REFLECTION FUNCTORS FOR QUIVER VARIETIES AND WEYL
GROUP ACTIONS

HIRAKU NAKAJIMA

ABSTRACT. We define a Weyl group action on quiver varieties using reflection functors, which
resemble ones introduced by Bernstein-Gelfand-Ponomarev [1]. As an application, we define
Weyl group representations of homology groups of quiver varieties. They are analogues of
Slodowy’s construction of Springer representations of the Weyl group.

INTRODUCTION

Consider a finite graph with the set of vertices I. The author [15, 17] associated to v, w €
7L,, ¢ € R*®@R! a hyper-Kihler manifold (possibly with singularities) 9 (v, w) and called it
a quiver variety. It was shown that the direct sum of homology groups @, H.(9M:(v,w)) has
a natural structure of a representation of the Kac-Moody algebra, corresponding to the graph.

The definition of quiver varieties was motivated by author’s joint work with Kronheimer [8],
where we identify moduli spaces of anti-self-dual connection on ALE spaces with hyper-Kahler
quotients of a finite dimensional quaternion vector spaces related to the representation theory
of a quiver associated with an ADE Dynkin graph. This is called the ADHM description,
since it is a generalization of the description of anti-self-dual connections on R* due to Atiyah-
Drinfeld-Hitchin-Manin. Quiver varieties are generalization of such hyper-Kéahler quotients to
arbitary graphs. The parameters v and w correspond to Chern classes and the framing at the
end respectively.

There is a Weyl group action on ALE spaces. Pulling back anti-self-dual connections, we
have an induced action on moduli spaces. More precisely, an element w in the Weyl group
sends M (v, w) to My (w*v, w), where w=v is given by w —C(w*v) = w(w—Cv) (C is the
Cartan matrix). The author [15, §9] used this observation to define an analogue of Slodowy’s
construction of Springer representations of the Weyl group [19].

We can transform the action by the ADHM description. Maps corresponding to elements
of the Weyl group have purely quiver theoretic description, and hence make sense for quiver
varieties for any finite graphs. These are what we study in this paper. We call them refiection
functors, since they resemble ones introduced by Bernstein-Gelfand-Ponomarev [1]. As an
application, we can define Weyl group representations on homology groups of quiver varieties.
These representations are expected to be related to representations of the Kac-Moody algebra.

In fact, the Weyl group action on ALE spaces, whose existence was originally proved via
Brieskorn’s construction of simultaneous resolutions [7, §4], can be also realized by reflection
functors. This observation was due to Kronheimer (private communication) and was our
starting point.

Most of results of this paper were mentioned in [15, §9], and the definition of reflection func-
tors (for simple reflections) was given in [16] about ten years ago. After these announcements,
there appeared several related papers. Crawley-Boevey and Hollands [2] defined reflection
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functors for simple reflections under some condition on parameters. Lusztig [11] defined Weyl
group actions on quiver varieties by using his description of the coordinate rings of quiver
varieties [10]. Maffei [13] also defined reflection functors for simple reflections. We include the
identification of our definition with theirs and also with our previous action [15, §9] in this
paper. But others use description of quiver varieties as complex (or algebraic) manifolds by
forgetting hyper-Kahler structures. So it is impossible for them to prove our assertion that
reflection functors are hyper-Kdhler isometry, namely they preserve the Riemannian metric
and all complex structures I, J, K.

We also identify the reflection functor for the longest element of the Weyl group with
Lusztig’s new symmetry [12] on quiver varieties when the graph is of type ADE. His defi-
nition makes sense only on lagrangian subvarieties of quiver varieties, while ours are defined
on the whole varieties. Via the ADHM description the functor corresponds to the map sending
A to its dual A*.

In this paper, if A: V' — W is a linear map between hermitian vector spaces V and W, then
AT: W — V denotes its hermitian adjoint:

(Av,w) = (v, Afw) forveV,weW.
And 'A: W* — V* denotes the transpose:

(Av,w*) = (v, "Aw*) forv eV, w* € W*.

1. HyPER-KAHLER STRUCTURE

In order to define reflection functors in a way compatible with hyper-Kéahler structures, we
need to rewrite the definition of quiver varieties. We use a formulation using quaternion and
spinors. This was already used in the ADHM description of instantons on ALE spaces [8]. It
is well-known among differential geometers, especially those working on the Seiberg-Witten
monopole equation, but we give a detailed explanation for the sake of readers.

1(i). A hyper-Kahler moment map. A hyper-Kdhler structure on a manifold X is a Rie-
mannian metric g together with a set of three almost complex structures (I, J, K) which are
parallel with respect to the Levi-Civita connection of g and satisfy the hermitian condition
and the quaternion relations:

g(Iv, Iw) = g(Jv, Jw) = g(Kv, Kw) = g(v,w) for v,w e TX,
I1J=—-JI =K.

A manifold with a hyper-Kahler structure is called a hyper-Kahler manifold. We have the
associated Kéahler forms wy, wy, wx defined by

(.d[(U, w) = g(IU7 w)? wJ(Ua w) = g(:]U, ?,U)7
wi(v,w) = g(Kv,w) forv, weTX

which are closed and parallel.

Let G be a compact Lie group acting on X so as to preserve the hyper-Kéahler structure
(g9,1,J, K). Each element ¢ € g of the Lie algebra of G defines a vector field £* on X which
generates the action of &.



Definition 1.1. A hyper-Kdhler moment map for the action of G on X is a map u =
(per, pys pxc): X — R3 ® g* which satisfies

palg-z) = Ad (palz)), z€X,geG, A=1JK,
(&, dpa(v)) = —wal(&,v), veTX, Eeg A=1,J K,

where g* is the dual space of g, Ad*: g* — g* is the coadjoint map and (, ) denotes the dual
pairing between g and g*.

A hyper-Kéhler moment map is unique up to an element of Z et {eR3xg" | Ady(¢) = ¢}
if it exists.

Suppose p exists and choose an element ¢ from Z. Then p~1(¢) is invariant under the G-
action, so we can make the quotient space u~1(¢)/G. Let i: u=*(¢) — X be the inclusion, and
m: w1 (¢) — p'(¢)/G the projection. By the general theory of the hyper-Kéhler quotient
[4], if the action of G on p~!({) is free, then the quotient space p~'(¢)/G has a natural
hyper-Kahler structure such that

(1) i is a Riemannian immersion, and 7 is a Riemannian submersion,
(2) the Kéhler form 'y on u=(¢)/G satisty m*(w'y) = i*(wa) (A=1, J, K).

1(ii). Quaternion and spinor. Let H = R @ Ri & Rj & Rk be the quaternion field. Let

Re: H — R and Im: H — Ri & Rj & Rk be maps defined by taking the real and imaginary

parts. Let : H — H be the involution given by (¢ + iz + jxs + kx3) . To—1ix1— jro—kxs.

We define an inner product on H by ((x,z’)) o Re(zz’). It satisfies ((z,2")) = ((2',2)) =
((iz,iz")) = ((jz, j2')) = ((kz, kz')). We also define a complex valued skew symmetric form w
by w(z, z’) o ((zj,2")) +i((xk,2")) = Re(zjz’) + i Re(wka').

The multiplication of ¢, j, k from left together with the inner product make H into a hyper-
Kihler manifold. The group Sp(1) of quaternions of unit length acts on H by z + xg~!
(g € Sp(1)), preserving the hyper-Kéhler structure. The hyper-Kéahler moment map vanishing
at the origin is given by

(€ r(a)) = 5 Re (i2€7) (€. ps(a)) = 5 Re(2€T) (€ pxe(x)) = 5 Re (katF)

where £ € sp(1) is regarded as a pure imaginary quaternion. We also have a more compact
expression:

(1.2) 6 () + 316 () + K{E, prc () = — Tm(a€).

