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Introduction

A Riemannian metric g on a manifold is called an Einstein metric, if its Ricci
curvature is a constant multiple of g, i.e., Ric = kg for some constant k. Someone
says that it is an equation for the space-time in the relativity, so quite important.
However it seems difficult to understand the meaning of this definition itself at
first sight. We know its importance only by experiences of seeing that Einstein
metrics appeared in many fields of differential geometry. For example, if you read
the book by Besse [Be], you know how many fields relate to Einstein metrics. One
of the most important results is the existence of Einstein-Kähler metric obtained
by Aubin [Au] and Yau [Ya] (shown by Yau when c1 = 0, and by Aubin and Yau
independently when c1 < 0). The result had many applications to the algebraic
geometry. Recently in works by Narashimhan-Seshadri [NaSe], S.Kobayashi [Kos],
Lübke [Lü], Donaldson [Do1, 2], Uhlenbeck-Yau [UY] and others, it was pointed out
that an Einstein-Hermitian metric, which is a counterpart of the Einstein-Kähler
metric in the gauge theory, has a close relationship with stable holomorphic vector
bundles on Kähler manifolds. By their results it becomes possible to study the
moduli space of holomorphic vector bundle from the differential geometric view
point. (See the textbook by Siu [Si].)

It is believed that Einstein-Kähler metrics also relate to the moduli space of
complex structures. Then it is natural to consider its compactification. Ander-
son [An1] and Bando-Kasue-Nakajima [BaKaNa1] obtained a convergence theorem
for Einstein metrics when the manifold is 4-dimensional. We used the theory of
the Hausdorff distance, which is introduced by Gromov, and developed by many
peoples. (It should be noticed that our result is motivated by the study of a degen-
eration of K3 surfaces by R.Kobayashi-Todorov [KorTo].) In particular, we obtain
a compactification of the moduli space when the Ricci curvature is positive, and a
completion when nonpositive. As a limit we get a space called an orbifold, which
is not a manifold.

From the analytic point of view regarding the Einstein metric as a solution of
PDE, one can find many cousins of the convergence theorem in other nonlinear
PDE’s of elliptic type which have the “the scaling invariance”. In these problems,
the Palais-Smale condition (C) does not hold, i.e., there may not exist a convergent
subsequence in a given sequence of solutions with bounded energy. But one can
show that solutions converge outside a finite set thanks to the scaling invariance.

1This is a joke by B&O. “Bakana” means foolish in Japanese !
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One can find examples in Sacks-Uhlenbeck [SaUh], Uhlenbeck [Uh], Sedlacek [Se],
Brezis-Coron [BrCo], Bahri-Coron [BaCo], and so on.

As a bi-product of the convergence theorem, there appears naturally a family of
noncompact Ricci-flat manifold, called ALE spaces. (It corresponds to a “bubble”
in the case of harmonic maps or Yang-Mills connections.) The ALE stands for
asymptotically locally Euclidean and means that the metric approximates the stan-
dard metric on R4/Γ in the end. The ALE spaces with hyper-Kähler structures al-
ready appeared in the very different context. Physicists, Eguchi-Hanson [EgHa] and
Gibbons-Hawking [GiHa] constructed ALE spaces corresponding to cyclic groups.
On the other hand, Hitchin [Hi] constructed the same space by using the twistor
method. His construction suggested us a relationship to a deformation theory of
the simple singularity C2/Γ. Thus he conjectured that there exist similar spaces
corresponding to other finite subgroup of SU(2) (i.e., the binary polyhedral groups).
This conjecture was solved affirmatively by Kronheimer using the method called
hyper-Kähler quotients. His construction gives a hyper-Kähler structure on each
fiber of the semi-universal deformations and their simultaneous resolutions, which
were constructed by Brieskorn [Br] and Slodowy [Sl] by using nilpotent varieties of
Lie algebras.

ALE spaces with hyper-Kähler structures can be considered as analogues of K3
surfaces in several points. The author [Na2] studied the moduli space of anti-self-
dual connections motivated by the study of stable holomorphic vector bundles over
K3 surfaces by Mukai [Mu]. The moduli space has a hyper-Kähler structure, and
becomes again an ALE space when its dimension is 4. But the base space and the
moduli space are not homeomorphic to each other in general, in contrast with the
case of K3 surfaces. This result was further developed by Kronheimer-Nakajima
[KrNa]. We gave an analogue of the ADHM construction for the anti-self-dual
connections on S4. Our theory relates to the representations of quivers on the
extended Dynkin diagrams. All these results show us the richness of the geometry
of ALE spaces.

In this article we shall explain about the above results, but we cannot write
about moduli spaces of anti-self-dual connections because of limitations of space. I
hope other occasion. In §1, we shall introduce the convergence theorem. In §2, we
shall see how ALE spaces bubble off. Then in §3, we shall explain the construction
of ALE spaces with hyper-Kähler structures. You can read §3 independent of
the previous sections, though §2 depends on §1. The statements of theorems are
analytic, but we must use the languages of the algebraic geometry to give examples.
Please read only the part which the reader has an interest.

