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1994 Seiberg-Witten computed the prepotential of N = 2
SUSY YM theory (physical counterpart of Donaldson

invariants) via periods of Riemann surfaces (SW curve).

1997 Moore-Witten computed Donaldson invariants (blowup

formulas, wall-crossing formulas...) via the SW curve.

2002 Nekrasov introduced a partition function ~ ‘equivariant’

Donaldon invariants for R4

2003 Seiberg-Witten prepotential from Nekrasov’s partition
function (Nekrasov-Okounkov, N-Yoshioka)
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Aim of this talk'

Study Nekrasov’s partition function for 5d. gauge theory = the

K-theoretic version

It should be related to the K-theoretic Donaldson invariants,
indices of Dirac operators on instanton moduli spaces. Not

defined for general 4-manifolds yet. But we have some

nontrivial examples of calculations (— Go6ttsche’s talk)

Hope : Our study of moduli spaces on blowup may be useful.




‘Framed moduli spaces of instantons on IR{4I

® HEZZ(), r € L~g.

e My*(n,r) : framed moduli space of SU(r)-instantons on

R* with ¢y = n, where the framing is the trivialization of
the bundle at oo.

This is noncompact:

— bubbling

— o parallel translation symmetry




We kill the first ‘source’ of noncompactness (bubbling) in

two ways:

e My(n,r) : Uhlenbeck (partial) compactification

My(n,r) = |_| M (k,r) x S"FR*,
k=0




We kill the first ‘source’ of noncompactness (bubbling) in

two ways:

e My(n,r) : Uhlenbeck (partial) compactification

My(n,r) = |_| M (k,r) x S"FR*,
k=0

e M(n,r) : Gieseker (partial) compactification, i.e., the
framed moduli space of rank r torsion-free sheaves on

P? = R* U {4, parametrizing pairs (F, ©)

. a torsion-free sheaf on P? with rtk =r, co = n

— ¢: Elg,, = 0" (framing)




M (n,r) : nonsingular hyperKéahler manifold of dim. 4nr (a

holomorphic symplectic manifold)
My(n,r) : affine algebraic variety

w: M(n,r) — My(n,r) : projective morphism (resolution

of singularities) defined by

(E,¢) — ((EYY,9),Supp(E"Y/E)).

(cf. J. Li, Morgan)

Example : M(n,1) = Hilb™(A?), My(n,1) = S?(A?)




| Torus action '

T =T"! : maximal torus in SL(W)
T =C*xC*xT ~ M(n,r), My(n,r) : torus action
— C* x C* acts via (x,y) — (t1z,t2y)

— T acts via the change of the framing

C[My(n,r)] (the coordinate ring) is a T-module.

< our main player

Similarly H*(M (n,r),O) and H* (M (n,r), E)
(E : T-equivariant sheaf) : T-modules

Lemma. Weight spaces of C[My(n,r)] (and H* (M (n,r), E))

are finite dimensional.




Thus the character makes sense as formal sum of polynomials
T

int; =€, tg=e2, e=(e",...,e") T (Zaa = 0), i.e.,

a=1
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Thus the character makes sense as formal sum of polynomials

int; =€, tg=e2, e=(e",...,e") T <Zaa=0), l.e

a=1
> thtgteete dim {v ‘(tl, to,e) - v = thth e ”aaav}

ZA2nr —rn(e14e2)/2 ch~ C[Mo(n 7“)]
n=0

vanishing thm. N ArerrErte) 2N ()i e HY (M (n, 1), O)

(instanton part of Nekrasov’s partition function)




Example : »r =1

A2n h~ n A2 _
nz:% chz C[S™(A%)] = exp <dz—:1 (1 — eder)(1 — ede2)d

Thus

-122log (Z A" chy @[sw)]) -

n=0

as €1,e9 — 0.

Nekrasov conjectured the same limiting bahaviour for r > 2.

(Explained later.)




