Cells in quantum affine algebras

Hiraku Nakajima

Department of Mathematics, Kyoto University

joint work with Jonathan Beck

Duke Math. Jour. 123 (2004), 335–402.

Kyoto University 21 COE

RIMS International Project Research

Method of Algebraic Analysis in Integrable System Representation Theory and Geometry Aug. 13, 2004, Kyoto Univ. • \mathfrak{g} : affine Lie algebra

(e.g., untwisted $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{Q}[z, z^{-1}] \oplus \mathbb{Q}c \oplus \mathbb{Q}d$)

- $\mathfrak{h} = \bigoplus_i \mathbb{Q}h_i \oplus \mathbb{Q}d$: Cartan subalgebra
- $P^* \subset \mathfrak{h}$: dual weight lattice
- $P = \operatorname{Hom}_{\mathbb{Z}}(P^*, \mathbb{Z}) \subset \mathfrak{h}^*$: weight lattice
- (,) : nondegenerate symmetric bilinear form on \mathfrak{h}^* s.t. $(\delta, \lambda) = \langle c, \lambda \rangle$
- cl: $\mathfrak{h}^* \to \mathfrak{h}^*/\mathbb{Q}\delta$
- $P_{\rm cl} = {\rm cl}(P), P^0 = \{\lambda \mid \langle c, \lambda \rangle = 0\}, P^0_{\rm cl} = {\rm cl}(P^0)$

NB. \mathfrak{g} untwisted affine Lie algebra of \mathfrak{g}_0

 $\implies P_{\rm cl}^0$: weight lattice of \mathfrak{g}_0

- $q_s = q^{\min_i(\alpha_i, \alpha_i)/2}$
- $\mathbf{U} = \mathbf{U}_q(\mathfrak{g})$: quantum enveloping algebra (QEA) with P as the weight lattice (defined over $\mathbb{Q}(q_s)$)
- \mathbf{U}' : QEA with P_{cl} as the weight lattice, i.e., $\mathbf{U}' \subset \mathbf{U}$ (without q^d)
- \mathbf{U}'_0 : QEA with P^0_{cl} as the weight lattice, i.e., $\mathbf{U}' \twoheadrightarrow \mathbf{U}'_0$ ($q^c = 1$, i.e., level 0)

- $q_s = q^{\min_i(\alpha_i, \alpha_i)/2}$
- $\mathbf{U} = \mathbf{U}_q(\mathfrak{g})$: quantum enveloping algebra (QEA) with P as the weight lattice (defined over $\mathbb{Q}(q_s)$)
- \mathbf{U}' : QEA with P_{cl} as the weight lattice, i.e., $\mathbf{U}' \subset \mathbf{U}$ (without q^d)
- \mathbf{U}'_0 : QEA with P^0_{cl} as the weight lattice, i.e., $\mathbf{U}' \twoheadrightarrow \mathbf{U}'_0$ $(q^c = 1, \text{ i.e., level } 0)$

Modified version of U'_0

- $\tilde{\mathbf{U}} = \bigoplus_{\lambda \in P_{cl}^0} \mathbf{U}'_0 a_{\lambda}$: modified enveloping algebra (of level 0)
- a_{λ} : projection to the weight space with weight $\lambda \in P_{cl}^0$
- $\tilde{\mathcal{B}} = \bigoplus_{\lambda \in P_{cl}^0} \mathcal{B}(\mathbf{U}_0' a_\lambda)$: its global crystal basis

Kashiwara extremal weight modules

Definition 1. Let V be an integrable U-module. A vector $v \in V$ with weight λ is called **extremal** if

$$\begin{cases} E_i T_w v = 0 & \text{if } \langle h_i, w\lambda \rangle \ge 0, \\ F_i T_w v = 0 & \text{if } \langle h_i, w\lambda \rangle \le 0. \end{cases}$$

for all $w \in \hat{W}$ (affine Weyl group).

 \exists similar definition for regular crystals.

Theorem (Kashiwara 1994). (1) \exists universal extremal weight module $V(\lambda)$ having an extremal weight vector $v_{\lambda} \in$ $V(\lambda)$ of weight λ . (2) For $w \in \hat{W}$, \exists a **U**-module isomorphism $V(\lambda) \cong V(w\lambda)$, respecting the global crystal bases. (The inverse image of $v_{w\lambda}$ is $q_s^* T_w v_{\lambda}$.) (3) $V(\lambda)$ has a global crystal basis $\mathcal{B}(\lambda)$, s.t. $\tilde{\mathcal{B}}$ is mapped to $\mathcal{B}(\lambda) \sqcup \{0\}$.