1. A convergence theorem for Einstein metrics

As we said in the introduction, the Einstein metric is a solution of a PDE de-
scribing the space-time. Here we consider a sequence of Einstein metrics and study
its convergence. This means that we study the situation when the space-time is
changing and broken. Such convergence theorems appear very often in the study
of elliptic partial differential equations, and actually our convergence theorem is
strongly motivated by Sacks-Uhlenbeck’s theorem on harmonic maps [SaUh] and
Uhlenbeck’s compactness theorem for Yang-Mills connections [Uh1, 2]. So we first
recall the case of harmonic maps, which seems simplest, then proceed to the case
of Einstein metrics.
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Theorem 1.1 [SaUh]. Let (X, g) be a compact 2-dimensional Riemannian mani-
fold, and let (M,h) be a compact Riemannian manifold of arbitrary dimension. Let
{fi:X → M} be a sequence of harmonic maps with

E(fi)
def.
=

∫
X

|dfi|2dVg ≤ E < ∞,

where E is a positive constant independent of i. Then there exists a subsequence
{j} ⊂ {i} satisfying the following properties:

(1) There exists a finite set S = {x1, . . . , xk} in X such that fj converges to a
map f∞ in C∞

loc(X \ S).
(2) The limit map f∞:X \ S → M extends smoothly to the whole space X.

The second statement is deduced from the following removable singularities the-
orem.

Theorem 1.2 [SaUh]. Let D be the 2-disk. If a harmonic map f defined over
D \ {0} satisfies ∫

D\{0}
|df |2 < ∞,

it extends smoothly across the singularity.

Now give an example of convergence. Take the Riemann sphere S2 = C ∪ {∞}
for both (X, g) and (M,h), and consider the sequence of rational functions given by
{fi(z) = iz}2. The energy E(fi) is independent of i. When i goes to infinity, fi(z)
converges to ∞ if z ̸= 0, but fi does not converge uniformly in the neighbourhood
of 0. The limit is the constant map, so of course extends to the whole space S2.

If we consider the energy density |dfj |2dV as a measure on X in Theorem 1.1, it
converges to

|df∞|2dV +
∑
x∈S

axδx,

where δx is the Dirac measure at x and ax is a positive constant. That is to say,
the energy density becomes concentrated around S and goes to the Dirac measure
in the limit. (Remark: We have a similar result when the dimension of X is greater
than 2. But the singular set S becomes n− 2-dimensional, where n = dimX.)

When the target manifold is isometrically embedded in the Euclidean space, the
harmonic map equation can be written as ∆f+Π(df, df) = 0, where Π is the second
fundamental form. It is a non-linear elliptic PDE of second order and the Euler-
Lagrange equation for the energy functional. When we study analytic aspects of
the harmonic map equation, it is natural to introduce the function space3 W 1,2.
It is quite essential in the proof of Theorem 1.1, especially for the finiteness of the
singular set, that the p = 2 is the critical exponent in 2-dimension. (Here we say
p is the critical exponent, if any function in the Sobolev space W 1,q is continuous
if q > p, but not continuous when q = p.) It is also important that the harmonic

2A holomorphic map between Kähler manifolds is harmonic. In fact, it gives a minimum of
the energy in its homotopy class.

3

W 1,p def.
= {f |

∫
X

|f |pdV +

∫
X

|df |pdV < ∞}
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map equation has the ‘scaling invariance’ in 2-dimension. For an Einstein metric
g on a 4-manifold X, the counterpart to the energy for the harmonic map is the
square of the L2-norm of the full curvature tensor∫

X

|Rg|2dVg.

(In fact, the Einstein metric gives the minimum of this functional defined on the
set of metrics on X.) The curvature tensor is given by the second order differential
of the metric, so one must use W 2,2 as the function space. In 4-dimension, the
exponent p = 2 has a similar property as above concerning W 2,q. So it is natural
to expect a similar convergence theorem. Actually we have the following:

Theorem 1.3 [An1, Na1, BaKaNa]. Let {(Xi, gi)} be a sequence of pairs of 4-
dimensional compact manifolds and Einstein metrics with

Ric gi = kgi, diam(Xi, gi) ≤ D, vol(Xi, gi) ≥ V, the Euler number of Xi ≤ R,

where k, D, V , R is constants independent of i. We also assume that k is normal-
ized to be 0 or ±1. Then there exists a subsequence {j} ⊂ {i} with the following
properties:

(1) {(Xj , gj)} converges to a compact metric space X∞ in the following sense4:
If we remove a finite set S = {x1, . . . , xk} from X∞, a C∞-manifold structure and
an Einstein metric g∞ are defined over there. There exists a diffeomorphism Fj

from X∞ \S into Xj such that F ∗
j gj converges to g∞ in the C∞

loc(X∞ \S)-topology.
(2) The manifold structure and the Einstein metric g∞ on X∞ \ S extends to

the whole X as an orbifold structure and an orbifold Einstein metric.

We mean the orbifold structure and the orbifold metric in the following sense:
(a) X∞ \S is a C∞-manifold and the restriction of g∞ is a Riemannian metric.
(b) For each singular point xn, there exists a neighbourhood Nn such that

Nn \ {xn} is diffeomorphic to B4 \ {0}/Γ, where B4 is a 4-dimensional unit ball
and Γ is a finite subgroup of O(4) acting freely on B4 \ {0}. And if we pull back
the metric g∞ to B4 \ {0}, it extends smoothly across the singular point 0. (Γ may
depends on the singular point xn.)

