is a vector bundle over F,,. It is known that H, [T (Fy)

+]
vanishes in odd degrees. It follows from | , Exercise 5.15] for U7,
and is a result of Kaledin | | in general.

Let us show that H[E](AMSQ) vanishes in odd degrees by the de-
scending induction on «. In particular, the assertion for H, [E] (Anm.<a)
implies 0 = 0, i.e., (2).

If « is larger than the maximal element, Ay <, = 0, hence the
assertion is true. Suppose that the assertion is true for H, [T*}(AM,<04).
Then the above exact sequence and the odd vanishing of H, [T*}(Leafa)

implies the odd vanishing of H [E] (Ar<a)- O
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Exercise 6. (1) Determine Ay, for M = T*(flag variety).

(2) Determine Ay, for M = U? with respect to T x Chyp-

3(iv). Steinberg type variety. Recall that Steinberg variety is the
fiber product of T*(flag variety) with itself over nilpotent variety. Its
equivariant K-group realizes the affine Hecke algebra (see [ ,Ch. 7)),
and it plays an important role in the geometric representation theory.
Let us recall the definition of the product in our situation. We define
Z = M xx M, the fiber product of M itself over X. Its equivariant
Borel-Moore homology group has the convolution product:

H[(E}(Z> ® HEEKZ) S c®c = pis(plac Npisc) € H[(S}(Z)a
where p;;: M x M x M — M x M is the projection to the product of
ith and j* factors.'® When M — X is semi-small, one can check that
the multiplication preserves the shifted degree [%].
We introduce a variant, mixing the fixed point set M7* and the whole

variety M: Let Z4 be the fiber product of Ay and M7 over X7,
considered as a closed subvariety in M x M7:
Za=Ay xxr MT C M x M7,

where Ay, — X7 is the composite of p: Ay — M7T and 77 M7 —
MY, or alternatively 7|4,,: Ay — An, and p: Ay, — X7, Here we
denote projections Ay, — M7 and Ax — X7 both by p for brevity.
As a subvariety of M x MT, Z, consists of pairs (z,2’) such that
limy 9 p(t)7(z) = 77 ().

The convolution product as above defines a (H [E] (Z),H [E} (Z7))-bimodule
structure on H, [T*](Z 4). Here ZT is the T-fixed point set in Z, or equiv-
alently the fiber product of M7 with itself over X7.

In our application, we use H, [E}(Z ) as follows: we shall construct an

operator HI(MT) — HE(M) by
(3.9) HY(MT) 5 ¢ pr(pien £) € HE (M)

for a suitably chosen (degree 0) equivariant class £ in H, E&(Z 4). Note
that the projection Z4 — M is proper, hence the operator in this
direction is well-defined. On the other hand, Z4 — M7 is not proper.
See §3(vi)(a) below.

Recall Ay and M7 decompose as | | Leafg, | | F,, respectively. There-
fore

Zy=| |Leafs x xrF,.
a,B

10We omit explanation of pull-back with supports p,, Dss, ete. See [ ] for
more detail.
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We have the projection p: Leafg x xrF, = Fg X xr Fy,.

Proposition 3.10. Z4 is a lagrangian subvariety in M x M7T. If
Z{', Zy , ... denote the irreducible components of | |, 5 Fjs X xr Fa, then
closures of their inverse images
def. 7757  def. TTTSEN
Zy = p N2, 2o = p7 (2,
are the irreducible components of Z 4.

Proof. Consider an irreducible component Z of Fs x xr F,. Using
the semi-smallness of 77: M7 — X7 one can check that Z!" is half-
dimensional. Then the dimension of Z, is

1 1 1

E(dim Fs+dim F,,) + 3 codimy Fjg = §(dimX + dim Fy,),
as the rank of Leafs is the half of codimension of Fj3. Therefore Z, is
half-dimensional in Fjg x M.

We omit the proof that Z, is lagrangian. O

3(v). Polarization. Consider the normal bundle Ng, /n of Fy, in M.
It is the direct sum Leaf,, @ Leaf_. Since Leaf,, Leaf_ are dual to each
other with respect to the symplectic form, the equivariant Euler class
e(Np, /) is a square up to sign:

e(Ng, ) = e(Leaf, )e(Leaf, ) = (—1)«dmu Fo/2¢ (L eaf,,)?.

Let us consider H.(pt)-part of the equivariant classes, i.e., weights of
fibers of vector bundles as T-modules. In many situations, we have an-
other preferred choice of a square root of (—1)°4™M Fe/2e(Np_ )| 1z (pt) -
For example, suppose M = T*Y and the T-action on M is coming
from a T-action on Y. Then F, = T*N for a submanifold N C
Y, we have T(T*Y) = TY ® T*Y, and Np, v = Nyiy @ N;{,/Y,
hence (—1)edimy Fa/2e(Np ) = e(Nyyy)? This choice e(Nyy) of
the square root is more canonical than e(Leaf,) as it behaves more uni-
formly in a. We call such a choice of a square root of (—1)c0dima Fo/2e(Np 5/)
polarization. We will understand a polarization as a choice of & for each
a, e.g., e(Leafo)|mx pr) = £e(Nnyy)|mz(pt) for this example.

Our main example U¢ is not a cotangent bundle, but is a symplectic
reduction of a symplectic vector space, which is a cotangent bundle.
Therefore we also have a natural choice of a polarization for ¢

3(vi). Definition of the stable envelop. Note that T acts on M7
trivially. Therefore the equivariant cohomology H;k ] (M7T) is isomorphic
to H¥(MT)® H(pt). The second factor Hz(pt) is the polynomial ring
C[LieT].