In fact, Kashiwara gives a combinatorial description of elements of $\tilde{\mathcal{B}}$ mapped to 0.

Quiver varieties

Assume \mathfrak{g} is symmetric and λ is (level 0) dominant.

Consider quiver varieties:

- $\mathfrak{M}(\lambda) = \bigsqcup_{\mu \leq \lambda} \mathfrak{M}(\mu, \lambda) \supset \mathfrak{L}(\lambda) = \bigsqcup_{\mu \leq \lambda} \mathfrak{L}(\mu, \lambda)$
- $\mathfrak{M}_0(\infty,\lambda) = \bigcup_{\mu \in P_{\mathrm{cl}}^{0,+}, \ \mu \leq \lambda} \mathfrak{M}_0(\mu,\lambda)$
- $\pi: \mathfrak{M}(\lambda) \to \mathfrak{M}_0(\infty, \lambda)$
- $G_{\lambda} = \prod_{i} \operatorname{GL}(\lambda_{i}) \ (\lambda = \sum_{i} \lambda_{i} \varpi_{i})$
- $K^{G_{\lambda} \times \mathbb{C}^{*}}(\mathfrak{L}(\lambda))$: equivariant K-homology
- it is a module over $R(G_{\lambda} \times \mathbb{C}^*) = R(G_{\lambda})[q, q^{-1}]$

Theorem (N). One can construct a \mathbf{U}'_0 -module structure on $K^{G_\lambda \times \mathbb{C}^*}(\mathfrak{L}(\lambda))$ via the convolution product.

In particular, it commutes with the $R(G_{\lambda})[q, q^{-1}]$ -structure.

Theorem (N). $K^{G_{\lambda} \times \mathbb{C}^*}(\mathfrak{L}(\lambda)) \cong V(\lambda).$

Theorem (N). $K^{G_{\lambda} \times \mathbb{C}^*}(\mathfrak{L}(\lambda)) \cong V(\lambda).$

- \mathbf{U}_0^{\prime} -str. on LHS is given in Drinfeld realization, while that on RHS is given in Chevalley generators.
- The existence of $R(G_{\lambda})$ -module structure on $V(\lambda)$ is non-trivial.
- ±{global basis} has a characterization as bar-invariant + almost orthogonal. The bar involution and (,) can be defined via geometry. (Lusztig's conjectural signed basis for equivariant K-theory)

But the existence is not proved via geometry so far.

The bar involution is defined via Grothendieck-Serre duality + an 'opposition' $^{\vee} : \mathfrak{M}(\lambda) \to \mathfrak{M}(\lambda).$

Remarks.

(1) An irr. f.d. representation of (U'₀)_{q_s=ε} : unique simple quotient of V(λ) ⊗_χ C where χ: R(G_λ × C*) → C with χ(q_s) = ε.
After the specialization q_s = ε:
{iso. classes of irr. rep.'s} ↔ {χ: R(G_λ) → C}/conjugate
↔ {s ∈ G_λ | semisimple} ↔ {Drinfeld poly.'s}

(2) If
$$\mu \in W\lambda$$
, $\mathfrak{M}(\mu, \lambda) = \mathfrak{L}(\mu, \lambda) = \text{point.}$
Hence $K^{G_{\lambda} \times \mathbb{C}^{*}}(\mathfrak{L}(\mu, \lambda)) \cong R(G_{\lambda})[q, q^{-1}].$

The global basis elements in this weight space are

{irr. rep's of G_{λ} } × $\mathcal{O}_{\text{point}}$.

 $(\mathcal{O}_{\text{point}} \in K^{G_{\lambda} \times \mathbb{C}^*}(\mathfrak{L}(\lambda, \lambda)) \text{ is the vector } v_{\lambda}.)$

These are the 'extremal' vectors in $V(\lambda)$. In particular, other elements in the crystal basis are connected to one of those by Kashiwara operators \tilde{e}_i , \tilde{f}_i .