As in the case of harmonic maps, we have the removable singularities theorem,
but we omit the statement because the conditions are complicated.

The same result under the further assumption on the lower bound of the injectiv-
ity radius was independently obtained by Gao [Ga]. In this case, S is an empty set,
and the situations like example 1.5 given later do not appear under his assumption.

Remark 1.4. Since we do not give the proof of Theorem at all, the reader may
be difficult to understand the meaning of the conditions. The conditions are used
to derive the estimates of the isoperimetric constants, are indispensable to obtain
the a priori estimates for curvatures. From a position of the user of theorem, the
conditions are quite natural as:

(1) The assumption k to be 0 or ±1 is always satisfied if you multiply the metric
by an appropriate positive constant. So this condition is not essential.

4In fact, the convergence is with respect to the Hausdorff distance introduced by Gromov. We
do not talk about the Hausdorff distance here, but note that the recent development of the theory

of the Hausdorff convergence is quite essential in the proof of Theorem 1.3.
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(2) When k = 1, the condition diam(Xi, gi) ≤ D follows from Myers’ theorem.

(3) For a 4-manifold admitting an Einstein metric, the Euler number is given by
the (universal) constant multiple of the square integral of the curvature tensor.

(4) The assumption dimXi = 4 is not come from the fact the dimension5 of
the space-time is equal to 4. It comes from the technical reason. In higher dimen-
sion, the author conjectures that the sequence converges outside a singular set of
codimension 4 if the L2-norm of the curvature is uniformly bounded.

As in harmonic map case, the measure |Rgj |2dVgj is converges to

|Rg∞ |2dVg∞ +
∑
x∈S

axδx

in a certain sense. (Since the spaces are changing, the usual convergence does not
make sense.) The second term will be explained in the next section. Recall that
the curvature measures how the space curves. As j → ∞, the spaces bend around
S, and become singularities in the limit. But the singularities are quite simple as
finite quotients of manifolds. So it is nothing fearful !

We now give examples.

Example 1.5 (Page[Pa], R.Kobayashi-Todorov[KorTo]). Let X∞ be an orbifold
given by the Z/2Z-quotient of the complex 2-torus T = C2/Z4, where −1 ∈ Z/2Z
acts on T by

(z1, z2) mod Z4 7→ (−z1,−z2) mod Z4.

The flat metric on T descends to an orbifold metric g∞ on X∞, and it is an orbifold
Einstein metric. Moreover X∞ has a structure of a complex manifold (with singu-
larities) since the Z/2Z-action is holomorphic. Let us take the minimal resolution
π:X → X∞. The singularities are sixteen simple singularities of type A1. The
minimal resolution X is called a Kummer surface, and an example of K3 surfaces.
Let S = {x1, . . . , x16} be the singular set, and let E1, . . . , E16 be the exceptional
sets. These are complex submanifold of X biholomorphic to CP1 with the self-
intersection number −2. By the solution of the Calabi conjecture by Yau [Ya] we
have a unique Ricci-flat Kähler metric in each Kähler class6. Take a Kähler class,
so a Ricci-flat Kähler metric gi as follows:

(1) The volume of X with respect to gi is equal to 1.

(2) The volume of the exceptional set En is equal to 1/i for n = 1, . . . , 16.

It can be shown that the metric gi converges to π
∗g∞ overX\∪En, but the condition

(2) forces the metric becomes degenerated along En as i → ∞. Since X \ En is
diffeomorphic to X∞\S via the map π, this gives an example of Theorem 1.3. Note
that the limit object is (X∞, g∞), not π∗g∞. The limit metric π∗g∞ is degenerate
along En and the distance between two points in En becomes 0. Hence it is more
natural to collapse En to a point ! (See Figure 1.1.)

Figure 1.1. The behaviour of the metrics around the singular point x1

5I mean the dimension of the space-time in relativity, not in the superstring theory.
6An Einstein metric with Ric = 0 is called a Ricci-flat metric.
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The moduli space of polarized K3 surfaces (i.e., pairs of K3 surfaces and Kähler
classes with the volume 1) is known to be an open dense subset KΩ of

KΩ = Γ\SOo(3, 19)/SO(2)× SO(19),

where Γ is the group of automorphisms preserving the intersection form onH2(X;Z).
If we add singular K3 surfaces as above to the moduli space, we get the whole space
KΩ. Thus Theorem 1.3 gives a natural completion of the moduli space (see [KorTo,
An2] for detail).

Similarly by using the existence of Einstein-Kähler metric7 obtained by Aubin
and Yau, one can also give examples with k = −1. Consider a deformation of pro-
jective surfaces of general type π:X → ∆ such that Xt = π−1(t) satisfies c1(Xt) < 0
(namely the canonical bundle is ample) when t ̸= 0, and the central fiber X0 satis-
fies c1(X0) ≤ 0 (the canonical bundle is nef), but c1(X0) ≮ 0. When t ̸= 0, Xt has
a unique Einstein-Kähler metric, but X0 does not. The limit of the Einstein-Kähler
metric as t → 0 is the orbifold Einstein-Kähler metric on the canonical model of
X0, that is the surface obtained by collapsing all (−2)-curves in X0 (see Tsuji [Ts]).