Hx(pt)
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We define the degree deg; on Hj[f](M T as the degree of the compo-
nent of Hj.(pt) = C[LieT].

Let tgq: Fg x Fy = M X M7 denonte the inclusion.
Theorem 3.11. Choose and fix a chamber C and a polarization =+.
There exists a unique homology class L € H[g](ZA) with the following
three properties:

(1) Llarxr, 1s supported on s, Leafs X xr F.

(2) Let e(Leaf,) denote the equivariant Euler class of the bundle
Leaf, over F,. We have

Lo oL = Fe(Leaf ) N [Afp,].
(3) For B < a,

1
degr 1z L < 3 codimys Fj.
In fact, in our situation, we have a stronger statement ¢ £ = 0.

Proof. We first prove the existence. We use the 1-parameter deforma-
tion M, X appeared in §4(i). Moreover the T-action extends to M?,
Xt

We define F!, Leaf!, for M* in the same way. Since M?! is affine
for t # 0, Leaf’, is a closed subvariety in M?. Considering it as a
correspondence in M? X (xtyr (M BT we consider its fundamental class
[Leaf’]. We now define

— ) def. | 1 t
L=) L L= +lim(Leafy ],

where lim,_, is the specialization in Borel-Moore homology groups (see
(07, §2.6.30)).

The conditions (1),(2),(3) are satisfied for [Leafy]. Moreover v} ,[Leaf}] =
0 for B # «. Taking the limit ¢ — 0, we see that three conditions
(1),(2),(3) are satisfied also for L.

Next let us show the uniqueness. We decompose £ = > L, accord-
ing to MT = | | F,, as above. Let Z;, Z,, ...be irreducible components
of Z as in Proposition 3.10. Each Zj; is coming from an irreducible
component of Fg x xr Fy,. So let us indicate it as Z,gﬁ’a). Since L is
the top degree class, we have L, = Zak[Zéﬁ’a)} with some a5 € C.
Moreover by (1), 2\ with nonzero ay, satisfies 8 < a.

Consider Z,ia’a). By (2), we must have Z,ia’a) = Leaf,, a; = =+1,
where Leaf, is mapped to Z4 = M x xr MT by (inclusion) x p.

Suppose that £}, £2 satisfy conditions (1),(2),(3). Then the above
discussion says L} — L2 = > aj, [Z,gﬂ’a)], where Z,(f’a) with nonzero aj,
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satisfies 8 < a. Suppose that £} # £2 and take a maximum 3, among
B such that there exists Z,gﬁ’a) with aj, # 0.
Consider the restriction Lzo’a(ﬁ(lx — £2?). By the maximality, only

those Z,gﬂ g with 8 = By contribute and hence

Uil Lo = £2) = Y aje(Leats,) N [Z]],
where Z[ is an irreducible component of Fj, X xr F,, corresponding to
Z o),
Since e(Leaf )| g (pr) is the product of weights A such that (p, A\) <0

(cf. (3.5)), it has degree exactly equal to codim Fjz/2. But it contradicts
with the condition (3). Therefore £} = £2. O

Since L lives in the top degree, we have
Hy(Za) = Hiy(Z4) = Hyg)(Z.a).

In particular, £ gives an operator on T-equivariant cohomology by the
formula (3.9), even though we construct it in the 7T-equivariant coho-
mology group originally. The property (2) still holds in T-equivariant
cohomology group by the construction. However the deformation we
have used cannot be T-equivariant, so ¢ ,£ # 0 in general.

Definition 3.12. The operator defined by the formula (3.9) given by
the class £ constructed in Theorem 3.11 is called the stable envelop. 1t
is denoted by Stabe. (The dependence on the polarization is usually
suppressed.)

Let us list several properties of stable envelops.

(a). Adjoint. By a general property of the convolution product, the
adjoint operator

Stabg: HIL(M) — HiL(MT)
is given by changing the first and second factors in (3.9):
H'][Iik,} (M) S (_1)C0dimXTp2*<pTC N ,C) c H’][Ii*’} (]\4T)7

C C

where the sign comes from our convention on the intersection form.

(b). Image of the stable envelop. From the definition, the stable en-
velop defines a homomorphism

(3.13) HE (M™) = HEj(Aw),

so that the original Stabe is the composition of the above together with
the pushforward H[T_*](.AM) — H[TL*](M) of the inclusion A, — M and

the Poincaré duality HT (M) = H{(M).
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Proposition 3.14. (3.13) is an isomorphism.

By Proposition 3.8, H[E} (Ajpr) has a natural filtration J,, H[E] (Anm.<a)
whose associated graded is @, H [E] (Leaf,). From the construction, the
stable envelop is compatible with the filtration, where the filtration
on Hq[r*](M 7 is one induced from the decomposition to @Hq[r*](Fa)'
Moreover the induced homomorphism HY'(F,) — H}; (Leaf,) is the

pull-back, and hence it is an isomorphism. Therefore the original stable
envelop is also an isomorphism.

(c). Subtorus.

Historical Comment 3.15.

4. SHEAF THEORETIC ANALYSIS OF STABLE ENVELOPS

4(i). Nearby cycle functor. This subsection is a short detour, giving
(2.7) for a symplectic resolution 7: M — X without quoting Kaledin’s
semi-smallness result. It uses the nearby cycle functor,!' which is im-
portant itself, and useful for sheaf theoretic understanding of stable
envelops in §4(iv).