Combinatorial Expressionl

The localization theorem in the equivariant K-theory gives

Theorem.

1

ZinSt<€1,€2, c_i, A) _ ZA2T‘?‘

I

= chz (A1 T5)

where Y = (Y1,...,Y}) is an r-tuple of Young diagrams with
V| =3 |Val, and
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H H (1 - eXp(_le (s)er + (1 +ay,(s))e2 +ag — aa))

a,B s€Yqy

X H (1 —exp((1 + 1y, (t))e1 — av,(t)e2 + ag — aa))
teYy

v (s)

NN
K
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Fixed point set M(TL,T)T

o (E,p) € M(n,r)is fixed by T = T"}
<= a direct sum of M (ny,1) (O ne =n)

(.- W decomposes into 1-dim rep’s of T')
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Fixed point set M(n,r)T

o (E,p)€ M(n,r)is fixed by T'=T""1
<= a direct sum of M (ny,1) (O ne =n)
(.- W decomposes into 1-dim rep’s of T')
e M(ng,1) = Hilb™(A?%) > I, is fixed by C* x C*

<= [, is generated by monomials in x, y

<= [, corresponds to a Young diagram Y,
5

N Y

x2y3




M(n,r)T =V = (Y1,...,Y,) | 2 |Ya| = n}

formula for the character of the tangent space:

)

Ty
H 1 — exp( lYB (s)er + (1 +av,(s))e2 +ap — aa))
€Y

x ] (1—exp((1+ 1y, (t)e1r — ay, (t)e2 + ag — aa))
teYp

follows from the computation of the Ext-group (or via
ADHM).
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Let r = 1. Recall that we have computed chz C[S™(A?)].

Corollary.

e A2d
=P <Z (1—edr)(1— ed€2)d>

d=1
A2lY]

_ zy: 161 — ol @ert(ay ()ex) (1 _ oy @)ei—ay ()e2)
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Let r = 1. Recall that we have computed chz C[S™(A?)].

Corollary.

e A2d
=P <Z (1—edr)(1— ed€2)d>

A2lY]
=2 H _ e r@ettay (ezy (1 _ I+ ()er-ay (9)ez)

d=1

Y SGY

Purely combinatorial proof : Cauchy formula for Macdonald
polynomials, i.e., a generalization of the proof in the previous

transparency.

Remark. Appearance of Macdonald polynomaials are natural in

view of Haiman’s work.




Nekrasov Conjecture (2002)'

Define the full partition function by

Z(gla €2, 67 A) d;f. Zpert(€17 €2, 67 A)ZinSt(gla €2, 67 A)

Conjecture. Suppose r > 2.
£1€9 log Z<81, £9,d; A) = FO(C_i; A) + 0(81, 82),

where Fy is the Seiberg-Witten prepotential, given by the

period integral of certain curves.
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Perturbation Part '
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Perturbation Part '




Seiberg-Witten geometry'

A family of curves (Seiberg- Witten curves) parametrized by

—

X =(X1,...,X,) with [[ Xo = 1:
Cps:Y? =P(X)* — 4X"A™,

r

PX)=X"+U X"+ 4+ U X+ (-1) = | (X - Xa).

a=1
Cszo (Y, X)— X € P! gives a structure of hyperelliptic curves.
The hyperelliptic involution ¢ is given by «(Y, X) = (=Y, X).
Define the Seiberg- Witten differential (multivalued) by

1 (XP(X)—-L$P(X))dX
dS——%logX VX :

17



Find branched points X near X, (A small). Choose cycles
A, Bo (a=2,...,7) as

18



Blowup equation I

Theorem (N+Yoshioka). Assumer >2,0<d <r. Then
Z satisfies
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Blowup equation I

Theorem (N+Yoshioka). Assumer >2,0<d <r. Then
Z satisfies

Z(er,e2, @A) = Y exp K— (4d — Z)S(T - 1)) (e1 + 52)]

EeZ’r’—l

. o d_=f1 . . d_22
X Z(81,€2 —81,CL—|—€1/€;A627’ 4 )2(81 —82,82,&—#82]6;/\6” 4 )

o Z"1 = the weight lattice of SU(r)

o the equation determines the coefficients of A?"" recursively.

e the equation guarantees dFfpy = lim 05152 log Z.
£1,62—
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e it satifies a differential equation

d*> 0°Fy
exp |—
P78 (Olog A)?