When algebro-geometers talk about the “degeneration”, they also consider the
cases which are not covered by Theorem 1.3, namely the diameter of (Xi, gi) may
diverge. (For example, in the above case of K3 surfaces, consider a sequence which
corresponds a divergent sequence in KΩ.) We do not understand what happens
differential geometrically when the diameter goes to infinity. (But see the work of
R.Kobayashi [Kor1].) If we consider the moduli space of constant curvature metrics
on Riemann surfaces, the limit space is always smooth under the assumption on
the diameter. The stable curve does not appear ! On the other hand, when k = 1,
i.e., when we consider Einstein-Kähler metrics on del Pezzo surfaces8, the diameter
condition follows from Myers’ theorem as remark above, so the all conditions in
Theorem 1.3 are satisfied. Thus we get the following:

Corollary 1.6. Fix a underlying differentiable structure X of the del Pezzo surface
X. Let M(X ) be the moduli space of pairs of complex structures with c1 > 0 and
Einstein-Kähler metrics on them. Then adding orbifolds, we can compactify M(X ).

Consider only the complex structures, we have a natural map Φ from M(X ) to
the moduli space of complex structures H(X ). By Bando-Mabuchi’s uniqueness
theorem of Einstein-Kähler metric [BaMa], the map Φ is injective. In fact, Tian
proved the following:

Theorem 1.7 [Ti]. If the automorphism group of the del Pezzo surface X is re-
ductive9, X has an Einstein-Kähler metric. In other words, the map Φ is bijective
unless X is either one or two points blowing up of CP2.

The proof is given by showing that the image of Φ is nonempty, both open and
closed in H(X ). It is not so difficult to show the openness. The closedness is

7We say an Einstein-Kähler metric the Einstein metric which is Kählerian at the same time.
Then the first Chern class c1 of the manifold is given by k[ω] ([ω] denotes the Kähler class). In
particular, if the complex manifold has an Einstein-Kähler metric, it holds either c1 > 0, = 0, or

< 0.
8A complex surface X with c1(X) > 0 is called a del Pezzo surface. It is known that such a X

is either CP2, CP1 × CP1, or blowing up of CP2 at r generic points (1 ≤ r ≤ 8).
9Matsushima’s theorem says if a del Pezzo surface admits an Einstein-Kähler metric, its auto-

morphism group is reductive.

6



shown by using Theorem 1.3. Suppose that (Xi, gi) is a sequence in M(X ) and
Φ(Xi, gi) ∈ H(X ) converges. We want to show that (Xi, gi) also converges and it
holds

lim
i→∞

Φ(Xi, gi) = Φ( lim
i→∞

(Xi, gi)).

The difficulty relates to the Hausdorff-ness of the moduli space H(X ). If the jump-
ing of the complex structure would occur, one cannot expect the above equality.
Moreover the following problem is still open.

Problem 1.8. When does a del Pezzo surface with quotient singularities have an
Einstein-Kähler orbifold metric and lies in the boundary of the compactification of
the moduli space M(X ) given in Theorem 1.3 ?

The problem should relate to the Chow stability, but things are not clear yet.10

2. Bubbling out of ALE spaces

In order to study the convergence in more detail, we “blow up” the metrics
around the singular points by rescaling. This is a standard technique widely used
in problems of weak convergence. As before, first study the case of harmonic maps.

Let fj be a sequence of harmonic maps as in Theorem 1.1, and suppose that
fj does not converges at x, i.e., x ∈ S. Then |dfj(x)| goes to the infinity as
j → ∞. Take a normal coordinate system (x1, x2) defined on a neighbourhood
U of x. Let xj be a point at which |dfj | attains the maximum in U . We may
assume that {xj} converges to x. Define a new coordinate system by (y1, y2) =
(|dfj(xj)|x1, |dfj(xj)|x2) and change the metric as |dfj(xj)|2g. Remark that the
maximum of the energy density of fj in U is normalized to be 1 with respect to
the new metric. The neighbourhood {(x1, x2) | |x1|2 + |x2|2 < δ} of x is written
as {(y1, y2) | |y1|2 + |y2|2 < |dfj(xj)|2δ}, in the new coordinates, and converges to
{(y1, y2) ∈ R2} as j → ∞. The rescaled metrics converge to the standard metric

on R2. We regard the map fj defined on the y-plane, and denote by f̃j . Then the

energy of the f̃j is bounded from the above independent of j. Then one can apply

Theorem 1.1 to f̃j . In this case, we have a uniform bound on the energy density,
so the concentration of the energy does not happen and we get the following:

Theorem 2.1 [SaUh]. There exists a subsequence of {f̃j}, also denoted by {f̃j},
which converges to a harmonic map f̃∞ defined on the whole plane R2 with finite
energy.

