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• g : affine Lie algebra

(e.g., untwisted g = g0 ⊗ Q[z, z−1] ⊕ Qc ⊕ Qd)

• h =
⊕

i Qhi ⊕ Qd : Cartan subalgebra

• P ∗ ⊂ h : dual weight lattice

• P = HomZ(P ∗, Z) ⊂ h∗ : weight lattice

• ( , ) : nondegenerate symmetric bilinear form on h∗ s.t.

(δ, λ) = 〈c, λ〉

• cl : h∗ → h∗/Qδ

• Pcl = cl(P ), P 0 = {λ | 〈c, λ〉 = 0}, P 0
cl = cl(P 0)

NB. g untwisted affine Lie algebra of g0

=⇒ P 0
cl : weight lattice of g0
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• qs = qmini(αi,αi)/2

• U = Uq(g) : quantum enveloping algebra (QEA) with P as

the weight lattice (defined over Q(qs))

• U′ : QEA with Pcl as the weight lattice,

i.e., U′ ⊂ U (without qd)

• U′
0 : QEA with P 0

cl as the weight lattice,

i.e., U′
� U′

0 (qc = 1, i.e., level 0)

Modified version of U′
0

• Ũ =
⊕

λ∈P 0
cl
U′

0aλ : modified enveloping algebra (of level 0)

• aλ : projection to the weight space with weight λ ∈ P 0
cl

• B̃ =
⊕

λ∈P 0
cl
B(U′

0aλ) : its global crystal basis
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Kashiwara extremal weight modules

Definition 1. Let V be an integrable U-module.

A vector v ∈ V with weight λ is called extremal if




EiTwv = 0 if 〈hi, wλ〉 ≥ 0,

FiTwv = 0 if 〈hi, wλ〉 ≤ 0.

for all w ∈ Ŵ (affine Weyl group).

∃ similar definition for regular crystals.
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Theorem (Kashiwara 1994). (1) ∃ universal extremal

weight module V (λ) having an extremal weight vector vλ ∈

V (λ) of weight λ.

(2) For w ∈ Ŵ , ∃ a U-module isomorphism V (λ) ∼= V (wλ),

respecting the global crystal bases. (The inverse image of vwλ

is q?
sTwvλ.)

(3) V (λ) has a global crystal basis B(λ), s.t. B̃ is mapped to

B(λ) t {0}.

In fact, Kashiwara gives a combinatorial description of

elements of B̃ mapped to 0.
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Quiver varieties

Assume g is symmetric and λ is (level 0) dominant.

Consider quiver varieties:

• M(λ) =
⊔

µ≤λ M(µ, λ) ⊃ L(λ) =
⊔

µ≤λ L(µ, λ)

• M0(∞, λ) =
⋃

µ∈P 0,+
cl , µ≤λ

M0(µ, λ)

• π : M(λ) → M0(∞, λ)

• Gλ =
∏

i GL(λi) (λ =
∑

i λi$i)

• KGλ×C∗

(L(λ)) : equivariant K-homology

• it is a module over R(Gλ × C∗) = R(Gλ)[q, q−1]

Theorem (N). One can construct a U′
0-module strucutre on

KGλ×C∗

(L(λ)) via the convolution product.

In particular, it commutes with the R(Gλ)[q, q−1]-structure.
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Theorem (N). KGλ×C∗

(L(λ)) ∼= V (λ).

• U′
0-str. on LHS is given in Drinfeld realization, while that

on RHS is given in Chevalley generators.

• The existence of R(Gλ)-module structure on V (λ) is

non-trivial.

• ±{global basis} has a characterization as bar-invariant +

almost orthogonal. The bar involution and ( , ) can be

defined via geometry. (Lusztig’s conjectural signed basis

for equivariant K-theory)

But the existence is not proved via geometry so far.

The bar involution is defined via Grothendieck-Serre

duality + an ‘opposition’ ∨ : M(λ) → M(λ).
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Remarks.