]@E(om

o d 52 Fy
~ OF\ T any/ir dlog Ada|

Recently we check that the Seiberg-Witten prepotential
satisfies the same equation. As this equation characterizes

Fy, we prove Nekrasov’s conjecture.

20



Outline of the proof I

o« M (n,k,r) : the framed moduli spaces on the blowup

p: C2 — C? (k = (c1(E), [p~1(0)])).

e Define a morphism 7: ]\/4\(n, k,r) — My(n,r) by

(E,0)—(((p+E)VY,®),Supp(p« EVY /p+ E)+Supp(R'p. E))

21



Outline of the proof I
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By the study of fixed points of ]\/E(n, k,r), the index of
O(du(C)) is given by the RHS of Theorem.




Outline of the proof I

M (n,k,r) : the framed moduli spaces on the blowup
p: € — C* (k = (car(E), [p(0)])).
Define a morphism 7: ]\/4\(n, k,r) — My(n,r) by

(E,0)—(((p+E)VY,®),Supp(p« EVY /p+ E)+Supp(R'p. E))

O(u(C)) : determinant line bundle in ]\/J\(n, k,r)

By the study of fixed points of ]\/E(n, k,r), the index of
O(du(C)) is given by the RHS of Theorem.

O(—u(C)) is m-nef and 7-big, because it gives the
morphism 7. (cf. J.Li)
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e Applying Kawamata-Viehweg vanishing theorem + (some

arguments) to prove

2

OMO(n,r) v =0,
0

R'T, O]\/Z(n,o,r) (du(C)) =

\

for 0 <d<r.
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e Applying Kawamata-Viehweg vanishing theorem + (some

arguments) to prove

2

OMO(n,r) v =0,
0

R'T. O]\/Z(n,o,r) (dp(C)) =

\

for 0 <d<r.

Remark. This proof is parallel to the earlier proof for
homological version except the last part. Vanishing theorem was

replaced by a simple dimension counting there.




Nekrasov Conjecture (2002) - Part 2'

Put 61 = —e9 = igs. (gs : string coupling constant)

Conjecture. Ezxpand as

10g ZinSt(ig& _igsa aj; A) — F()gs_z —I—Flgg -+ .- —|—Fgg§g_2 4.

Then F, is the genus g Gromov- Witten invartant for certain

noncompact Calabi- Yau 3-fold.

e.g., r = 2, Calabi-Yau = canonical bundle of P! x P!
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e based on geometric engineering by Katz-Klemm-Vafa
(1996)

e Physical proof by Igbal+Kashani-Poor, hep-th /0212279,
hep-th /0306032 (based on earlier ideas by Vafa et al.)

e mathematical proof for » = 2 by Zhou, math.AG/0311237.
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Via the blowup equation we can show
log Z(gla €2, 67 A)

1 . g1+ €9)°
= — Fy(@A) + (e14+e2)H + Fy + (E1+ )
£1€9 €1€2

G +

25



Via the blowup equation we can show
log Z(gla €2, 67 A)

1 . e1 + £9)°
= L R@A) + (o1 +en)H 4 By 4 O
£1€9 €1€2

G +

with

Ao — Q
o H=— Z T —1-2 5 o (come only from the
a<f
perturbation part)

o Fy =—logn(7/2), G=log ¢ "/* H

(for r = 2)

Remark. F, G appears the wall-crossing formula of

Donaldson invariants (and the u-plane integral)