The group Sp(1) has another action on H given by = +— gz. In order to distinguish with
the previous action, we denote this Sp(1) by Sp(1);. This action preserves the inner product
((, )) and the skew symmetric form w, but rotate the mulitplication of 7, j, k from left. More
precisely, the multiplication map sp(1), x H 3 (£, z) — &x € H is equivariant if we let Sp(1),
act on sp(1), the space of imaginary quaternions, by & — ¢g&g~' (£ € sp(1)r, g € Sp(1)L).
The moment map p: H — R?® @ sp(1)* is equivariant if we identify R? with sp(1); and let

Sp(1) act as above. (The action on sp(1)* is trivial.) This can be seen from the formula (1.2):

Im(gz £ g7) = gIm(2£T)g~".

Considering the multplication of —i from right as a complex structure, we regard H as
a complex vector space and denote it by S*. This is the space of positive spinors. The
inner product ((, )) satisfies ((x(—i),2'(—i))) = ((x,2)). We extend it to a hermitian inner

product: (z,z’) e ((z,2")) + i((z, 2'(—17))). Regarding an element x € S* as an element of



Hom(C, S*), we denote its hermitian adjoint by 2" € Hom(S*,C) = (ST)*. Similarly we have
()t: (ST)* — S*. The multiplication of a pure imaginary quaternion £ from left is complex
linear, trace-free and skew-hermitian: &(z(—1)) = (&x)(—i), tr(§) = 0, ((&x,y)) = —((z, &y)).
This allows us to identify sp(1), with su(S™), the Lie algebra of trace-free skew-hermitian
endomorphisms of ST. The form w is complex linear: w(x(—i),2") = iw(z,z’). Thus w defines
a skew-symmetric form on ST. We also regard w as a map ST — (ST)*, by mapping = to
w(z,-). This map is denoted also by w.

Let us consider the subgroup U(1) of Sp(1) which consists of complex numbers of unit
length. Its action on ST given by x — zA™! is complex linear: zA™!'(—i) = z(—i)A~!. The
corresponding moment map p: ST — R? ® u(1)* is the composition of the previous moment
map pu: ST = H — R* ® sp(1)* and the projection sp(1)* — u(1)*. If we identify R*® with
su(ST), then it has the following expression

where ()¢ denotes the trace-free part. Note also that
(1.4) ((r®@ah)y=— (f(wx)T ® (wx))o.

These equations will be used frequently later.
Remark 1.5. The expression (1.3) appears in the Seiberg-Witten monopole equation.

1(iii). Holomorphic description. Let us choose a particular complex structure, say i. Re-
garding the multiplication of 7 from left as an endomorphism of S*, we have the eigenspace
decomposition ST = L @& L* (eigenvalue i and —i). If we set 21 = xo + 214, 20 = 2 + w30 for
T =20+ 211 + 127 + w3k € H, then z; € L*, 257 € L. This induces the following identification
St~ C%

ST=L"®L>x =2 +2jr— El} e C?.
2
We shall simply write z = [Z | hereafter. We say the right hand side as a holomorphic descrip-
tion of x. Note that this identification respects the complex structures: the multiplication of

—i from right on S and the map [Z] +— [Z1]. The multiplication of i, j, k from the left are
given by

-1 0 0 —1 0 1
0 <" (1 0] |7 O
respectively. The hermitian inner product and skew-symmetric form are give by
Ny =1 v N = 7§ _ = o Zi
((x,2") = Z12] + 222h, w(x,2') = —Z125 + 222] forx = W= e

The corresponding map w: ST — (ST)* is written as

E} — 22 —71).

Let us consider the subgroup action of U(1) on S as §1(ii). It is given by

Z_1 )\Z_l . )\_12’1
{22:| — {)\22:| = Az ] for \ € U(l)



in the holomorphic description. The hyper-Kéhler moment map is expressed as

(Jz1]* = [22]?) & for = — {z_l]
& k() = 21228, 2

N | .

(& () =
(& pa(x)) +i

—~

We have the following matrix expression:

Emn |3 ]+ @men [} 3]+ e[
h e PPELE L )

The equations (1.3, 1.4) are expressed as

5 (121 = |=2) 1% =P == _ (=] [&]
R1%22 —%(|Z1|2—|22|2) R1%2 |Zz|2 0 22| |*2 0

. E Ry o Z1 f Z1
= — 2 = — w w .
—X1%2 |Z1| 0 22 22
0
Remark 1.7. The expression (1.6) appears in the Seiberg-Witten monopole equation on a
Kahler surface.

1(iv). Hidden symmetry. In the holomorphic description above, a natural symmetry be-
tween 7, 7, k are broken, and the complex structure i is chosen. So it is natural to consider S
as a complex manifold by 7. (More generally any hyper-Kéhler manifold is a complex manifold
by the integrable almost complex structure I.) Then zy, z5 are holomorphic coordinates. If we

make a combination ug¢ . Wy +ipg, then (€, pe(x)) = 2122 is a holomorphic function. In this
context, we denote the remaining moment map p; by pur and we call pc and pg the complex
and real part of the moment map respectively. If we define a holomorphic symplectic form we
by w4 iwg, then the complex part pc of the hyper-Kéhler moment map p can be considered
as a moment map for the C*-action on the holomorphic symplectic manifold (S*,we). (Note
that we also choose the identification {pure imaginary quaternions} = R & C.)

The action of the group Sp(1)y, is expressed as

Z1 g1 —g2| |Z1 )
f = € Sp(1);.
LJ — {92 " } LJ or g = g1+ g2J € Sp(1)L

This action is not holomorphic, and hence cannot be seen from the point of view of a complex
manifold. In this sense, Sp(1), is a hidden symmetry in the holomorphic description of the
theory.

In this paper, we use the following technique several times: We first construct something
in an Sp(1).-equivariant way by using quaternion notation. Second, we choose a complex
structure ¢ and use the holomorphic description to say something with respect to <. Then
we change the complex structure and deduce the assertion for any complex structure. For
example, if we want to say p(z) = 0, then we need to check that (a) u(x) is Sp(1)-equivariant
and (b) puc(z) = 0 for some complex structure.



2. QUIVER VARIETY

2(i). Definition. Suppose that a finite graph without edge loops (i.e., no edges joining a
vertex with itself) is given. Let I be the set of vertices and E the set of edges. Let A be the
adjacency matrix of the graph, namely

A = (Au)kier, where Ay, is the number of edges joining k and [.

We associate with the graph (I, ) a symmetric generalized Cartan matrix C = 2I — A, where
I is the identity matrix. This gives a bijection between the finite graphs without edge loops
and symmetric Cartan matrices. We have the corresponding symmetric Kac-Moody algebra,
and its Weyl group, which is a group with generators s (k € I) and relations

(2.1) Si = 1, SkS; = S|Sk if Akl = 0, SkSISk = SiSEkSI if Akl =1.

It acts on R! by s4x(¢) = ¢’, where (/| = ¢ — CiCy for ¢ = (Q)ier, ¢ = ({})ier C = (Ciy)gy. The
action preserves the lattice Z/.

Let H be the set of pairs consisting of an edge together with its orientation. For h € H, we
denote by in(h) (resp. out(h)) the incoming (resp. outgoing) vertex of h. For h € H we denote
by h the same edge as h with the reverse orientation. Choose and fix an orientation Q of the
graph, i.e., a subset Q C H such that QUQ = H, QNQ = (). The pair (I, Q) is called a quiver.

Let V' = (Vi)ker be a collection of finite-dimensional vector spaces over C with hermitian
inner products for each vertex k € I. The dimension of V is a vector

dim V' = (dim Vi )wes € ZL,.
If V1 and V? are such collections, we define vector spaces by

L(VL,V?) S @ Hom(V,, V), E(V',V?) S @ Hom(V, Vidm):

kel heH
def. def.
Ea(V1,V?) = @ Hom (Vo Viw):  Eg(V', V) S €D Hom (Vo Vidn)-
heQ heQ

For B = (By) € E(V1,V?) and C = (C)) € E(V?,V3), let us define a multiplication of B
and C' by

def.