(1) An irr. f.d. representation of (U′
0)qs=ε : unique simple quotient of

V (λ) ⊗χ C where χ : R(Gλ × C∗) → C with χ(qs) = ε.

After the specialization qs = ε:

{iso. classes of irr. rep.’s} ↔ {χ : R(Gλ) → C}/conjugate

↔ {s ∈ Gλ | semisimple} ↔ {Drinfeld poly.’s}

(2) If µ ∈ Wλ, M(µ, λ) = L(µ, λ) = point.

Hence KGλ×C
∗

(L(µ, λ)) ∼= R(Gλ)[q, q−1].

The global basis elements in this weight space are

{irr. rep’s of Gλ} × Opoint.

(Opoint ∈ KGλ×C
∗

(L(λ, λ)) is the vector vλ.)

These are the ‘extremal’ vectors in V (λ). In particular, other elements

in the crystal basis are connected to one of those by Kashiwara

operators ẽi, f̃i.
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Several points of the proof

• Show the assertion for λ = $i (level 0 fundamental

representation) : easy, thanks to irreducibility

NB. V ($i) has a R(C∗) = Z[z±]-module structure. (Kashiwara)

• KGλ×C∗

(L(λ)) ⊂ KTλ×C∗

(L(λ)) ≈
⊗

i KC∗×C∗

(L($i))
⊗λi .

‘≈’ becomes ‘∼=’ if

– tensor the quotient field of R(Tλ), or
– replace L(λ) by a ‘tensor product variety’ Z(λ)

• Prove similar statements for V (λ):

– V (λ) ⊂ V̆ (λ) ⊂ Ṽ (λ)
def.
=

⊗
i6=0 V ($i)

⊗λi

– where V̆ (λ)
def.
= U[z±i,ν ]ṽλ ⊂ Ṽ (λ) with ṽλ =

⊗
v⊗λi
$i

– V (λ) ∼= Uṽλ
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level 0 fundamental representations

Choose 0 ∈ I with a0 = 1. For i 6= 0, let

$i =





Λi − a∨i Λ0 if (g, i) 6= (A
(2)
2n , n)

2Λn − Λ0 otherwise

(level 0 fundamental weight)

Theorem (Kashiwara). (1) ∃zi ∈ AutU′(V ($i)) of weight

diδ (di = max(1, (αi, αi)/2)) s.t. ziv$i
= v$i+diδ

(2) V ($i) ∼= Q(qs)[zi, z
−1
i ] ⊗ W ($i), where W ($i) =

V ($i)/(zi − 1)V ($i) (finite dimensional U′-module).
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Two-sided cells

• A : associative algebra over a commutative ring R

• B : a basis of A as an R-module

• F
def.
= {K ⊂ B | Span(K) is a two-sided ideal}

• b′ � b (b, b′ ∈ B)
def.
⇐⇒ ∀K ∈ F with b ∈ K ⇒ b′ ∈ K.

• b ∼ b′
def.
⇐⇒ b � b′ and b′ � b.

• two-sided cells in B : equivalence classes for ∼

• left (right) cells : two-sided ideal → right (left) ideal

If B is generic, then F = {B} and ∃ only one cell.

We should choose a good basis, e.g., Kazhdan-Lusztig basis for

the Iwahori-Hecke algebra.
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Recall that the modified enveloping algebra Ũ has a global

basis (Lusztig).

• P 0,+
cl : (level 0) dominant weights, ≤ : dominance order

• Ũ[≥λ]
def.
= {x ∈ Ũ | x acts by 0 on V (µ) with µ � λ}

(two-sided ideal)

• example : aλ ∈ Ũ[≥λ], as all weights of V (µ) are ≤ µ.

• Ũ[λ]
def.
= Ũ[≥λ]/Ũ[>λ]

• B̃[λ]
def.
= {b ∈ B̃ | b ∈ Ũ[≥λ], b|V (λ) 6= 0}

NB. Similar definitions for Ũ of finite type were given by

Lusztig. (‘Based modules’)
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Theorem (Beck+N.). (1) B̃[λ] descends to a global crystal

basis of Ũ[λ] under Ũ[≥λ] → Ũ[λ].