Several points of the proof

- Show the assertion for λ = ∞_i (level 0 fundamental representation) : easy, thanks to irreducibility
 NB. V(∞_i) has a R(C*) = Z[z[±]]-module structure. (Kashiwara)
- $K^{G_{\lambda} \times \mathbb{C}^{*}}(\mathfrak{L}(\lambda)) \subset K^{T_{\lambda} \times \mathbb{C}^{*}}(\mathfrak{L}(\lambda)) \approx \bigotimes_{i} K^{\mathbb{C}^{*} \times \mathbb{C}^{*}}(\mathfrak{L}(\varpi_{i}))^{\otimes \lambda_{i}}.$ '\approx' becomes '\approx' if
 - tensor the quotient field of $R(T_{\lambda})$, or
 - replace $\mathfrak{L}(\lambda)$ by a 'tensor product variety' $\mathfrak{Z}(\lambda)$

• Prove similar statements for $V(\lambda)$:

 $- V(\lambda) \subset \breve{V}(\lambda) \subset \widetilde{V}(\lambda) \stackrel{\text{def.}}{=} \bigotimes_{i \neq 0} V(\varpi_i)^{\otimes \lambda_i}$ $- \text{ where } \breve{V}(\lambda) \stackrel{\text{def.}}{=} \mathbf{U}[z_{i,\nu}^{\pm}] \widetilde{v}_{\lambda} \subset \widetilde{V}(\lambda) \text{ with } \widetilde{v}_{\lambda} = \bigotimes v_{\varpi_i}^{\otimes \lambda_i}$ $- V(\lambda) \cong \mathbf{U} \widetilde{v}_{\lambda}$

level 0 fundamental representations

Choose $0 \in I$ with $a_0 = 1$. For $i \neq 0$, let

$$\varpi_{i} = \begin{cases} \Lambda_{i} - a_{i}^{\vee} \Lambda_{0} & \text{if } (\mathfrak{g}, i) \neq (A_{2n}^{(2)}, n) \\ 2\Lambda_{n} - \Lambda_{0} & \text{otherwise} \end{cases}$$

(level 0 fundamental weight)

Theorem (Kashiwara). (1) $\exists z_i \in \operatorname{Aut}_{\mathbf{U}'}(V(\varpi_i))$ of weight $d_i \delta \ (d_i = \max(1, (\alpha_i, \alpha_i)/2))$ s.t. $z_i v_{\varpi_i} = v_{\varpi_i + d_i \delta}$ (2) $V(\varpi_i) \cong \mathbb{Q}(q_s)[z_i, z_i^{-1}] \otimes W(\varpi_i)$, where $W(\varpi_i) = V(\varpi_i)/(z_i - 1)V(\varpi_i)$ (finite dimensional **U**'-module).

Two-sided cells

- A : associative algebra over a commutative ring R
- \mathcal{B} : a basis of A as an R-module
- $\mathcal{F} \stackrel{\text{def.}}{=} \{ K \subset \mathcal{B} \mid \text{Span}(K) \text{ is a two-sided ideal} \}$
- $b' \leq b \ (b, b' \in \mathcal{B}) \stackrel{\text{def.}}{\iff} \forall K \in \mathcal{F} \text{ with } b \in K \Rightarrow b' \in K.$
- $b \sim b' \stackrel{\text{def.}}{\iff} b \preceq b' \text{ and } b' \preceq b.$
- \bullet two-sided cells in $\mathcal B$: equivalence classes for \sim
- left (right) cells : two-sided ideal \rightarrow right (left) ideal

Two-sided cells

- A : associative algebra over a commutative ring R
- \mathcal{B} : a basis of A as an R-module
- $\mathcal{F} \stackrel{\text{def.}}{=} \{ K \subset \mathcal{B} \mid \text{Span}(K) \text{ is a two-sided ideal} \}$
- $b' \leq b \ (b, b' \in \mathcal{B}) \stackrel{\text{def.}}{\iff} \forall K \in \mathcal{F} \text{ with } b \in K \Rightarrow b' \in K.$
- $b \sim b' \stackrel{\text{def.}}{\iff} b \preceq b' \text{ and } b' \preceq b.$
- two-sided cells in $\mathcal B$: equivalence classes for \sim
- left (right) cells : two-sided ideal \rightarrow right (left) ideal

If \mathcal{B} is generic, then $\mathcal{F} = \{\mathcal{B}\}$ and \exists only one cell. We should choose a *good* basis, e.g., Kazhdan-Lusztig basis for the Iwahori-Hecke algebra. Recall that the modified enveloping algebra $\tilde{\mathbf{U}}$ has a global basis (Lusztig).