Let us recall the definition of the nearby cycle functor in | , 68.6].

Let X be a complex manifold and f: X — C a holomorphic function.
Let X = f71(0) and 7: X — X be the inclusion. We take the universal
covering C* — C* of C* = C\ {0}. Let ¢: C* — C be the composition
of the projection and inclusion C* — C. We take the fiber product X
of X and C* over C. We consider the diagram

X* — C*

L

X >y X > C.
f

T

Then the nearby cycle functor from D’(X) to Db(X) is defined by

(4.1) Pr(®) =r*c.c (o).
Note that it depends only on the restriction of objects in D’(X) to
X\ X.

Let m: M — X be a symplectic resolution. We use the following
fact due to ***** . M and X have a l-parameter deformation M, X
together with IT: M — X over C such that the original M, X are fibers

HThe author learned usage of the nearby cycle functor for symplectic resolutions
from Victor Ginzburg many years ago. He attributed it to Gaitsgory. See | ].
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over 0 € C, and other fibers M*, X' (t # 0) are isomorphic, both are
smooth and affine.

For U? — U?, such a deformation can be defined by using quiver
description : we perturb the moment map equation as [By, By] +
IJ = tid. The T-action does not preserve this equation, as it scales
tid. But the T-action preserves the equation. For T*(flag variety) —
(nilpotent variety), we use deformation to semisimple adjoint orbits.
(See | , §3.4].)

Take the projection X, M — C as f. Let us denote them by fx,
far respectively. (Singularities of X causes no trouble in the following
discussion: we replace X by an affine space to which X is embedded.)
We consider the nearby cycle functors ¢, , 1¢,,. Since II: M — X is
proper, one can check

(4'2) ¢fXH* = 7T*¢fM

from the base change.
Now we apply the both sides to the shifted constant sheaf Cy;. Since
M — C is a smooth fibration, we have

(4'3) ¢fMCM = CM[l]'

On the other hand, since we only need the restriction of IT1.Cy; to X'\ X,
we may replace m.Cy by Cx as M\ M — X'\ X is an isomorphism. (In
fact, I1.Cy = IC(X) as it is known that II is small.) We thus have

(4.4) by Cx = (Car)[1].

We have a fundamental property of the nearby cycle functor: v ¢[—1]
sends perverse sheaves on X to perverse sheaves on X. (See [ ,
Cor. 10.3.13].) Hence m,(Cys) is perverse.

Exercise 7. (1) Check (4.2).
(2) Check (4.3).

4(ii). Homology group of the Steinberg type variety. Recall that
the variety Z4 is defined as a fiber product Ay; x xr M7T, analog of
Steinberg variety. The homology group of Steinberg variety, or more
generally the fiber product M xx M nicely fits with framework of
perverse sheaves by Ginzburg’s theory | , 68.6]. A starting point
of the relationship is an algebra isomorphism (not necessarily grading
preserving)

(4.5) H.(Z) 2 Extiy ) (. (Car), 7 (Car)).

Moreover, if M — X is semi-small, 7.(Cy/) is a semisimple perverse
sheaf, and

(4.6) H)(Z) = Homps(x,) (m(Car), 7 (Car))-
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See | , Prop. 8.9.6].
We have the following analog for Z 4:
Proposition 4.7 (cf. | , Lemma 4]). We have a natural isomor-
phism
(4.8) H(Z4) = EXt*Db(Xg“)<7TZ(CMT)7p*j!ﬂ'*(CM)).

Recall that H.(Z4) is an (H[E](Z), H[E}(ZT))-bimodule. Similarly the

right hand side of the above isomorphism is a bimodule over
(Bt (7 (Carm ), (Care), Ext e (m (Car), 7 (Car))

Under (4.5) and its analog for M7, the above isomorphism respects the
bimodule structure.

In view of (4.5,4.6,4.8), it is natural to ask what happens if we replace
the left hand side of (4.8) by the shifted degree 0 part Hjg(Z4), where
the cycle £ in Theorem 3.11 lives. Since 77 : MT — X7 is semi-small,
71 (Cpsr) is a semisimple perverse sheaf. As we shall see in the next
two subsections, the same is true for p,j'm,(Cys). Then we have

Hp)(Za) = Home(XOT)(W*T(CMT):P*j!W*<CM))-

The claim that p.j'm.(Cyr) is a semisimple perverse sheaf is a conse-
quence of two results:

(a) Braden’s result | | on preservation purity.
(b) Dimension estimate of fibers, following an idea of Mirkovic-
Vilonen | ].

One may formally compare these results to (a) the decomposition the-
orem, and (b) semi-smallness for proper pushforward homomorphisms.
In fact, the actual dimension estimate (b) required for p,j'm,(Cas) is
rather easy to check, once we use the nearby cycle functor. The argu-
ment can be compared with one in §4(i).

4(iii). Hyperbolic restriction. We first treat (a).
Let Rx be the repelling set, i.e., the attracting set for the opposite
chamber —C. We have the diagram

p— .
X"sSRx 5 X,

71—

as for the attracting set.

Theorem 4.9 (| ]). We have a natural isomorphism p.j' = p_j*
on T-equivariant complexes D5.(X).
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This theorem implies the preservation of the purity for p,j' = p_j*
as Py, j increase weights while p_;, j* decrease weights. In particular,
semisimple complexes are sent to semisimple ones. Thus p,j'm,(Cy) is
semisimple.