CB= [ Y CwBy| eL(v'V?).
in(h)=k &
Multiplications ba, Ba of a € L(VY,V?), b € L(V? V3), B € E(V2 V?3) is defined in obvious
manner. If a € L(V!, V1), its trace tr(a) is understood as >, tr(ay).
For two collections V', W of hermitian vector spaces with v.= dimV, w = dim W, we
consider the vector space given by

def.

(2.2) M=M(v,w) =MV, W)= St QcEq(V,V)® St @c L(W,V),

where we use the notation M(v, w) when the isomophism classes of hermitian vector spaces

V', W are concerned, and M when V', W are clear in the context. The above two components
for an element of M will be denoted by A = @ Ay, ¥ = @ ¥, respectively.

Definition 2.3. We define an affine action of the Weyl group on Z! (depending on w) by

def. .
sp*v = v/, where v, = v, — Y, Cpvy + wy, v] = v if | # k for v = (v)ier, w = (wp)ier,



v’ = (v])ier. Note that we have w — C(s; * v) = si(w — Cv). We denote the action by sy if
we want to emphasize the w-dependence.

As in §1(ii), we consider ST as a hyper-Kédhler manifold by the inner product and the
multiplications of ¢, j, k from the left. Together with the hermitian inner product on V', W,
we have an induced inner product on M. We also define the operators I, J, K by i ®id, j ®id,
k @id. Thus M has a (flat) hyper-Kéahler structure.

Let G = Gy = Gy be the compact Lie group defined by

G=Gy =Gy = [Jum),
k

where we use the notation Gy (resp. Gy) when we want to emphasize the dimension (resp. the
vector space). Its Lie algebra g = gy = gv is the direct sum @, u(Vx). The group G acts on
M by

(2.4) (A,0) = g- (AP Y (g@idss) Ag, (9 ® idg+ ) )

preserving the hyper-Kéhler structure. Let u = (uz, g, pirc) : M — R3*®g* be the hyper-Kihler
moment map vanishing at the origin. Explicitly it is given by

(AW =i (AAT + (WA wA+ W)O .

We have the following convention in the above formula: (1) AA', (wA)"wA, WO are considered
as elements of End(S™) ® L(V, V') by the multiplication defined above, (2) g* is identified with
g via the trace, and (3) R? is identified with su(S™) and ( )y denotes the trace-free part as in
81.

Let Z, C gy denote the center. It is the direct sum of the set of scalar matrices on V. Thus
we have a natural projection (iR)! — Z, given by (Ci)rer — @Dpes Cridy, € Zy, where we
delete the summand correponding to k if V, = 0.

Choosing an element ¢ = ({7,(s,(x) € R® ® (iR)!, we consider the hyper-Kéhler quotient
M of M by G-

(2.5) Me = M (v, w) = {(A¥) € M(v,w) | u(A,¥) = —(}/G,
where ¢ is considered as an element of R?* ® Z, by the above projection. This is the quiver
variety introduced in [15].

We say a point (A, ¥) € u~(—C) is non-degenerate if its stabilizer is trivial. We denote by
E)ﬁzeg the set of non-degenerate G-orbits. This is an open subset of M., and is a hyper-Kéhler
manifold by [4].

Let

def.

R {0 = (0) € 2Ly | '9CH < 2} \ {0},

def.

Ri(v) ={0€ Ry |6 <dimcV, forall k},

def.

Dy S {x = (z) € (R)' | > apb), =0} for 0 € R
k

When the graph is of Dynkin type, Ry is the set of positive roots, and Dy is the wall defined
by the root 6. In general, R, may be an infinite set, but R, (v) is always finite.



Proposition 2.6 ([15, 2.8]). Suppose
(2.7) (eR*e R\ | R’® Dy
0ER (V)

Then the reqular locus E)ﬁzeg coincides with M. Thus M is nonsingular. Moreover the hyper-
Kdhler metric is complete.

2(ii). A holomorphic description. As in §1(iii) we choose a particular complex structure,
say I, and use the following holomorphic description:

Bl
Ay = { BZ} ; Br: Vowm) = Vi), Bt Viny) — Vour(n)
-f
Wk = Bk] 5 iki Wk ad Vk, jk Vk ad Wk
k

Thus M is isomorphic to

E(V,V)e LW, V)a L(V,W).

We can write down the hyper-Kahler moment map explicitly:
pz(B.i, j) = % (-BB'+ B'B—iit + j1j) € g,

MC(B72.aj) = 5BB+2.] € g®(c7
where the dual of the Lie algebra of G is identified with the Lie algebra via the trace, e: H —
{£1} is defined by e(h) = 1if h € Q, e(h) = —1if h € Q, and ¢B € E(V,V) is defined by
(eB);, = ¢(h)By,. Caution: pg differs by sign from one in [15]. uc, (¢ and G© (see below)

were denoted by p, ¢ and G respectively in [17].
Let G© be the algebraic group defined by

Gt =G = 6L = [[GLW).
k

This is the complexification of G. It acts on M by

.. ..\ def. _ L.
(28) (B72a])'_)g'(B72a]) = (ng 1>gZ>]g 1)

preserving the holomorphic symplectic form we. Let uz'(—Cc) be an affine algebraic variety
(not necessarily irreducible) defined as the zero set of uc + (c.

2(iii). Stability. We want to identify the hyper-Kihler quotient (2.5) with a quotient of uz'
devided by G®. For this purpose, we introduce a notion of the ‘stability’, following King’s
work [6].
For a collection S = (Sk)rer of subspaces of Vi, and B = @ By, as above, we say S is
B-invariant if Bp,(Sout(n)) C Sin(n)-
de

For (& = (Cop)ker € (IR), let Ge(dim V) € i, ., Gor dim Vi
Definition 2.9. A point (B,i,j) € M is (g-semistable if the following two conditions are
satisfied:

(1) If a collection S = (Sk)ker of subspaces in Vj is contained in Ker j and B-invariant, then
Gr(dim S) < 0.
(2) If a collection T' = (T})ker of subspaces in V) contains Im+i and is B-invariant, then



We say (B,i,7) is (g-stable if the strict inequalities hold in (1),(2) unless S = 0, T =V
respectively.

If i¢x g > 0 for all k, the condition (2) is superfluous, and the condition (1) turns out to be
the nonexistence of nonzero collections S = (Sj) such that Si C Ker ji, and By, (Sout(n)) C Sin(h)-
(In this case (g-stability and (g-semistability are equivalent.) This is the stability condition
used in [17, 3.9]. The case when i(yr < 0 for all k£ is also important. The condition (1)
is superfluous and the condition (2) turns out to be the nonexistence of proper collections
T = (Tj) such that T D Imix and Bp(Tou(n)) C Tour(n). This coincides with the natural
condition for the description of Hilbert schemes of points on C? ([18, §1]). It was used also in
[10].

We also need the stability condition for B € E(V, V).

Definition 2.10. Suppose that (g(dim V) = 0. A point B € E(V,V) is (g-semistable if the
following is satisfied:

e If a collection S = (S)kes of subspaces in Vj is B-invariant, then (g(dim .S) < 0.
A point B is (g-stable if the strict inequality holds unless S =0 or S = V.

Let Hi, ¢ (resp. HE ) be the set of (g-stable (resp. (g-semistable) points in pet (—Cr).
We say two (g-semistable points (B, i,j), (B',i,j') are S-equivalent when the closures of
orbits intersect in H, f’EMC).

Proposition 2.11. (1) A point (B, i, j) € uc'(—(c) is (r-semistable if and only if the closure
of its G-orbit intersects with pg*(—Cg). The natural map

gﬁg - (SZR(«:)/N
1s a homeomorphism. Here the right hand side denotes the quotient space of H(S?MC
by S-equialence relation.

(2) A point (B,i,j) € pg'(—(c) is Cr-stable if and only if its GS-orbit contains a non-
degenerate point in ,uﬂgl(—CR). The restriction of the above map gives us a homeomorphism

re S C
M = Higeo/G

) divided

(3) A GC-orbit intersects with pg' (—Cg) if and only if it is there exists a direct sum decom-
position

Vv=VleVvieVig...,
such that

(a) r(dimVP) =0 forp>1,

(b) each summand is invariant under B,

(c) the image of i is contained in V° and j is zero on @7021 Ve,

(d) (Blyo,i,7) considered as a data in M(V° W) is (g-stable,

(e) the restriction of B to VP is (g-stable in the sense of Definition 2.10 for p > 1.