(2) B̃[λ] is a two-sided cell of B̃, and all two-sided cells are of

this form.

By definition, Ũ[λ] ↪→ End(V (λ)). It is natural to expect that

Ũ[λ] is similar to the matrix algebra. It is true for finite types

(Lusztig). For affine types, is ‘almost’ true...
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Ũ at q = 0 (different from Kashiwara’s q = 0)

• Let L(Ũ[λ]) be Z[qs]-submodule of Ũ[λ] generated by B̃[λ]

• Define a(b) ∈ Z t {∞} as min{n | qn
s bL(Ũ[λ]) ⊂ L(Ũ[λ])}.

The property P1 holds:

(1) a(b) < ∞

(2) ∀µ, the restriction a|B̃[λ]∩B(Uaµ) is constant.

NB. a|B̃[λ]∩B(Uaµ) = dim L(µ, λ).
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• Let cb′′

bb′(q) : structure constant of Ũ[λ] w.r.t. the basis B̃[λ]

• b̂
def.
= q

a(b)
s b : normalized basis element

We have

b̂b̂′ =
∑

b′′∈B̃[λ]

qa(b)
s cb′′

bb′ b̂
′′

(We used that we may assume a(b′) = a(b′′).)

• By the definition of a, we have q
a(b)
s cb′′

bb′ ∈ Z[qs].

• Therefore, Ũ[λ]−
def.
=

⊕
Z[qs ]̂b is closed under the

multiplication

• Let Ũ[λ]0
def.
= Ũ[λ]−/qsŨ[λ]− (asymptotic algebra)
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• tb : image of b̂, a Z-basis of Ũ[λ]0

• structure constant = constant part of q
a(b)
s cb′′

bb′

We have the property P2 (existence of the generalized unit):

∃ a finite set DB̃[λ] ⊂ B̃[λ] s.t. tdtd′ = δdd′td for d, d′ ∈ DB̃[λ]

and ∀b ∈ B̃[λ] ∃1d, d′ ∈ DB̃[λ] s.t. tb = tdtbtd′

NB. DB̃[λ] ⊂ B̃[λ] can be naturally identified with the global

basis of a finite dimensional module
⊗

i W ($i)
⊗λi .

We also have the property P3:

Φ: Ũ[λ] → Ũ[λ]0 ⊗ Q(qs) defined by

Φ(b) =
∑

d∈D
B̃[λ],b

′∈B̃[λ] c
b′

bdtb′ is an algebra homomorphism.

16



• tb : image of b̂, a Z-basis of Ũ[λ]0
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• Gλ =
∏

i∈I0
GL(λi) (λ =

∑
λi$i)

• Irr Gλ : the set of (iso. classes of) irreducible rep’s.

cs′′

ss′ = dim Hom(s′′, s ⊗ s′)

• Tλ
def.
= {(d1, s, d2) | di ∈ D

B̃[λ], s ∈ Irr Gλ}

• Jλ : a free Z-module with basis Tλ with the multiplication :

(d1, s, d2)(d
′
1, s

′, d′
2) =

∑
s′′ cs′′

ss′δd2,d′

1
(d1, s

′′, d′
2)

Jλ is a matrix algebra over the represenatation ring of Gλ (size

= #DB̃[λ]), and Tλ is its basis.

Theorem (Beck+N.). (Ũ[λ]0, B̃[λ]) is isomorphic to

(Jλ, Tλ) as a based ring.

NB. A similar result was conjectured for cells of an affine Hecke algebra by

Lusztig. A big progress was made by Bezrukavnikov+Ostrik.
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Problems

• Prove the existence of the crystal basis in a geometric way.

(cf. Bezrukavnikov’s talk.)

• Define Kashiwara operators ẽi, f̃i in a geometry way.

• Try to extend these to quantum toroidal algebras.

(K-theory for quiver varieties of affine types.)
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