4(iv). Exactness by nearby cycle functors. Consider one param-
eter deformation fys, fx: M, X — C as in §4(i). We have the diagram

px ;
X" S Ax B X,
ix
as in (3.4). We have the hyperbolic restriction functor py.j.
We also have a family fyr: XT — C.
The purpose of this section is to prove the following.

Proposition 4.10. (1) The restriction of px.jsCx to XT\ XT is canon-
ically isomorphic to the constant sheaf Cyr\ xr.

(2) The nearby cycle functors commute with the hyperbolic restric-
tion:

.l .l
PeJ Vi = Vf 1 Dxex-

Corollary 4.11. (1) p.j'm.(Cyr) is perverse.
(2) The isomorphism Cyr|yr\xr — px*j;!xCﬂxT\XT induces an iso-

morphism 7L (Cpyr) = P.J' T (Car).

In fact, m.(Car) = Y5 Cx[—1] by (4.4). Therefore Proposition 4.10(2)
implies p.j'm.(Car) = V5, 4 PrejnCa[—1]. Now we can replace pu.jyCa[—1]
by Cyr[—1] by (1) over X™\ X™. Since ¢y ,.[~1] sends a perverse sheaf
to a perverse sheaf, we get the assertion (1).

Applying ¢y, to Cyr|yr\xr =y Dcx j:lxcxle\XT, we get an isomor-
phism

71—Z(CMT) = waTCDCT — waTpDC*jéCCX = p*jlﬁ*(CM>'
This is (2).

Moreover, the isomorphism (2) coincides with one given by the class
L € Hy(Za) = Hompyxry(mf (Cysr), pej'me(Car)). This is clear from
the definition, and the fact that the nearby cycle functor coincides with
the specialization of Borel-Moore homology groups. *****

We have canonical homomorphisms IC(XT) — 77 (Cy;r) and m.(Cpr) —
IC(X) as the inclusion and projection of direct summands. Therefore
we have a canonical homomorphism

IC(XT) = p.j' IC(X).
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This is a nice reformulation of a stable envelop, which makes sense even
when we do not have a symplectic resolution. ***¥¥*

Historical Comment 4.12. A proof of Corollary 4.11(1) was given
by Varagnolo-Vasserot | | for hyperbolic restrictions for quiver va-
rieties, and it works for symplectic resolutions. The proof is based on
arguments in | ,3.7) and | , 4.7], which give decomposition of
restrictions of character sheaves, restrictions of perverse sheaves corre-
sponding to canonical bases respectively. (Semisimplicity follows from
a general theorem Theorem 4.9. But decomposition must be studied
in a different way.)

Proof of Proposition /.10. (1) The key is that M \ M is isomorphic
to X\ X. We have the decomposition MT = | |F, corresponding to
M?T = || F, to connected components. Then we have the induced
decomposition

Ax\ Ax = | |py'(Fa\ Fu)

to connected components, such that each py' (F,\ F,) is a vector bundle
over ¥, \ F,. The same holds for Ry \ Rx = |_|p;ci(9’a \ Fy).

Moreover py'(F, \ F,) is a smooth closed subvariety of X\ X. Its
codimension is equal to the rank of px' (F, \ Fa).

Thus the hyperbolic restriction py.ji.Cx is the constant sheaf Cyr\xT
up to shifts. (Shifts could possibly different on components.)

Now py'(Fs \ Fo) and pyl(F, \ F,) are dual vector bundles with
respect to the symplectic structure. In particular their ranks are equal.
This observation implies that shifts are unnecessary, py. j&Cx is equal
to Cyr\ xr. Moreover the isomorphism is given by the restriction of the
constant sheaves and the Thom isomorphism for the cohomology group
of a vector bundle. Therefore it is canonical.

(2) Recall that the nearby cycle functor v, is given by r%éx.c% as
in (4.1), where we put subscripts X to names of maps to indicate we
are considering the family X — C.

We replace p,j' by p_i7* by Theorem 4.9. We have the commutative
diagram

XT &= Rry I x

ryr l JTRX er

X Ry —— X,
Px— Jx—

where both squares are cartesian. Thus p_j*ry = p_ry _Jy_ =

X RxJX
rrpx—1Jx_. Namely the hyperbolic restriction commutes with the re-
strictions 7%, ryr to O-fibers.



PERVERSE SHEAVES ON INSTANTON MODULI SPACES 29

Next we replace back py_1j%_ to px.jy and consider the diagram

xT 29 AJC Jx X

. T TéAX Tax

XT* e Ay —— X"
Py Jxx

The bottom row is pull back to the universal cover C* of the upper
row. This is commutative and both squares are cartesian. Thus we
have pr.jyCxy = px*EAX*j%C* = 6xT*(pjc*)*j:!)~C*. Thus the hyperbolic re-
striction commutes with the pushforward for the coverings ¢x, ¢xr.
Finally we commute the hyperbolic restriction with pullbacks for ¢y,
¢xr. We do not need to use Theorem 4.9 as we saw jg., pg. are (union
of) embedding of smooth closed subvarieties and projections of vector
bundles. Therefore x and ! are the same up to shift. (Also Theorem 4.9
is proved for algebraic varieties, and is not clear whether the proof
works for X* in general. This problem disappears if we consider the
nearby cycle functor in algebraic context.) This finishes the proof of
(2). O

4(v). Hyperbolic semi-smallness. Looking back the proof of Propo-
sition 4.10, we see that a key observation is the equalities rank Ax =
rank Rx = codimyx X7 /2. (More precisely restriction to each compo-
nent of X7.)