Noticing that R2 and S2 \ {p} are conformal to each other, and that the energy
and the harmonicity are preserved under a conformal transformation, we can regard

f̃∞ as a finite energy harmonic map defined on S2 \ {p}. Then by the removable

singularities theorem, f̃∞ can be extended to the whole S2. Also note that f̃∞
depends on x ∈ S.

Let use the same technique in the case of Einstein metrics. Let {(Xj , gj)} be
a sequence of Einstein metrics as in Theorem 1.3, and take x ∈ S. The absolute
value of the curvature |Rgj | diverges to infinity at x. Let rj be the value of |Rgj |
at x. Since x is a point in X, not in Xj , we cannot talk about |Rgj | at x. Precisely

10There are progress to this problem after writing the original manuscript. See the references

added in translation.
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speaking, we mean |Rgj (xj)|, where xj is a point in Xj and {xj} converges to x ∈ X
in a certain sense (we do not give the precise meaning here to avoid the technical
complexity). Now we multiply the metric gj by rj . Then the absolute value of
the curvature of the new metric rjgj is normalized to be 1. This rescaling proce-
dure means “viewing by the microscope”. Since the curvatures become uniformly
bounded, we can expect the convergence of the manifolds. But the diameter goes
to infinity, so the limit space becomes a noncompact manifold. In fact, we have the
following:

Theorem 2.2 [Na1]. Consider the sequence {(Xj , rjgj , xj)} of the pairs of Rie-
mannian manifolds and points on it. There exists a subsequence, also denoted by
{(Xj , rjgj , xj)}, which converges11 to a complete Ricci-flat manifold (M,h, o) hav-
ing the following properties.

(1)

∫
M

|Rh|2dVh < ∞,

(2) volB(o; r) ≥ V r4 for some o ∈ M , V > 0,
where B(o; r) denotes the ball of radius r centered at o. More precisely, there exists
a diffeomorphism Gj from M to a neighbourhood of xj such that G∗

j (rjgj) converges
to h in C∞

loc(M).

We call these phenomena, such as a map from S2 being cut off from sequences of
harmonic maps, a part of the manifold being torn off in our case, “bubbling out”.

In the case of harmonic maps, one can regard the limit map f̃∞ as a map from
S2 through the conformal compactification of R2. The Einstein equation is not
preserved under the conformal transformation, so one cannot apply the removable
singularities theorem in the same way. However one can modify its proof to this
situation to show the following (in fact, the proof becomes more difficult).

Theorem 2.3 [BaKaNa]. If a 4-dimensional complete Ricci-flat manifold satisfies
the conditions (1) and (2) in Theorem 2.2, then it is ALE of order 4.

We say a 4-dimensional Riemannian manifold to be ALE of order τ if there exists
a compact set K ⊂ X and a finite subgroup Γ ⊂ SO(4) and a diffeomorphism
(coordinates at infinity) X:X \K → (R4 \ BR)/Γ such that the following holds in
the coordinates X:

|
p times︷ ︸︸ ︷
∂ · · · ∂(gij(x)− δij)| = O(|x|−p−τ ) for x ∈ (R4 \BR)/Γ, p = 0, 1, 2, 3, · · · .

In the orbifold, the distance sphere around the singular point of sufficiently small
radius is diffeomorphic to S3/Γ, and the distance sphere of sufficiently large radius
is diffeomorphic to S3/Γ in the ALE space. Thus one can understand the ALE
space is the counterpart to the orbifold in the category of noncompact manifolds.

Remark 2.4. One cannot drop the condition (2) in Theorem 2.3. There exists a
Ricci-flat Kähler metric, called the Taub-NUT metric, defined on C2. This metric
has an asymptotic behaviour called ALF, and the volume of ball of radius r grows
as O(r3) (see [EGH]). We do not have examples of Ricci-flat manifolds satisfying
the condition (2) but not satisfying (1).

11with respect to the pointed Hausdorff convergence
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See what happens in Example 1.5. Take a point yn in an exceptional set En in
X which corresponds to a singular point xn in X∞. If the value of |Rgi | at yn is
equal to ri, (X, rigi) converges to an ALE Ricci-flat Kähler manifold (M,h). This
M is called the Eguchi-Hanson space and biholomorphic to a cotangent bundle
T ∗CP1 of the complex projective line. (T ∗CP1 is the minimal resolution of the
simple singularity of type A1. The exceptional set is the zero section.) In this case
the limit space is independent of n. In general, when K3 surfaces degenerate to an
orbifold with simple singularities, one can obtain a Ricci-flat Kähler metric on the
minimal resolution of each singularity in the same way (see [Kor2]).

In Theorem 2.2, 2.3, we rescale the metric so that the curvatures are uniformly
bounded. We lose some informations and need more detailed studies in general.
This is because several ALE spaces may blow up from one singular point x ∈ S ⊂
X∞. An accurate version of the convergence theorem which includes the above
situations was obtained by Bando [Ba]12. In order to explain his result, we need
some terminology and symbols. We say an orbifold metric is ALE when there is
no singular set outside a compact set, and there exists a coordinate system X at
infinity as usual ALE Riemannian manifolds. For such an ALE orbifold (M,h), we
denote by S(M) the set of singular points. By definition, S(M) is a finite set. We
denote by xn

j the point in Xj which converges to the singular point xn in X∞ in
the same sense as before. (See the explanation above Theorem 2.2).