- $P_{\rm cl}^{0,+}$: (level 0) dominant weights, \leq : dominance order
- $\tilde{\mathbf{U}}[\geq \lambda] \stackrel{\text{def.}}{=} \{x \in \tilde{\mathbf{U}} \mid x \text{ acts by 0 on } V(\mu) \text{ with } \mu \not\geq \lambda\}$ (two-sided ideal)
- example : $a_{\lambda} \in \tilde{\mathbf{U}}[\geq \lambda]$, as all weights of $V(\mu)$ are $\leq \mu$.
- $\tilde{\mathbf{U}}[\lambda] \stackrel{\text{def.}}{=} \tilde{\mathbf{U}}[\geq \lambda] / \tilde{\mathbf{U}}[\geq \lambda]$
- $\tilde{\mathcal{B}}[\lambda] \stackrel{\text{def.}}{=} \{ b \in \tilde{\mathcal{B}} \mid b \in \tilde{\mathbf{U}}[\geq \lambda], b|_{V(\lambda)} \neq 0 \}$
- **NB**. Similar definitions for $\tilde{\mathbf{U}}$ of finite type were given by Lusztig. ('Based modules')

Theorem (Beck+N.). (1) $\tilde{\mathcal{B}}[\lambda]$ descends to a global crystal basis of $\tilde{\mathbf{U}}[\lambda]$ under $\tilde{\mathbf{U}}[\geq\lambda] \to \tilde{\mathbf{U}}[\lambda]$. (2) $\tilde{\mathcal{B}}[\lambda]$ is a two-sided cell of $\tilde{\mathcal{B}}$, and all two-sided cells are of this form.

By definition, $\tilde{\mathbf{U}}[\lambda] \hookrightarrow \operatorname{End}(V(\lambda))$. It is natural to expect that $\tilde{\mathbf{U}}[\lambda]$ is similar to the matrix algebra. It is true for finite types (Lusztig). For affine types, is 'almost' true...

 $\tilde{\mathbf{U}}$ at q = 0 (different from Kashiwara's q = 0)

- Let $\mathfrak{L}(\tilde{\mathbf{U}}[\lambda])$ be $\mathbb{Z}[q_s]$ -submodule of $\tilde{\mathbf{U}}[\lambda]$ generated by $\tilde{\mathcal{B}}[\lambda]$
- Define $a(b) \in \mathbb{Z} \sqcup \{\infty\}$ as $\min\{n \mid q_s^n b \mathfrak{L}(\tilde{\mathbf{U}}[\lambda]) \subset \mathfrak{L}(\tilde{\mathbf{U}}[\lambda])\}.$

 $\tilde{\mathbf{U}}$ at q = 0 (different from Kashiwara's q = 0)

- Let $\mathfrak{L}(\tilde{\mathbf{U}}[\lambda])$ be $\mathbb{Z}[q_s]$ -submodule of $\tilde{\mathbf{U}}[\lambda]$ generated by $\tilde{\mathcal{B}}[\lambda]$
- Define $a(b) \in \mathbb{Z} \sqcup \{\infty\}$ as $\min\{n \mid q_s^n b \mathfrak{L}(\tilde{\mathbf{U}}[\lambda]) \subset \mathfrak{L}(\tilde{\mathbf{U}}[\lambda])\}.$

The **property P1** holds:

(1) $a(b) < \infty$

(2) $\forall \mu$, the restriction $a|_{\tilde{\mathcal{B}}[\lambda] \cap \mathcal{B}(\mathbf{U}a_{\mu})}$ is constant.

NB. $a|_{\tilde{\mathcal{B}}[\lambda] \cap \mathcal{B}(\mathbf{U}a_{\mu})} = \dim \mathfrak{L}(\mu, \lambda).$

- Let $c_{bb'}^{b''}(q)$: structure constant of $\tilde{\mathbf{U}}[\lambda]$ w.r.t. the basis $\tilde{\mathcal{B}}[\lambda]$
- $\hat{b} \stackrel{\text{def.}}{=} q_s^{a(b)} b$: normalized basis element

We have

$$\widetilde{b}\widetilde{b'} = \sum_{b'' \in \widetilde{\mathcal{B}}[\lambda]} q_s^{a(b)} c_{bb'}^{b''} \widehat{b''}$$

(We used that we may assume a(b') = a(b'').)