In order to prove the exactness of the hyperbolic restriction functor in
more general situation, in particular, when we do not have symplectic
resolution, we will introduce the notion of hyperbolic semi-smallness in
this subsection.

The terminology is introduced in | |, but the concept itself has
appeared in | | in the context of the geometric Satake correspon-
dence.

Let X =| | X, be a stratification of X such that i, IC(X), i IC(X)
are locally constant sheaves. Here 7, denotes the inclusion X, — X.
We suppose that X is the smooth locus of X as a convention.

We also suppose that the fixed point set X7 has a stratification X7 =
| | Y5 such that the restriction of p to p~'(Y3) N X, is a topologically
locally trivial fibration over Y3 for any «, f (if it is nonempty). We
assume the same is true for p_.
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Definition 4.13. We say ® is hyperbolic semi-small if the following
two estimates hold

dimp~!(y5) N Xy < =(dim X, — dim Yj),

1
(4.14) %
dim p~!(y5) N X, < §(dim X, —dimYp).

Suppose X is smooth (and X = Xj). Then X7 is also smooth. We
decompose X7 = | | Y} into connected components as usual. Then the
above inequalities must be equalities, i.e., rank Ax|y, = rank 7€X|y/j =
codimy Y3/2. They are the condition which we have mentioned in the
beginning of this subsection.

Note that p~t(ys) N Xo and p='(ys) N X, are at most (dim X —
dim Y3)/2-dimensional if @ is hyperbolic semi-small. In this case, co-
homology groups have bases given by (dim X — dim Yj)/2-dimensional

irreducible components of p~(yz) N Xy and p:l(yg) N Xy respectively.

Let Haim x—aimy, (P~ (y3) N Xo)y and HE™ " (071 (y5) 1 Xp) de-

note the components corresponding to a simple local system x on Yj.

Theorem 4.15. Suppose © is hyperbolic semi-small. Then ®(IC(X))
18 perverse and it 1s 1somorphic to

@ IC(Ys, X) @ Haim x—aimvs (P~ (Ys) N Xo)y-
Bix

Moreover, we have an isomorphism
— ~ 77dim X —dimY; —
Haim x—dimv, (P (ys) N Xo)y = He “(p="(ys) N Xo)y-
The proof is similar to one in | , Theorem 3.5], hence the detail
is left as an exercise for the reader. In fact, we only use the case when

X7 is a point, and the argument in detail for that case was given in
[ , Th. A.5].

4(vi). Hyperbolic restriction for affine Grassmannian. Recall
the affine Grassmannian Grg = G((2))/G|[[z]] is defined for a finite
dimensional group G. Perverse sheaves on Grg are related to finite
dimensional representations of GV, the Langlands dual of G by the
geometric Satake correspondence.

To be expanded.

5. R-MATRIX

We continue the study of stable envelops for symplectic resolutions.
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5(i). Definition of R-matrix. Let t: MT — M be the inclusion.
Then ¢* oStabe € End(Hq[r*] (MT)) is upper triangular, and the diagonal
entries are multiplication by e(Leaf, ). Since e(Leaf,, )|z () is nonzero,
t* o Stabe is invertible over C(Lie T). By the localization theorem for

equivariant cohomology groups, ¢* is also invertible. Therefore Stab,
is invertible over C(LieT).

Definition 5.1. Let C;, C3 be two chambers. We define the R-matriz
by

Re, ¢, = Stabz! o Stabe, € End(H{ (MT)) @ C(LieT).

Example 5.2. Consider M = T*P! with T = C*, T = C* x C*
as before. We denote the corresponding equivariant variables by wu,
h respectively. (So Hjy(pt) = C[LieT]| = Clu], Hf(pt) = C[LieT] =
Clu, h].) Choose a chamber C = {u > 0}. Then R_¢¢ is the middle
block of Yang’s R-matrix

hP 2
R=1-—, P=)> ¢;®es
. Z‘j:lej@@ej

where e;; is the matrix element acting on C? up to normalization.
Exercise 8. Check this example.

It is customary to write the R-matrix as R(u) to emphasize its de-
pendence on u. Yang’s R-matrix **#kx

This variable u is called a spectral parameter in the context of rep-
resentation theory of Yangian.

5(ii). Yang-Baxter equation. Suppose that T is two dimensional
such that LieT = {a; + as + a3 = 0}. We suppose that there are six
chambers given by hyperplanes a; = as, as = a3, ag = a; as for Weyl
chambers for s[(3). The cotangent bundle of the flag variety of SL(3)

and U¢ are such examples by Exercise 5. We factorize the R-matrix
from C to —C in two ways to get the Yang-Baxter equation

Rlz(al - a2)R13(G1 - a3)Rz3(02 - CLS)
= R23(a2 - a3)R13(a1 - a3)R12(a1 - CLQ)-

See Figure 3.