We see a neighbourhood of xn
j by a microscope. In this case, we set the magni-

fication rj so that ∫
B(xn

j ;R)\B(xn
j ;

1√
rj

)

|Rgj |2dVgj = ε,

where ε, and R is a (sufficiently small) positive constant. Here B(x; r) denotes the
metric ball of radius r centered at x. The similar convergence theorem as 1.3 can
be applied to the magnified Riemannian manifold (Xj , hj) = (Xj , rjgj). Since we
have ∫

B(xn
j ;

√
rjR)\B(xn

j ;1)

|Rhj |2dVhj = ε

in this case, the concentration of the curvatures does not happen in B(xn
j ;
√
rjR) \

B(xn
j ; 1), hence the limit (M,h) of (Xj , hj) is an ALE orbifold which does not

have singularities outside the ball of radius 1. If we want to know the situation
of the convergence, we apply the same argument to (Xj , hj) in stead of (Xj , gj).
Namely, we multiply hj again around a singular point of (M,h). This means the
magnification is reset bigger. We make the magnification bigger as a singular point
occur in the limit ALE Ricci-flat orbifold in this way, then finally no singular points
appear and the procedure ends in the finite step. We adjust the following form.
The statement becomes complicated, so we give the figure 2.1 which describe the
circumstances.

Figure 2.1

12This paper was dedicated to the late cartoonist Osamu Tezuka.
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Theorem 2.5 [Ba]. (1) In the same notation as in Theorem 1.3, (taking a further
subsequence {j} ⊂ {i} if necessary), there exist a family of pointed ALE Ricci-
flat orbifolds and sequences of positive numbers which has a recursive relation as
follows:

1 There exist a pair (Mn, hn, on) of an ALE Ricci-flat orbifold and a point
corresponding to each singular point xn ∈ S in X∞ (n = 1, 2, · · · ,#S) and a
divergent sequence {rnj }j=1,2,··· of positive numbers such that

lim
j→∞

(Xj , r
n
j gj , x

n
j ) = (Mn, hn, on).

Here lim is the convergence in the sense as in Theorem 2.2. Moreover the funda-
mental group of the end of Mn and the group corresponding to the singular point
xn are isomorphic and their actions on R4 are the same.

k − 1 ⇒ k Suppose that ALE Ricci-flat orbifold Mn1,n2,··· ,nk−1 is defined and

has a singular point yn1,n2,··· ,nk ∈ S(Mn1,n2,··· ,nk−1) (nk = 1, 2, · · · ,#S(Mn1,n2,··· ,nk−1)).
There exist a pair (Mn1,n2,··· ,nk , hn1,n2,··· ,nk , on1,n2,··· ,nk) of an ALE Ricci-flat orb-
ifold and a point, a sequence {rn1,n2,··· ,nk

j }j=1,2,··· of positive numbers, and a se-

quence {xn1,n2,··· ,nk

j }j=1,2,··· of points in Xj such that

lim
j→∞

(Xj , r
n1,n2,··· ,nk

j gj , x
n1,n2,··· ,nk

j ) = (Mn1,n2,··· ,nk , hn1,n2,··· ,nk , on1,n2,··· ,nk),

lim
j→∞

rn1,n2,··· ,nk

j

r
n1,n2,··· ,nk−1

j

= ∞.

Moreover the fundamental group of the end of Mn1,n2,··· ,nk and the group corre-
sponding to the singular point yn1,n2,··· ,nk are isomorphic and their actions on R4

are the same.
(2) This recursive procedure ends in a finite step, namely the ALE orbifold

Mn1,n2,··· ,nk becomes nonsingular for some k. Moreover for the sufficiently large j
and sufficiently small R, the ball B(Xn

j ;R) is diffeomorphic to a manifold which is
obtained from Mn1,n2,··· ,nk \ S(Mn1,n2,··· ,nk)’s with n1 = n by attaching a neigh-
bourhood of yn1,n2,··· ,nk and the end of Mn1,n2,··· ,nk .

(3) The measure |Rgj |2dVgj converges to

|Rg∞ |2dVg∞ +

#S∑
n=1

anδxn ,

where an is given by

an =
∑
(M,h)

∫
M

|Rh|2dVh.

Here the summation runs over the set of ALE orbifolds (M,h) = (Mn1,n2,··· ,nk , hn1,n2,··· ,nk)
with n1 = n.

For a compact Einstein 4-manifold, the L2-norm of the curvature gives its Euler
number. For an ALE Einstein manifold (M,h) we have

1

8π2

∫
M

|Rh|2dVh = the Euler number of M − 1

the order of Γ
.

(There are similar formulae for compact orbifolds and ALE orbifold.) We have the
following. (For the definition of hyper-Kähler structure, see Sect. 3.)
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Proposition 2.6. Under the same situation as in Theorem 1.3, suppose that
(Xi, gi) has a Kähler (resp. hyper-Kähler) structure. Then the limit space (X∞, g∞)
and the space (Mn1,n2,··· ,nk , hn1,n2,··· ,nk) appeared in Theorem 2.5 also have a Kähler
(resp. hyper-Kähler) structure in the sense of orbifolds.