The statements (1),(2) can be proved by an argument in [6] (see also [15, 3.1, 3.2, 3.5], [17,
3.8]). The statement (3) was proved in [15, 6.5], [17, 3.27].

This proposition and Proposition 2.6 imply that the (g-stability and (g-semistability for
points in pg'(—(c) are equivalent when ¢ = ((g, (c) satisfies the condition (2.7).



3. REFLECTION FUNCTORS

3(i). Admissible collection. We fix ( € R*® (iR)!. An admissble collection is the following
data:

(1) V¥ = (V}*)es : a collection of hermitian vector spaces for each k € I,
(2) (A* UF) e M(V* WF) satisfying u(A*, ¥*) = —( and the non-degeneracy condition for
each k € I, where Wk = (W})er is given by W} = C if | = k and 0 otherwise,
(3) " € ST @ L(Vm®) yeuth) for each h € Q
such that

0’

<<onut(h))T ® wq)ﬁ) + <(I>E ® Ain(h)T)O _ (wout(h) ® win(h)T)

((wAm®) @ @) = ((miﬁ)T@ Aout(hﬁ) |

0

<(I>El(h) ® wwin(h)) _ <A(;Lut(h) ® wwout(h)) 7
0 0

<<wWOUt(h))T Q w(bgm(h))o _ << Wm ) Q Am )0 ‘
out(h)

In the first equality, we consider ¥°U") (resp. ¥™") as an element of ST ® Vout(h (resp.

ST ® Vl;n((h};)), and then (wo"") @ win(MT) “as an element of sI(ST) @ Eq(Vou®, vin®) via the

inclusion s[(S*) ® Hom (‘/ﬁt(%)> Vl;n((fg)) — sl(S*) @ Eq(Voutth) yinth)y  In the third equality,

the both hand sides are considered as elements of s[(ST)® VOUt(h A similar identification was

used in the fourth equality. These equalities will be refered as the compatibility condition.
Let us give few examples of admissible collections. The first one is trivial:

(1) V¥ =0 for any k, I,
(2) A¥ =0, ¥k =0,
(3) " = 0.
The next one will play an important role later. Fix a vertex kg. We set
(1) V¥ =0 unless k = | = ko and Vk'f)o =C,
(2) A* =0, ¥* =0 unless k = ko, and A% =0, U* € ST @ L(V* Wh) = S+ is such that
(Who @ (Tko)T)g = —(p,, where (y, is the ko-component of ¢,
(3) " = 0.

Note that ¥* is unique up to a multiplication by an element of U(1).

3(ii). Holomorphic descriptions. As in §2(ii), we write the admissible data in the holo-
morphic description:

BM
AF = {B%] , B’f € Hom(V Vout(h ), Bre Hom(VO'flt(h)’ Viﬁ(h))7
.kt

(I)E = |i ’%:| , ¢k < Ho (‘/out(h)7 Vkin(h))7 ¢k e Hom(Vm(h), Vkout(h))‘



We use notation ¢" = (¢, € L(Voutth) yvinthy Bk — (BF), € E(VF VF), i ¢ L(Wk VF),
j* € L(VF, W*) as before. The complex part of the compatibility condition turns out to be

—€(h)im(h) ®jout(h) + ¢hBout(h) _ Bm(h)(bh7

¢h .out(h) B in(h) .in(h ‘in(h)ash . Aout(h)Bgut(h)‘

(3.2) )
out(h)bout(h) — P Un(h)>  Jin(h) Pin(h) = Jout(n)

) satisfying (3.2) is uniquely determined from

Lemma 3.3. The map ¢h e L(vout(h Vm(h
2R (4f it exists).

(Bout(h)7 out(h)7jout(h ) and (Bm ) 1n

Proof. Suppose two maps ¢", ¢ satisfying 3.2) are given. Consider ¢" — ¢'*. By (3.2) the
kernel of ¢" — ¢ contains the image of i°™ and is B®"*M_invariant. Hence we have

Cr(dim Ker(¢" — ¢™)) < Ga(dim Vout)

unless ¢" = ¢ by the stability condition for (B°uth) jout(h) jout(h)y  Noreover, the image of
¢ — @™ is contained in the kernel of 7" and B™"-invariant. Hence we have

e (dim Im(p" — ¢™)) < 0

unless ¢ = ¢™ by the stability condition for (B™" (k) () Combining two inequalities,
we must have ¢" = ¢ O

Lemma 3.4. For each k,l € I we have
—~t =
S (otolt),+ X ((uof) wof) o (!, =G
heq 0 he 0 0
in(h)=k in(h)=k
where ¢, = G — >, {(Cuv') - ¢ and v! = dim V',
Proof. By the technique explained in §1(iv), it is enough to check

(3.5) - Z h)Sro) + dwif @ jf = Crc idye -
heH
in(h)=k
By the compatibility condition (3.2) we have
BEghg = ¢"¢" BY + ¢(h) BEi* @ j* — e(h)i* @ j* B,

Ohdhik = BiByif + e (k) (GO )i,

JROROE = JiBrBy + e(h) (i) g
for h € H with in(h) = k. Here i®®™® and jo*") are considered as elements of Voﬂt(;h and

(Voﬂt(%))* respectively, and ( , ) denote the natural pairing between them. By the equation
pc(B™,i™, j™) = —(c, we have

(3.6) Gy =t (@) = = dim Ve
Let us define n = () € L(V¥, V*) by setting n; as the left hand side minus right hand side of
(3.5). Then the above equations together with uc(B¥, ¥, j*) = —(c implies that
nB* =B, ni*=0, j'n=0.
By the non-degeneracy condition for (B, %, j*), we have n = 0. O



Let A" = (AL)res, where AL g Vi¥. Then (®;,¥') defines datum for M(A', W) for the
opposite orientation 0 and satisfies pu(®;, ¥') = ¢’ for each I. Moreover, A, considered as an
element of L(A°"(") AR satisfies the compatibility condition for (®;, ¥!). This observation
will not be used later.

3(iii). Reflection functor. Now we define a reflection functor for a given admissible collec-
tion. Suppose that collections of hermitian vector spaces V, W and a datum (A, %) € M(V, W)
such that pu(A,¥) = —( is given. Set
(3.7) Vi € Vi @ E(VE, V) @ L(VE, W),
and let 1y, : Vi — Vi, t: BEo(VF, V) = Vi, 1g: Eg(VE, V) = Vi, tw: L(VE, W) — Vj, be the
inclusions. B

Let us consider an operator Dy: St @ L(V* V) — V}, given by

(3.8)

Din . — v, trg+ (M) + 1o (wAn — trge (n ® wAY)) + i (AT — trer (n © A*)) + o ¥n,
where ¥ is considered as an element of ST ® V. This is an analogue of the Dirac operator.
A similar operator was introduced in [8, §4].

Let us rewrite this operator in terms of holomorphic descriptions. Consider the following
sequence of vector spaces:

(3.9) L(VF, V) =% Vi, = Vi ® E(VF, V) @ L(VE, W) 2 LV, V),
where
—Ukik Vi
ar(n)= |Bn—nB*|, B |C| =e(BC + CB*) + v ® j* + ib.
Jn b

Here vy ® j* is considered as an element of L(V* V) via the embedding Hom(V}*,V}) C
L(V*, V). The operator Dy is identified with [ak ﬁ,ﬂ
We have the following analogue of the Bochner-Weitzenbock formula.

Lemma 3.10. We have DZDk = idg+ ®Ay for a positive self-adjoint operator Ay,: L(VF V) —
L(VE V).

Proof. Let us show DZDk = idg+ ®Ag first. This means that the trace-free part of DZDk is
zero. By the technique explained in §1(iv), it is enough to check Sy = 0. But it follows from
the equations yuc(B. i, §) = —Ce = pic(B, i, jF).