5(iii). R-matrix and Virasoro algebra. In this section, we study
the R-matrix for the case X = U
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o — asg
R
Ry Py C
TR VAR S
R12 R12
_c R
C 1tz3 Rys
a; = asg

FI1cURE 3. Yang-Baxter equation

(a). Heisenberg operators. Let us observe that the Heisenberg oper-
ators P2 (a) sends H[E] (Aza) to H[E_dega}(Aﬁﬁ+M)- This is because
¢1(g3 ' (Aga X C?*)) C Agasm. Therefore the direct sum @, H o (Aga) is
a module over the Heisenberg algebra. Via the isomorphism (3.13) we

have the Heisenberg algebra module structure on

P I (UHT = @ HI(C©)D x - x ()l

d dl 7777 d'r

- @D H(E)

(5.3)

Note that this is the tensor product of r copies of the Fock space. There-
fore it is a representation of the product of r copies of the Heisenberg
algebra.

Proposition 5.4. In the above isomorphism, the operator P2 (a) is
mapped to the diagonal Heisenberg operator
i@ @id®@ Py (o) @id®- - @id.

N——

=1 .
ith factor

(b). Virasoro algebra. Consider the R-matrix for Z;{vrd By it is
enough to consider the r = 2 case. Then @ Hq[r*]((ljg)T) is isomorphic
to the tensor product of two copies of Fock space. Let us denote the
Heisenberg generator for the first and second factors by Py (), PP ()
respectively. We have P2 (a) = Pr(,f)(a) + P,(nz)(a). Since P2 (a) is de-
fined a correspondence which makes sense without going to fixed points
(UHT | it commutes the R-matrix. Therefore the R-matrix should be
described by anti-diagonal Heisenberg generators P, (a)— PP (). Let
us denote them by P («).
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Let us denote the corresponding Fock spaces by F» and F~. There-
fore we have @ Hq[fk]((b{g)T) >~ P2 ® ['~. The above observation means
that the R-matrix is of a form idpa ® R’ for some operator R’ on F'~.

We now characterize R’ in terms of the Virasoro algebra, acting on
F~ by the well-known Feigin-Fuchs construction.

Let us recall the Feigin-Fucks construction. We take the tensor prod-
uct H’J[l’*] (UHT) ®pz(pt) C(€1, €2, @) from now. It means that we consider
variables €1, €5, @ take generic value.

Let us write P, for P (1) for brevity, where 1 € HT[F*](CQ) is the
unit element. Note that we have (1,1) = —1/e1£5 in the commutation
relation. Thus we will consider the localized equivariant cohomology
groups hereafter. We will comment the integral form at the end ***##*,

We put

PO_ dgf. L (a1 — a9 — (€1 + 52)) .
£1&9
This element is central, i.e., it commutes with all other P_ . In partic-
ular, the Heisenberg relation (2.3) remains true.
We then define

. 1
(65 LSS Nipepn TR )P

4 2

These L,, satisfy the Virasoro relation

6 2 3 _
Lo L] = (1 — 1) Ly + (1 N m> PR itk

£1&9 12
with the central charge 1 + 6(g; + £2)?/e1€5.

The vacuum vector |vac) = L et H(UG) is a highest weight vector,
it is killed by L, (n > 0) and satisfies

Lo[vac) — —i ((‘“ —a) (et 52)2) Ivac).

€1€2 €1€2

Here we have used the normal ordering : :, which is defined by mov-
ing all annihilation operators to the right. See | , Def. 9.34] for
more detail.

It is known that the Fock space, as a representation of the Virasoro
algebra, irreducible if its highest weight is generic. Moreover its iso-
morphism class is determined by its highest weight (and the central
charge).

Looking at the above formula for the highest weight, we see that it
is unchanged under the exchange a; <+ as. Therefore there exists the
unique automorphism on F~ (over C(ey, €9, d)) sending |vac) to itself,
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and intertwining L,, and L, with a1 <> ao. It is called the reflection
operator.

Now a fundamental observation due to Maulik-Okounkov is the fol-
lowing result:

Theorem 5.6 (| ). The R-matriz is idpa ®(reflection operator).

In the remainder of this section, we explain several key points of the
proof of Theorem 5.6.

(c). Virasoro algebra and Hilbert schemes. The first link between the
Virasoro algebra and cohomology groups of instanton moduli spaces
was found for the rank 1 case by Lehn | |. Lehn’s result holds
for an arbitrary nonsingular complex quasiprojective surface, but let
us specialize to the case C2.

Let V be the tautological bundle over the Hilbert scheme (C2)l. Tt
is a rank d vector bundle whose fiber at I C Clz,y] is Clz,y|/I. In
the quiver variety description, it is the vector bundle associated with
the principal GL(d)-bundle p~1(0)**P'e — (C?)[. We consider its first
Chern class ¢;(V).

Let P, denote the Heisenberg operator P2(1) for the r = 1 case.

Theorem 5.7 (] ). We have
(5152)2 . .
a(V)Ue=—— > Py PuyPuy
m1+mo+m3z=0
5152 51 + 52 Z
— m| —1):P_,, Pyt

Taking the commutator with P,, we have

(V) Ue, _ n€162 Z PP, w(& +&5)P,.

l+m=n

If we compare this with (5.5), we find that this looks very similar to
nL,, except a mysterious expression |n|.
A different proof, which works only for C?, was given in | ].

(d). R-matriz at the minimal element.
To be expanded.

6. PERVERSE SHEAVES ON UHLENBECK PARTIAL
COMPACTIFICATION

We now turn to U for general G.
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6(i). Hyperbolic restriction on Uhlenbeck partial compactifi-
cation. Let p: C* — T be a one parameter subgroup. We have asso-
ciated Levi and parabolic subgroups

L=, P={geGPlmptigo(t)"}.