3. ALE spaces with hyper-Kähler structures

As we said in the previous section, the ALE spaces bubble out when Einstein
metrics degenerate to an orbifold metric. In this way, one obtain existence of ALE
spaces. In this section, we shall give a more concrete way to give ALE spaces
with hyper-Kähler structures. This is a result by Kronheimer [Kr1, 2]. His result
is closely related to the theory of simple singularities. A simple singularity is a
quotient space C2/Γ, where Γ is a finite subgroup of SU(2), and has been studied
for a long time. The classification is known, and it can be realized as a complex
hypersurface in C3. The dual graph of the exceptional set of its minimal resolution is
a Dynkin graph with no double edges (i.e., of type A, D, E). (See the table below.)
By the theory of Brieskorn [Br] and Slodowy [Sl], one can construct the simple
singularity using nilpotent varieties of the corresponding simple Lie algebra. One
can also describe the semi-universal deformation and its simultaneous resolution
in terms of the Lie algebra. Kronheimer succeeded to construct these varieties
using so called quivers. Moreover his construction also showed that each fiber has
a hyper-Kähler structure.

root
system group Dynkin graph hypersurface

An the cyclic group of order n+ 1 ◦−◦−◦−· · ·−◦ xn+1 + yz = 0

Dn
the binary dihedral group

of order 4(n− 2) ◦−◦−· · ·−◦⧸◦⧹◦ x2 + y2z + zn−1 = 0

E6 the binary tetrahedral group ◦−◦−◦|
◦
−◦−◦ x2 + y3 + z4 = 0

E7 the binary octahedral group ◦−◦−◦|
◦
−◦−◦−◦ x2 + y3 + yz3 = 0

E8 the binary icosahedral group ◦−◦−◦|
◦
−◦−◦−◦−◦ x2 + y3 + z5 = 0

A hyper-Kähler structure on a Riemannian manifold (M, g) is, by definition, a
triple of almost complex structures (I, J,K) which satisfies a quaternion relation
IJ = −JI = K and is parallel with respect to the Levi-Civita connection of g,
i.e., ∇I = ∇J = ∇K = 0. We call a Riemannian manifold with a hyper-Kähler
structure simply the hyper-Kähler manifold. The holonomy group of a hyper-
Kähler manifold is contained in Sp(n), where n = 1

4 dimM . Each almost complex
structure I, J , or K defines a Kähler structure on (M, g). When the manifold
is 4-dimensional and simply-connected, a hyper-Kähler structure is nothing but a
Ricci-flat Kähler structure thanks to the isomorphism Sp(1) = SU(2). For example,
a Ricci-flat Kähler metric on a K3 surface gives us a hyper-Kähler structure. Taking
a particular almost complex structure I and regarding (M, g) as a Kähler manifold,
we have a nowhere vanishing closed (2, 0)-form ωJ+iωK , where ωJ (resp. ωK) is the
Kähler form associated with J (resp. K). Namely we have a holomorphic symplectic
form. Conversely if a compact Kähler manifold has a holomorphic symplectic form,
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there exists a Ricci-flat Kähler metric by the solution of Calabi conjecture, and
hence there exists a hyper-Kähler structure.

On the other hand, Hitchin et al. [HKLR] introduced a notion of hyper-Kähler
quotients which is an analogue of Marsden-Weinstein quotients for symplectic mani-
folds, therefore gave a different method to construct hyper-Kähler manifolds. Recall
their result.

Suppose that a Lie group G acts on a hyper-Kähler manifold (M, g, I, J,K)
preserving the hyper-Kähler structure. Let denote the Lie algebra of G by g, and
its dual space by g∗. G acts on g∗ by the coadjoint action. A G-equivariant map
µ = (µI , µJ , µK):M → R3 ⊗ g∗ is said to be a hyper-Kähler moment map if we
have

I grad⟨µI , ξ⟩ = J grad⟨µJ , ξ⟩ = K grad⟨µK , ξ⟩ = ξ∗

for any ξ ∈ g. Here ⟨ , ⟩ is a natural pairing between g and g∗, and ξ∗ is a vector
field generated by ξ. Let define

Z = {z ∈ g∗ | Ad∗g(z) = z for any g ∈ G.}

Then µ−1(ζ) is invariant under the G-action for ζ ∈ R3 ⊗ Z. So we can consider
the quotient space Xζ = µ−1(ζ)/G.

Theorem 3.1 [HKLR]. Suppose that the G-action on µ−1(ζ) is free. Then the
quotient space Xζ is a C∞ manifold and has a Riemannian metric and a hyper-
Kähler structure induced from those on M .

As an application of the above hyper-Kähler quotient construction, we give ALE
spaces. Fix a root system of type A, D, or E. Let θ1, . . . , θr be its simple root. Let
θ0 = −

∑
i niθi be the negative of the highest root. Set n0 = 1 for convenience.

Draw the extended Dynkin diagram, and put a complex vector space of dimension
ni on each vertex i. Consider linear maps fij :Cnj → Cni and fji:Cni → Cnj when
the vertices i and j are joined by an edge. See the figure for D5.