- By the definition of a, we have $q_s^{a(b)}c_{bb'}^{b''} \in \mathbb{Z}[q_s]$.
- Therefore, $\tilde{\mathbf{U}}[\lambda]^{-} \stackrel{\text{def.}}{=} \bigoplus \mathbb{Z}[q_s]\hat{b}$ is closed under the multiplication
- Let $\tilde{\mathbf{U}}[\lambda]_0 \stackrel{\text{def.}}{=} \tilde{\mathbf{U}}[\lambda]^- / q_s \tilde{\mathbf{U}}[\lambda]^-$ (asymptotic algebra)

- t_b : image of \hat{b} , a \mathbb{Z} -basis of $\tilde{\mathbf{U}}[\lambda]_0$
- structure constant = constant part of $q_s^{a(b)} c_{bb'}^{b''}$

- t_b : image of \hat{b} , a \mathbb{Z} -basis of $\tilde{\mathbf{U}}[\lambda]_0$
- structure constant = constant part of $q_s^{a(b)} c_{bb'}^{b''}$

We have the **property** P2 (existence of the generalized unit):

$$\exists \text{ a finite set } \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \subset \tilde{\mathcal{B}}[\lambda] \text{ s.t. } t_d t_{d'} = \delta_{dd'} t_d \text{ for } d, d' \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \\ \text{ and } \forall b \in \tilde{\mathcal{B}}[\lambda] \exists^1 d, d' \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \text{ s.t. } t_b = t_d t_b t_{d'}$$

NB. $\mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \subset \tilde{\mathcal{B}}[\lambda]$ can be naturally identified with the global basis of a finite dimensional module $\bigotimes_i W(\varpi_i)^{\otimes \lambda_i}$.

- t_b : image of \hat{b} , a \mathbb{Z} -basis of $\tilde{\mathbf{U}}[\lambda]_0$
- structure constant = constant part of $q_s^{a(b)} c_{bb'}^{b''}$

We have the **property** P2 (existence of the generalized unit):

$$\exists \text{ a finite set } \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \subset \tilde{\mathcal{B}}[\lambda] \text{ s.t. } t_d t_{d'} = \delta_{dd'} t_d \text{ for } d, d' \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \\ \text{ and } \forall b \in \tilde{\mathcal{B}}[\lambda] \exists^1 d, d' \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \text{ s.t. } t_b = t_d t_b t_{d'}$$

NB. $\mathcal{D}_{\tilde{\mathcal{B}}[\lambda]} \subset \tilde{\mathcal{B}}[\lambda]$ can be naturally identified with the global basis of a finite dimensional module $\bigotimes_i W(\varpi_i)^{\otimes \lambda_i}$.

We also have the **property P3**:

$$\Phi \colon \tilde{\mathbf{U}}[\lambda] \to \tilde{\mathbf{U}}[\lambda]_0 \otimes \mathbb{Q}(q_s) \text{ defined by} \Phi(b) = \sum_{d \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]}, b' \in \tilde{\mathcal{B}}[\lambda]} c_{bd}^{b'} t_{b'} \text{ is an algebra homomorphism.}$$

•
$$G_{\lambda} = \prod_{i \in I_0} GL(\lambda_i) \ (\lambda = \sum \lambda_i \varpi_i)$$

- Irr G_{λ} : the set of (iso. classes of) irreducible rep's. $c_{ss'}^{s''} = \dim \operatorname{Hom}(s'', s \otimes s')$
- $T_{\lambda} \stackrel{\text{def.}}{=} \{ (d_1, s, d_2) \mid d_i \in \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]}, s \in \operatorname{Irr} G_{\lambda} \}$
- J_{λ} : a free \mathbb{Z} -module with basis T_{λ} with the multiplication : $(d_1, s, d_2)(d'_1, s', d'_2) = \sum_{s''} c_{ss'}^{s''} \delta_{d_2, d'_1}(d_1, s'', d'_2)$

 J_{λ} is a matrix algebra over the representation ring of G_{λ} (size $= \# \mathcal{D}_{\tilde{\mathcal{B}}[\lambda]}$), and T_{λ} is its basis.

Theorem (Beck+N.). $(\tilde{\mathbf{U}}[\lambda]_0, \tilde{\mathcal{B}}[\lambda])$ is isomorphic to $(J_{\lambda}, T_{\lambda})$ as a based ring.

NB. A similar result was conjectured for cells of an affine Hecke algebra by Lusztig. A big progress was made by Bezrukavnikov+Ostrik.

Problems

- Prove the existence of the crystal basis in a geometric way. (cf. Bezrukavnikov's talk.)
- Define Kashiwara operators \tilde{e}_i , \tilde{f}_i in a geometry way.
- Try to extend these to quantum toroidal algebras. (K-theory for quiver varieties of affine types.)