Unlike before, here we allow nongeneric p so that GP(€*) could be dif-
ferent from 7'. This is not an actual generalization. We can replace T’
by Z(L)°, the connected center of L. Then p above can be considered
as a generic one parameter subgroup in Z(L)°.

We consider the induced C*-action on UZ. Let us introduce the
following notation for the diagram (3.4):

def. xy P def. j
(6.1) Ui = UL S UL = Ays S UL

Let us explain how these notation can be justified. If we restrict
our concern to the open subscheme Bung, a framed G-bundle (F, ¢) is
fixed by p(C*) if and only if we have an L-reduction F, of F (i.e., F =
Fr x 1 G) so that Fp|e is sent to ¢, X L by the trivialization p. Thus
(Bun%)”(©*) is the moduli space of framed L-bundles, which we could
write Bun“Ll.12 The definition of Uhlenbeck partial compactification is
a little delicate, and is defined for almost simple groups. Nevertheless
it is still known that U¢ is homeomorphic to the Uhlenbeck partial
compactification for [L, L] when it has only one simple factor (| :
4.7]), though we do not know they are the same as schemes or not. We
will actually use this fact later, therefore the same notation for fixed
point subschemes and genuine Uhlenbeck partial compactifications are
natural for us.

Let us turn to the notation U%. If we have a framed P-bundle
(Fp, @), the associated framed G-bundle (Fp xp G, ¢ xp G) is actually
point in the attracting set Aug- This is the reason why we use the

notation U%. However a point in 4% N Bun, is not necessarily coming
from a framed P-bundle like this. See Exercise 7?7 below. Nevertheless
we believe that it is safe to use the notation U2, as we never consider
genuine Uhlenbeck partial compactifications for the parabolic subgroup
P.

Exercise 9 (cf. an example in | , 84(iv)]). Consider the case
G = SL(r). Suppose (E, ) is a framed vector bundle which fits in an

2Here we use the assumption G is of type ADE. The instanton number is
defined via an invariant bilinear form on g. For almost simple groups, we normalize
it so that the square length of the highest root 8 is 2. If G is of type ADFE, instanton
numbers are preserved for fixed point sets, but not in general. See | , 2.1].
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exact sequence 0 - Fy — F — Ey — 0 compatible with the framing.
Here we merely assume FE;, FEy are torsion-free sheaves. Are Fy, Fj
locally free 7

Definition 6.2. Now we consider the hyperbolic restriction functor
pj' s DE(UE) — DY(UE) and denote it by ®7 ;. If groups are clear
from the context, we simply denote it by ®.

We have the following associativity of hyperbolic restrictions.

Proposition 6.3. Let (Q be another parabolic subgroup of G, contained
in P and let M denote its Levi subgroup. Let Q) be the image of Q) in
L and we identify M with the corresponding Levi group. Then we have
a natural isomorphism of functors

YL 0 B o = DY
Proof. 1t is enough to show that
Up Xya UG, = US.
This is easy to check. See | , 4.16]. O

6(ii). Exactness. For a partition A, let S\C? be a stratum of a sym-
metric product as before. Let Stab(\) = S,, X Sa, X ... if we write
A= (1712%2 ). We consider an associated covering

(C3) % (€)% x -\ diagonal = 5(C?).

Let p be a simple local system over SyC? corresponding to an irreducible
representation of Stab(\).
We consider the following class of perverse sheaves:

Definition 6.4. Let Perv(U¢) be the additive subcategory of the abelian
category of semisimple perverse sheaves on U¢, consisting of finite di-
rect sum of IC(Bun? x5, (C?),1 KX p) for various d’, X, p.

Here we consider the stratification of U¢ as in (1.2):

U= | | Bunj xS)\(C?).

d=|\|+d’

It is the restriction of the stratification (1.2) to UZ.

Let us explain why we need to consider nontrivial local systems,
even though our primary interest will be on IC(UZ): When we analyze
IC(UZ) through hyperbolic restriction functor, IC sheaves for nontriv-
ial local systems occur. This phenomenon can be seen for type A as
follows. B

Let us take the Gieseker space U? and consider the hyperbolic re-
striction for a chamber C for the T-action. By Corollary 4.11(2), we
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have p,j'm.(Cqq) = my (Cgayr), where (UHT is the fixed point set and

T (UNHT — (UDT is the restriction of 7. The fixed point sets are
given by Hilbert schemes and symmetric products, and 77 factors as

UH" = || (@) x .. x (C)]

di+-+dr=d
T | ]S x - x SPCE S ShC? = (U

where  is the ‘sum map’, defined by k(C4,---,C.) = Cy +--- + C,
if we use the ‘sum notation’ for points in symmetric products, like
r1+ x9 + - - - + x4. The pushforward for the first factor 7 x - -+ x 7 is

P Goo¥ Rl

AL A =d

by discussion in §2(iii), where A, ..., A" are partitions. Therefore
we do not have nontrivial local systems. But x produces nontrivial
local systems. Since k is a finite morphism, in order to calculate its
pushforward, we need to study how k restricts to covering on strata.
For example, for A = (17), d; = dy = --- = d, = 1, it is a standard
S,-covering (C?)" \ diagonal — S(;n)(C?).

We have the following

Theorem 6.5. ®F , sends Perv(UE) to Perv(Uf).

By the remark after Theorem 4.9 we know that ®7 , send Perv(4g)
to semisimple complexes. From the factorization, it is more or less
clear that they must be direct sum of shifts of simple perverse sheaves
in Perv(U¢). Therefore the actual content of this theorem is the ¢-
exactness, that is shifts are unnecessary. For type A, it is a consequence
of Corollary 4.11.