Figure 3.1

Let M be the linear space of all such linear maps fij . Put a hermitian metric
on each Cni and also the induced metric on M . To make M a quaternion vector
space, we introduce J as follows. For joined vertices i and j, we have two linear
maps from Cni to Cnj and Cnj to Cni . Choose one of them and fix henceforth.
When i → j is chosen, we define J by

J(fij , fji) = (−f∗
ji, f

∗
ij),

where ∗ means the adjoint. Then J satisfies J2 = −1 and is anti-linear with respect
to the complex structure. Hence M has a structure of quaternion vector space.
There is a natural action on M of a Lie group G =

∏
i̸=0 U(Cni)13 This action

preserves the metric and quaternion linear. Let µ be the hyper-Kähler moment
map vanishing at the origin, which exists uniquely. Let Z be as above, and take
ζ ∈ R3 ⊗ Z. Then the space Xζ = µ−1(ζ)/G has a hyper-Kähler structure on its
nonsingular part. More precisely Kronheimer showed the following:

13The action of
∏

U(Cni ) is not appropriate, since c Id ∈
∏

U(Cni ) fixes any element in M .
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Theorem 3.2 [Kr1]. For a generic ζ, the G-action on µ−1(ζ) is free and the
quotient space Xζ is a nonsingular 4-dimensional hyper-Kähler manifold. Moreover
Xζ is diffeomorphic to a minimal resolution of C2/Γ and the metric is ALE.

He had a precise description of Xζ even for non generic ζ, for example, Xζ =
C2/Γ if ζ = 0. Write ζ = (ζI , ζJ , ζK), and consider the following family of spaces
with ζI = 0 ∪

ζJ+iζK∈C⊗Z

X(0,ζJ ,ζK)

and the natural projection to C ⊗ Z. Then it is a semi-universal deformation of
C2/Γ pulled back to the Weyl group covering. For generic ζI , one can define a
holomorphic map

X(ζI ,ζJ ,ζK) → X(0,ζJ ,ζK),

which is a simultaneous resolution of singularities. When a sequence of generic
parameters converges to a non generic parameter, corresponding Einstein metrics
converges to an ALE orbifold as in §§1,2.

The geometric meaning of the parameter ζ can be explained in terms of period
maps. The exceptional set of the resolution of C2/Γ is a union of CP1’s and their
intersection matrix is −1 times Cartan matrix of the corresponding Lie algebra.
Then for generic ζ, one can identify H2(Xζ ;R) with the Cartan subalgebra h, and
an element Σ in H2(Xζ ;Z) with Σ·Σ = −2 corresponds to a root. The set (R3⊗Z)◦

of generic ζ is simply-connected, so the local system H2(Xζ ;R) can be trivialized.
So taking cohomology classes of three Kähler forms ωI , ωJ , ωK on Xζ , we can
define a period map

P : (R3 ⊗ Z)◦ → R3 ⊗ h.

Then Kronheimer showed that P is induced from an isomorphism between Z and
h, and ζ ∈ R3 ⊗ Z is generic (i.e., Xζ is smooth) if and only if

P (ζ) /∈
∪
θ

R3 ⊗ πθ,

where πθ is a hypersurface defined by the root θ.
He also showed the following classification theorem:

Theorem 3.3 [Kr2]. An ALE spaces with a hyper-Kähler structure is isomorphic
to the one constructed by the above construction.

As above, the ALE space is well-understood when it has a hyper-Kähler struc-
ture. But it seems also important to study the spaces with Kähler structures in
conjunction with the algebraic geometry. In this case the ALE space is a cyclic
quotient of the ALE space with hyper-Kähler structure [Ba]. Using the above
classification theorem and an argument in [Ti], we can show the following:

Theorem 3.4. Let (X, g) be a nonsingular ALE Ricci-flat Kähler 4-manifold.
Then the one of the followings holds.

(1) (X, g) has a hyper-Kähler structure compatible with the Kähler structure.

(2) (X, g) is a quotient of an hyper-Kählerian ALE space X̃ of type An by the
cyclic group Z/rZ. And n+ 1 is a multiple of r.

13



As we saw in §§1,2, an ALE space with a Kähler structure bubbles out when
Einstein-Kähler metrics converges to an orbifold. For example, consider a defor-
mation of algebraic surfaces π:X → ∆ and suppose that Xt = π−1(t) has an
Einstein-Kähler metric gt when t ̸= 0. If the diameter of (Xt, gt) is estimated from
the above independent of t, the convergence theorem gives us an Einstein-Kähler
orbifold as a limit. The above theorem together with the relation between the sin-
gularity and the bubbling off ALE spaces, the singularity of the orbifold must be a
simple singularity or a cyclic quotient of a simple singularity of type An. Strikingly,
the similar result is obtained by using the minimal model theory (see Kawamata
[Ka]). If the total space X has only terminal singularities and the central fiber X0

has only orbifold singularities, then the singularities in the central fiber are of type
just mentioned.

At the last, we give the following problem:

Problem 3.5. Are there ALE Ricci-flat 4-manifolds without Kähler structures ?

We do not have such examples at this moment.
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