The positivity of Ay is equivalent to Ker Dy = 0. By above it is equivalent to Ker ay = 0,
Im 3, = L(V*, V). Take n € Ker oy, C L(V¥, V). Suppose n # 0. The image Im 7 is contained
in Ker j and is invariant under B. Thus we have

Cr(dimImn) <0
by the (r-semistability condition for (B, i, j). On the other hand, Kern contains Imi* and is
invariant under B*. Thus we have
Cr(dim Kern) < (g(dim V)
by the (g-stability condition for (B*,4* j*). Summing two inequalities, we get (g(dim V) <

(r(dim V'), which is a contradiction. Thus we must have n = 0. The proof for Im 3, = L(V*, V)
is similar and hence omitted. O



We define a new collection of hermitian vector spaces V' = (V/)rer by
|7 4 Ker D,Tf,

where the hermitian structure on Ker DI,Tf is the restriction of that on XN/k Since Ker D, = 0 by
Lemma 3.10, we have

dim V} = dim Vi + Y _ dim V;*(dim W, = >~ Cyp dim V).
l m

Set v/ = (dim V/)ges € Z!. Then
w—Cv =w—-Cv—-CV(w-—Cv),

where V = (Vkl)k,lej = dim Vlk
Let I,: V| = Ker D,Tf — Vi and Py: Vi, — V) = Ker DI,Tf be the inclusion and the orthogonal
projection. We define a new data (A", ¥’) € M(V', W) by

Ahvout(h) + Oh wout(h)

Vout(h
(A Lout(n)) ¢ | (ids+ ®Pa(n)) | Vour(ny @ <Wf§<(:>))T+O<I>E ,
b bd"
Vi wy
W wg def- (idg+ ®Py) 0 ;

(W) © wy

; T .
where Vou(p) @ <w¢if((:))) is considered as an element of S* ® E(V™" V) via the inclusion

Hom(ﬁ/iiln(g;),%ut(h)) c E(V™ V), and (w@,f)T ® wy, is considered as an element of ST ®
L(V* W) via the inclusion Hom(V, W) C L(VF W).
Now we want to give a holomorphic description of the new data (A’, ¥’). Note that we have

the canonical isomorphism Ker D,TC = Ker Ok/ Im ay,.
Let us define

By Vout(h) = Vinn) U Wy = Vi, Jh: Vi — W

by
- Uout(h) def _Bhvout(h) + Chz.om(h) _
B, | C | = [e(h)voum @ j"" + Coh
b bgbﬁ
~ def Zk('LUk) ~ Uk def k
i (wr) = 0 ; Je |C| = Je(vk) + byiy.
—Wi ® ];’j b

Lemma 3.11. (1) E;L maps Ker Boue(ny (resp. Im aouy(ny) to Ker Binny (resp. Im ainery).



Proof. (2) is clear from the definition. Let us prove (1). We have

~ | VYout(n) — _ . — _ —
BumBh | C | =eBCH" + vouny ® jm(h)B;Ln(h) + eCH" B 4 0o g jinh) 4 iyt
b

= eBCO" + vou(ny ® "M Ly + OB GR it

Vout(h) m
ﬁout(h) C ¢ )
b

where we have used (3.2) in the second equality. Thus Ker Bout(n) is mapped to Ker Bi,,). We
also have

B —Tin(h) BZUt(h) iout(h)

B;Laout(h) (77) — _5(h)nout(h) iout(h) ® jin(h) + (Bn o nBout(h))¢E

I jne”

~Tin(h) ¢ihn(hli _
= | Bng" —n¢"Bm® | = aw(ng"),
jng"

where we have used (3.2) in the second equality. Thus Im cu(n) is mapped to Im o). ]

out(h)

By this lemma we have induced maps
By, Ker fout(n)/ Im ctoue(ny — Ker Sinny/ Im ctinery,
iy, Wi — Ker B/ Im ay, Jr: Ker B/ Im oy, — W,
Under the isomorphism Ker i/ Im o, = Ker DI,Tf = V/, it is a holomophic description of (A’, ¥").
Theorem 3.12. The data (A', ') satisfies the equation u(A',¥') = —('.

Proof. By the technique explained in §1(iv), it is enough to check uc(B’,7,j') = —(5. Let
[%} € Vi.. We have

> e(h)B,By+ i | | C
in(h)=k b

2 in(ny—k E(M) (Bth + ByCi* + Oh¢gut(h)iOUt(h)) (O GOty gy pvg 4 igbgi®
= > in(ry—r —Brvk ® j* — Cgi* @ 5 + v, @ jo " + e(h)Cd "

i > ik E(MDY " — jrvy, @ jF — byi* @ j*

By (3.2), Lemma 3.4, (3.6) and the equation uc(B,i,j) = —(c, this is equal to

—ClcUk + 20 ® jFF + D in(my=k E(R) (BrCy + CyBE) i* + ipbpi*

—CcC = Dnm—k (Bror © 3% — vp @ 5*By)
—Crcb — Jror ® 5




If [%k} is in Ker 3, then this is

Vk Vg ® ]kzk Vi
—Cilc,@ Cl+ |- Zin(h):k (Bﬁvk ® jk — % ® jka’f) = —Cilf,@ Cl| - Oék(’Uk ® jk)-
b — kv @ g* b
This proves the k-component of uc(B’,i', ') = —(¢. Since k is arbitary, we get the conclusion.

O

Corollary 3.13. (B',7',j') satisfies pc(B', 7', j') = —(¢ and the condition in Proposition 2.11(3)
for (i

The above construction is equivariant under the action of Gy. Thus we have an induced
map

f(Aoﬂ}oﬂ;o) . E)J?g(v, W) — mg/ (V/, W)

The continuity of this map is clear from the definition. So far, this is just a continuous map
between two topological spaces. We shall show that it is a hyper-Kahler isometry between
open subsets MM # (v, w), M (v, w), at least for reflection functors for simple reflections.
The proof for holomorphicity with respect to any of three complex structures I, J, K is easy,
and works for any F(4e we o). (It implies that the map respects the Levi-Civita connection.)

Remark 3.14. The above definition depends on the choice of isomorphisms W} = C. We can
avoid this ambiguity by the following modifications:

(a) Consider ®" as an element of S*T®L(V*" (W/iil((:)))*, youth) @ (W(flit(%))*), and consider
(3.1) in an appropriate way.

(b) Replace E(VF V) and L(V* V) by E(VF @ (WF)*, V) and L(VF @ (WF)*, V) in (3.7)
respectively,

(c) Replace L(V* V) by L(V*F @ (W}F)*,V) in (3.8).

Conjecture 3.15. (1) Note that the proof of uc(B’,7', ') = —(i requires only the complex
part (3.2) of the compatibility condition. It is natural to conjecture that the (}-semistability
of (B',i', j') directly follows from the (g-semistability of (B, i, 5) and (B*,i*, j*) (plus a similar
condition for ¢). Such a direct proof should also work for arbitary grand field. We shall prove
this conjecture affirmatively for reflection functors for simple reflections later. (See §4(iii).)

(2) In §7 we shall see that for any element w of the Weyl group, there exists an admissible
collection {(A®,¥*, ®*)} with v¥ = w % 0, where e* € ZL is the vector whose k-component
is 1 and other components are 0, and #. was defined in Definition 2.3. The cases w = 1 and
w = sy, correspond two examples given in §3(i). Are there any other admissible collections ?

(3) It is natural to conjecture that the composition of two reflection functors is again a
reflection functor, where the corresponding admissible collection is given by Proposition 7.1. If
this is true, we can give an another proof of results in §5, §6. For graphs of Dynkin types and
reflection functors corresponding to elements of the Weyl group (as in (2)), this conjecture is
true thanks to a description of the reflection functor in §9.

4. SIMPLE REFLECTIONS

In this section we study reflection functors for the second example for the admissible collec-
tion in more detail.