For general GG, we use Theorem 4.15. The detail is given in |
Appendix A], and is a little complicated to be reproduced here. Let us
mention only several key points: By a recursive nature and the factor-
ization property of Uhlenbeck partial compactifications, it is enough
to estimate dimension of the extreme fibers, i.e., p~!(d - 0), p_'(d - 0)
n (4.14). Furthermore using the associativity of hyperbolic restriction
(Proposition 6.3), it is enough to prove the case L = T". In fact, we can
further reduce to the case of the hyperbolic restriction for the larger
torus T'x Cy . The associativity (Proposition 6.3) remains true for the
larger torus. Finally, we consider affine Zastava spaces, i.e., Uhlenbeck
partial compactificationss corresponding to moduli spaces of framed
parabolic bundles. In some sense, these spaces behave well, and we
have required dimension estimate there.
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6(iii). Calculation of the hyperbolic restriction.

(a). The space U?. Our next task is to compute ®7 ,(IC(Ug)). We
have two most extreme simple direct summands in it:

(a) ICUY),

(b) Csyy(c2)-
Other direct summands are basically products of type (a) and (b). Let
us first consider (a). Let us restrict the diagram (6.1) to Bun{. Note
that a point in p‘l(Bun%) is a genuine bundle, cannot have singulari-
ties, as singularities are equal or increased under p. Thus the diagram
sit in moduli spaces of genuine bundles as

p .
Bun? S Bun% % Bung, .

Then Bun$ is a vector bundle over Bun}. This can be seen as fol-
lows. For F € Bunf, the tangent space T Bun%, is H*(P?, gr(—(s)),

where gr is the associated bundle F x¢ g. If F € Bun{, we have the
decomposition

H1<P279}'(_£OO))
> HI (2, (r(~ L)) @ H' (B, wh(—()) @ H' (P, nz(~L.0)),

according to the decomposition g = [&nt @®n~. Here n' is the nilrad-
ical of p, and n~ is the nilradical of the opposite parabolic. The first
summand gives the tangent bundle of Bun}. Thus the normal bundle
is given by sum of the second and third summands. Moreover, the
second and third summands are Leaf and Leaf™ respectively.

Therefore we have the Thom isomorphism p, j!CBung = Cpyne- It
extends to a canonical isomorphism

Hom(IC(Bun?), p,j' IC(UZ)) = C.

In other words, we have p~(y3) N Xj in Theorem 4.15 is the fiber of the
vector bundle Bun} — Bun{, hence we have the canonical isomorphism
Hgim X —dim v; (p~Hys N Xo)y = C, given by its fundamental class.

On the other hand, the multiplicity of the direct summand CS( 2(C2)

of type (b) has no simple description. Therefore let us introduce the
following space:

def.
Ul = Ug:g = Hom(cs(d)(c2)7q)f,G(IC(Ug)))-

Thus U? ® Cs4(c2) is the isotropic component of 7 (ICUE)) for
Cs(d)((c2).
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From the factorization, we have the canonical isomorphism
oF AICUE) = @ IC(Bung xS8\(C?), (U & (U*)**? @),
d=|\|+d’
where A = (1212°2 .. .) and (U')®* @ (U?)®*2 @ - - - is a representation
of Stab(A\) = S,, X Sa, X - . Though (U')®** @ (U?)®*2®- - may not
be irreducible, it is always semisimple. We understand the associated
[C-sheaf as the direct sum of IC-sheaves of simple constitutes.

If we take the global cohomology group, contributions of nontrivial
local systems vanish. (See | , Lemma 4.31].) Therefore

P Hi(@7 (1CWUE)) = P Hi(IC(Bung)) @ Sym (U @ U & -+ ).

(b). Affine Grassmannian for an affine Lie algebra. By [ , 4.39],
we have
dim U? = rank G — rank[L, L],
in particular dim U? = rank G if L = T'. This result was proved as
(1) a reduction to the case L = T via the associativity (Proposi-

tion 6.3),
(2) a reduction to a computation of the ordinary restriction to
S(ayA? thanks to a theorem of Laumon | ], and

(3) the computation of the ordinary restriction to SigA® in | :
Theorem 7.10].

Instead of explaining the detail of this argument, we explain the re-
sult in view of the double affine Grassmannian proposed by Braverman-
Finkelberg | | in the remainder of this subsection. For this purpose,

it is more natural to drop the assumption G is of type ADE.
>Ro3kskoskoskoskoskosk sk sk skoskoskoskosk sk sk sk skoskoskoskosk sk skoskoskoskoskokosk sk skoskoskoskoskokosk sk skoskokoskoskok sk skoskokokoskokok sk skoskoskoskosk

By | , Prop. 12.13] we have
multr .y (Ao — k0) = p?(k),

> Rt =] —gn) ™

k>0 n>1
Moreover multnd = ¢ if g = Xél) where X is of type ADE (hence
g'=g0)."

where

13 Suppose g = Xél) where X is of type BCFG. Let rV be the lacing number
of g, i.e., the maximum number of edges connecting two vertices of the Dynkin
diagram of g (and g¥). Then multnd = ¢ if n is a multiple of r, and equals to
the number of long simple roots in the finite dimensional Lie algebra X, otherwise.
Explicitly ¢ — 1 for By, 1 for Cy and G, and 2 for Fy. See | , Cor. 8.3].
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