4(i). Definition. We change the notation for brevity. Fix a vertex k € I. Let (}, € R* ® (iR)
be the entry of ( corresponding to the vertex k. We take an element x € St such that
w(x) = (x, where p is the hyper-Kéhler moment map for the U(1)-action on S studied in
§1(ii),§1(iii). Such x is unique up to a multiplication by an element of U(1). Furthermore we
assume x # 0 by the non-degeneracy assumption.

Suppose that collections of hermitian vector spaces V., W and a data (A,¥) € M(V,W)
such that pu(A,¥) = —( is given. Set

Vi € Vo @ Vout(n) © W,

heH
in(h)=k
and let ¢y Vi — XN/k,Lh: Vout(n) — XN/k,LWk: W, — XN/k be the inclusions, and let 7y, : XN/k —
Vi, ™ Vi = Vourn), Twy, © Vi — Wi be the projections.
Let us consider an operator

Dy def. xT®LVk + Z Lh.AIL—i- Z Lhw Az + LWkW,I: St eV, — V..
hef heQ
in(h)=Fk in(h)=Fk

Assuming Ker D, = 0, we define a new collection of hermitian vector spaces V' by

o, [ Vi if 1k
4.1 vy :
(41) ! {Kerl);f if |l =k,

where the hermitian structure on Ker DI,Tf is the restriction of that on 17k Since Dy, is injective
by assumption, we have

v =5, %V,

where v/ = dim V. B B
Let I;: V| = Ker D,Tf — Vi and Py: Vi, — V) = Ker DI,Tf be the inclusion and the orthogonal
projection. We define a new data (A", ') € M(V', W) by

(Apmy, + (wz)T @ 77) I if h € Q,out(h) =k
AL (g @P) [(idgs ®uyy) Ap — 2 @ 0p] it b€ Q,in(h) =
Ay, otherwise,
o/ def. (id5+ ®P) [(id5+ ®I,Vk) U —z® 7TWk] if |l =k,
: 7] otherwise.

By Theorem 3.12 we have
Theorem 4.2. The data (A", ') satisfies the equation u(A',¥') = —si(.
We denote the resulting map by
Sk Me(v,w) — M, (s % v, W).

We will also show that Sy maps (v, w) to ML (sy, * v, w) later.



Remark 4.3. We can define the reflection functor Sy even when (, = 0. But in this case we
have an orthogonal decomposition

Vk/ = V. ® Ker Z Ahﬂh + Z (W.AE)TWFL + WkWWk 5

_heQ heQ
in(h)=k in(h)=k

and (A, ¥') is equal to (A, ¥) extended to V} by 0.
The following is the main theorem of this paper.

Theorem 4.4. The reflection functors Sy, satisfy the defining relation (2.1) of the Weyl group.
More precisely, we have

SiSk = 1d: M (v, w) — M (v, w),
SiSi = S1Sk: M (v, w) — M, sc(spxsixv,w) if Ay =0,
SkS1Sk = SiSkS1: M (v, W) — M, s50c(Sk * sk spx v, W) if Ay =1,
where ¢ 0, (¢ #0, (o + ¢ #0.

The second equality is trivial. The first and third equalities will be proved in §5 and §6
respectively.
As in [15, §9], we have the following application.

Theorem 4.5. Suppose ¢ satisfies (2.7). Then there ezists a Weyl group representation on
H*(M(v,w),R) if w —Cv =0.

This is an analogue of Slodowy’s construction [19, IV] of Springer representation.
4(ii). Holomorphic description of reflection functors. Let us choose a particular com-
plex strcture, say I, and rewrite the reflection functor Sy in the holomorphic description in

§2(ii). Let © = [ZL] be the holomorphic description of x.
Let us consider the following:

(4.6) Vi — Vi=Vi® @ Vout(n) & Wi v,
h:in(h)=k
where
Z1 ide
A = @Bﬁ s ﬁk = [22 ide Z&(h)Bh Zk}
Jk

The operator Dy, can be identified with (ay, ﬂ,i)
We have an isomorphism Ker D! = Ker B/ Im a,. We also have the followings by Lemma 3.10:
(1) (4.6) is a complex, i.e., fray = 0.
(2) ay is injective and [ is surjective.
Note that these statements can also be proved directly by using uc(B,1,j) = —(c, 2122 =

Ck,c, and the stability condition.
For h € H such that in(h) = k, let

By,
B, Y | —e(h)zaum | Vout(n) = Vi, By = [Br =21 0] Vi = Vouw-
0



Since é’ﬁak = 0, we have an induced homomorphism Ker 3/Ima — V) from élﬁ Let us

denote it by BZ. Since ﬁkég = 0, we have an induced homomorphism Vouny — Ker 3/ Im ay,.
Let us denote it by Bj.

Let
~7 def. U = ~y def. 1. =
i = 0 Wi — Vk, Je = []k 0 —ZﬂTWk} Ve — W
_ZQLWk

Since ﬁ;ﬁ’k =0, },’fak = 0, we have induced maps 7}, : Wy, — Ker §x/Im ay, and j;.: Ker §;/Im ay, —
W, as above.

We define a new data (B’,i,j') by setting B, = By, i, = i, j; = ji for other edges h
and vertices [. Then the data (B’,i,j’) is a holomorphic description of (A’,¥’) under the
isomorphism Ker /Ima = Ker Dy, = V.

By Theorem 4.2 and Proposition 2.11 we have the following.

Corollary 4.7. (B',i',j') satisfies puc(B',7',j') = —sk(c and the the condition in Proposi-
tion 2.11(3) for sp(r.

4(iii). Another proof of Corollary 4.7. We give another proof of Corollary 4.7 in this
subsection. This is less conceptual, but works for arbitary grand field.

Note that we only need the equation uc(B,1i,j) = —(c to define (B’,4', j') on Ker £/ Im .
The following proof also shows that (B’,4', j') is si(g-semistable (resp. sp(g-stable) if (B, i, j)
is (g-semistable (resp. (g-stable).

Let 17k = @h:m(h):k Vout(n) @ Wi. Let us modify (4.6) as follows:

(4.8) Vi —— Vi —— Vi,

where

(4.9) o= {GBMBE} , T = [Z e(h)By, Zk} )

Note that the equations u(A,¥) = —¢ and p(x) = ¢ imply

(4.10) ToO = —z129 = — (k0 olo — 777 = —|21]* + |20)? = 2i¢kr.

In the following proof we shall use the following weaker condition instead of the right equalities:
(4.11) If (.o =0 and i(xr < 0, then 7 is surjective and z; # 0, 2o = 0.

This condition follows from the (g-semistability of (B, 1, j) and (g-stability of x.
We also consider similar things for V’, B’, i, j/ and denote them by

/ /

/ a i1 T /
Vi Vi Vi

Note that IA/k’ = XA/k
Assume i(x g < 0 and consider
Vi L V=T, — Vi
(Exchange V and V' in the following discussion if iy g > 0.)
Lemma 4.12 (cf. [11, 3.2]). (1) 70’ =0

(2) The complex is exact under (4.11).
(3) o7 =0'7" = Grcidp, -



Proof. (1) We have

By
Jk
Since V! = Ker f;/ Im ay, we have 70’ = 0.

(2) Since the Euler characteristic of the complex is zero, it is enough to show that o’ is
injective and 7 is surjective.

Suppose (xc # 0. Then 70 = —(c and 7’0" = =}, ¢ = (¢ imply the injectivity of ¢’ and
the surjectivity of 7.

If (xc = 0, then we have i(, g < 0 by assumption. Then 7 is surjective and z; # 0, 22 =0
by (4.11).

We want to show that Ker ¢’ = 0. By the definition of (B’,4', j'), the map ¢’ is induced from

[0 —21 idf/k} : lek =V, P ‘7k — ‘7k

| Y. eBuBp+inge —=n Y e(h)By —zix — B
h:in(h)=Fk h:in(h)=k

[Z €(h)Bh Zk}

Suppose [%] € Vi & Vi is in the kernel of the above map. Then o(vx) = z10. Hence [%] =
ag(vk/z1). This shows that ¢’ is injective.

(3) We have
o @élﬁ ~ 1 B Sy T . c1
oo = (O] (zemB, 7=l e [y, ] =t it
Thus we have the assertion by 2129 = (i c. O

Now we begin the proof of Corollary 4.7. By Proposition 2.11(3) we may assume either
(a) (B,i,7) is (g-stable or (b) i = 0 = j and B is (g-stable in the sense of Definition 2.10.
We prove that (B’,7,j') (or B’ in case (b)) is (g-stable. The proof for the case (b) is similar
to that for (a). So we only give the proof for (a). Note also that the proof also shows that
(B',7,7") is (gp-semistable if (B, 1, j) is (g-semistable.

Suppose a collection S = (5]),es of subspaces S; C V// with Bout(h (S(’mt(h
is given. We have

(413) Sk - @ out(h 0 7’ <@ S(/)ut(h) ¥ 0) - Sllf

Set

) C Siuny Ji(5) =

o det. S| if | # k,
l <@h :in(h out(h © 0) if | = k.

Then S = (5))ies is a collection of subspaces S; C V.

Claim. Bout(h) (Sout(h)) - Sin(h)> ]Z(Sl) = 0.

Proof. If in(h) # k # out(h), we have Boun) (Sous(n)) C Sinn)- If I # k, we have j5;(S;) = 0. If
in(h) = k, we have Bou(n)(Sout(n)) C Sk by the definition of Sj.
We have

o(Sk) = ot <@ Sout(h) P 0) = (0’7" + G id) <@ Sout(h) P 0)
Cao'(Sp) + <@ Sout(h) D 0) = @ Sout(n) @ 0.

This proves the assertion. O



By the (g-stability condition of (B, i, j) we have
(4.14) 0> Cp(dim S) = > G dim S + iC g dim Sy
I£k

unless S = 0. If § = 0, then S] = 0 for | # k. Then (4.13) and the injectivity of o’
(Lemma 4.12) imply S;, = 0. Thus ' = 0.
So we may suppose (4.14). Consider a complex

Sk < D Sout(n) ®0 —— Sp.

The left arrow is injective by Lemma 4.12. The right arrow is surjective by the definition of
S;. Hence we have

dim Sk S Z dim Sout(h) — dim S,/f
hein(h)=k
Noticing i(xr < 0, we substitute this inequality into (4.14). Then we get

0> iZ(Cl,R + ApGrr) dim S; — i€ g dim S, = (g(dim S').
1k

/

Next suppose a collection T' = (1})ier of subspaces T} C V' with B/ (Thuny) € Tinnys
Imé; C T} is given. We set

7, def. 1y if I £k,
l T <@h;in(h):k T(;ut(h) ¥ Wk) ifl =k.

By a similar argument as above we have By,(Tyuyny) C Tinny and Imi; C T;. Thus we have

(4.15) Gr(dim V) > Ge(dimT) =) " i¢p dim T} + iCyp dim T,
£k

and we have the strict inequality unless 7' = V.
As above, we have

(4.16) dim T, < Y dim Touyny + dim Wy, — dim 7.,
hiin(h)=k

Combining this with (4.15), we get
Cp(dim V') > (g (dim T7).

If we have the equality, we must have equalities in (4.15) and (4.16). The equality in (4.15)
implies 7" = V. Substituting it into the equality of (4.16), we get dim7} = dim V). Thus
T" = V'. This shows that (B’,i, ;') is (g-stable. We have completed the proof.

Remark 4.17. Lemma 4.12 implies that S}, is the same as the map defined by Maffei [13]. Our
two proofs of the (p-stability of (B’, 7, j') are totally different from his.



4(iv). Reflection functor when (;c # 0. In this subsection, we still use the holomorphic
description as in the previous subsection. We further assume (¢ # 0. Since we only need the

complex equation puc(z) = (ke in the holomorphic description, we may assume 2z; = —1 and
Zg = —Ck.C-
Let Vi, o, 7 as in §4(iii). Since 70 = —(;c by (4.10),
~ 1 1
(4.18) Vidx— (x + —UTx) O ——-7T€KermpV,
Ck,C k,C

is an isomorphism between XA/k and Ker7 ¢ V..

Proposition 4.19. (1) The isomorphism (4.18) induces an isomorphism Ker 7 — Ker 3/ Im ay,.
Combining it with the isomorphism V; = Ker 3;/Im ay., we have an isomorphism V] — Ker 7.

(2) Let h € H such that in(h) = k. Under the above isomorphism Kert = V], the map
B/E: Vii = Voun) s identified with the composition of

inclusion {5 projection

Kert Vi

Vout(h)-

Similarly j,.: V), — Wy, is identified with the composition of Ker 7 — Vi — Wi
(3) The map Bj is identified with the composition of

E(h)gkﬁ@idvout(h) inclusion
Vout(h) — out(h) Vi

(4.18) projection
_—

— Kert @V},

Ker .

Similarly i), is identified with the composition of

Cr,c®idw, inclusion 75 (4.18) projection

W, W Vi Kert @V}, Ker 7.

o~

Remark 4.20. This proposition shows that the reflection functor Sy is same as the one defined
by Crawley-Boevey and Hollands [2, §5] when (¢ # 0.

Proof. (1) Since Vi=Ve® XA/k, (4.18) induces the following commutative diagram:

[£93]

Vi —— Vi Vi

5 |

Vi — Ve KerrpV), —— V,
[—1 [—Cr,c 0 —Cr,c]

Bk
AN

(4.21)

0
1

This induces an isomorphism Ker g/ Im oy = Ker 7.

(2) Consider Br. Note that (a) the restriction of the inverse of (4.18) to Ker 7 is the inclusion
Kert — IA/k, and (b) the restriction of élﬁ to 17k is ATV ny = TWVane(n) - Then the assertion for
By follows. The assertion for ji can be checked in the same way.

(3) Consider Bj,. The isomorphism Ker i/ Im ay, = Ker 7 is written as the composition of

(4.22) Ker Bx/Im oy, — Vi/Imo 1, (Ker7 @ Vi) / (06 Vi) — Kerr,

where the first arrow is the homomorphism induced from the natural projection Vi — IA/k, and
the last arrow is the homomorphism induced from the projection Ker7 &V, — Kerr. If we



compose Bj with the first arrow, then we get

{_5(h)22bvout(h>} mod Imo = {g(hxk’CLV"“‘(h)] mod Im o
0 0 |

If we further compose maps in (4.22), we find the required identification of Bj. The assertion
for 4, can be proved in a similar way.

O
5. RELATION (I)
In this section we check the relation S;Sy = id under the assumption (; # 0. Rotating by
an element of Sp(1)y, if necessary, we may assume (¢ # 0. (Or by continuity with respect to
Ck.c, we may assume (¢ # 0.)

Suppose that data (B, i, j) for V, W is given. We apply the reflection functor Sy, to get data
(B',7,7") for V', W. Then we apply Si again to obtain (B”,", ;") for V" W.
Let us consider operators in (4.8) for (B’,7,j') and denote them by o, 7":

VW — @ wi(hy & Wi, —— VY
heH
in(h)=k

By Proposition 4.19, we can identify ¢’ and 7/ with the following operators via V’ut(h
and the isomorphism V! = Ker 7 respectively:

) = Vout(n)
o' Kerr 2eusion, ¢ @ Vout(n)y © Wh,
heH
(5.1) in(h)=k

~ Ceoidy  ~ (4.18) oot
) i . projection
T/ZVk Vk KerT@Vk—>

Ker 7.
Hence we have Ker 7/ = Im o. This induces an isomorphism

Vi

R |

Proposition 4.19(1)
Im o = Ker 7/

V/l
~J k :
Our remaining tasks are to identify B”, ¢”, j” with B, i, 7 under this isomorphism.
Let h € H such that out(h) = k. First consider B} . By Proposition 4.19(2), it is identified
with the composition of

Ker ; inclusion ‘7 projection
T k

Vin(n)-
If we compose o: Vi, — Ker 7/, we get Vi, = Vi _projection, Vin(n)- By the definition of o, this is
equal to By: Vi, — Viygy. Similarly 7 is identified with jj.
Next consider By. By Proposition 4.19(3), By is identified with the composition of

e(h) (—=Cr.0)®idy; s

inclusion 1> the first component of ’
Vin(n) in(h) Vi Ker 7.
= (4.18) for B, ¢/, j'
The last map is given by
Vidzxr— a2 — —o'7Tv € Ker7'

k,C
By (5.1) and the definition of (4.18), this is equal to

1

——0T.

Ck,C



Therefore, B can be identified with

1 _
_Ck—cas(h)Bg <g(h)(—ck,@) ® idvout(h)) — 0B,

Hence it can be identified with By if we compose o~': Imo — V. Similarly 4} is identified
with i. All other components are unchanged, hence (B”,4", j”) is isomorphic to (B, 1, j).

6. RELATION (IT)

Take two distinct vertices k,l € I such that Ay = 1. In this section we check the relation
SpSiSk = S1SkS; under the assumption ( # 0, ¢ # 0, (. + {; # 0. Rotating by an element of
Sp(1)z or using the continuity, we may assume (xc # 0, Gc # 0, (e + Qo # 0.

Suppose that data (B,1,7) for V, W is given. Let us use the notation for data which are
obtained by applying reflection functors successively to (B,i,7):

(B,i,j) for V Sy (B',i',j") for V! = (B",i", j") for AN = (B" 4", ") for V"
(B,i,j) for V N ('B,"i,"j) for 'V Sy ("B,"i,"j) for "V N (" B,"i," j) for "V .

By the assumption, we have the unique oriented edge hg such that out(hg) = k, in(hg) = .
We also use the following notation:

~, def. ~, def.
(6.1) VS B Veuw®@We, VE P Viww @ Wi
heH:in(h)=k heH:in(h'")=l
h#ho h'#ho

SOWGh&VG‘/}k:Vk@Vl,‘/}l:VI@Vk-

6(i). Isomorphisms for vector spaces. Let us consider operators in (4.8) for (B’,4', j) and
denote them by o', 7"

‘/l/ —) V/ def @ OUt(h/ @VI/[ —) V/

hsin(h')=
Note that V/ = V; and V/ =V, & V}. Let
ka:lv/k—>17k, L‘7l2‘v/l—>‘7l/
be the inclusions, and let
va:\A/k—ﬂv/k, 7T‘~,l:17l’—>f/l
be the projections.
Let J be the composition of
U =Viev, 22ttt o Kerr "9 g U = Vo Vi @ Vi

Lemma 6.2. (1) Under the composition of
‘/7[/ i)‘v/l @ ‘v/k @ ‘/l projection ‘v/l @ ‘v/k7
the kernel of T’ is mapped isomorphically to the kernel of

H‘v/l@‘v/k_)‘/kn

where H S [Ber'ly, 7lv,] = [Be X e(W)Byw Biii S e(h)Br ] .



inclusion projection

Vi @ VY V) is identified with the

W =
171 under the above isomorphism.

projection

(2) The composition of Ker 7’
Vie Wi

.. inclusion
composition of Ker H ———

(3) The composition of
projection ‘v/k

projection
_—

(6:3) Ker 7' 2250 U LV & Vi &V

inclusion
[ —

1s identified with the composition of Ker H f/l @ f/k Vk under the above

1somorphism.
(4) The composition of

s inclusion projection
E—

Kerr ‘/}l/i)f/l@f/k@‘/l

1s tdentified with the composition of

Vi

!
inclusion .~ ~_ projection —e(ho)T Ly,

KeeH ——— V, @V, \%

V= Vi
Proof. (1) Under the injective map J: IA/l’ — Vi@ Vj the kernel of 7/ is mapped to the kernel of

0 e~
et T T o
l 0

where we have used Proposition 4.19(2) to rewrite the restriction of 7/ to V! = Ker7. Using

17k = f/k @ Vi, we can rewrite the above as

0 T Vi g (h_o)B%
(6:4) L% 0" c(ho)idy,
Then we eliminate the component V;, and get the assertion.

(2),(3) Clear from the above discussion.
(4) The projection to the V;-component from the kernel of (6.4) is given by

—6(h0)7’l
This is nothing but the assertion. 0

:|3‘v/l@‘v/k@vl—>‘/k@vl-

v

Let us consider operators in (4.8) for (B”,i",j") and denote them by o”, 7"

V// a" ‘7// def. @ V//
k k h:in(h)=k

out(h

L O W~ V.

Note that V = Vi @ V.
Let Z be the composition of

=5 - Proposition 4.19(1) for (B”,i",5") ~

V' =V,aoV" Vi. ® Ker 7/
inclusion >y id‘v/l 3 . ) v,
—— VeV, — Vo Ve Vi,a V.

Lemma 6.5. (1) Under the composition of
Ve ®V,

‘7,, 1) ‘v/k @ ‘v/l @ ‘v/k @ ‘/l projection to the first two factors ~
k
the kernel of ™" is mapped isomorphically to the kernel of

G: VeV —V,

where gdéf' [BhOT Vk T/|‘7J = [Bhozg(h)Bh Bhoik Z&(h/)Bh/ 2'1}.




inclusion ‘7 "
k

(2) The composition of Ker " = Vio V) IO, Vi, is identified with the
composition of Ker G nclusion, Vk D f/l _projection, Vk under the above isomorphism.
(3) The composition of

inclusion 5y Z - ~ projection
Kerr" 2S5 V) SV VoV el 25 Y
.. . . .- inclusion ~_ projection .
1s identified with the composition of KerG ———— Vi, & Vi ——— V] under the above iso-
morphism.

(4) The composition of
66)  Kerr S 00 Ly 64T,

projection to the third factor ~
®V

Vi

inclusion ~_ projection

1s identified with the composition of KerG ——— V, @V, —— Vk — ffk where the last
map 1S

—&(ho) (Creidy, +mp, o7y, ) -

Proof. We use Lemma 6.2 after replacing k, I, ho, ', V., (B,i,5) by I, k, ho, h, V', (B4, ")
respectively.
(1) The kernel of 77 is isomorphic to the kernel of

[Bh, X e()B;, Byii S e(W)By, i) : Vi@ Vi =V,

Although we should replace Vou(nr), Vout(n) by Vo’ut(h/), Vo’ut(h) in the definition of Vk, Vi in (6.1),
they are the same by definition. In the same way, the last V; was a replacement of V/.

Also by definition, B} and i; appearing in the last two rows are equal to By, and 7; respectively.
Moreover, B; Bj, is equal to

1 .
£ Bnle()B) <g(h/)<k,@ ® ldvout(h/)) — By, By

by Proposition 4.19(2),(3). Similarly, By, i, is equal to By,ir. Thus the above operator is the
same as G.

(2),(3) It follows from Lemma 6.2(2),(3)

(4) Spelling out the definitions of Z, J, we can rewrite (6.6) as the composition of

(6.7) Ker 7_// M} ‘7// _ f/k D Vl” i ‘“/k @ Ker 7_, inclusion ‘v/k o ‘7[, _ ‘u/k o ‘u/l & Vk’

projection Vk/ i Ker + inclusion ‘7k _ “’/k oV projection ‘v/k
By the replacement of Lemma 6.2(4) the composition of the first five maps of this is identified
with

inclusion ~_ projection ~, inclusion > —€(h0)7'// =
KerG —— V@&V, Vi |74 V! =V, = Kerr.

The composition of the last three maps is explicitly written as

_5(h_0) [E E(h//)B]/.L// Z;c ]

Vi = @ out(nr) © Wi V! = Kerr.
h''e Hiin(h")=k
h'#ho

By Proposition 4.19(3) this is equal to

o —e(ho)Creidy, o clusion

. " ‘7k (4.18)

projection
S

Kert &V Ker .



Composing the last two maps of (6.7) and using the definition of (4.18), we get the assertion.
U

By Lemmas 6.2, 6.5 we have
(6.8) V" =~ Kerg, V" = V" = KerH.
Note that G is obtained from H by exchanging k < [, hy < hg. Thus we have isomorphisms
Vk:// %} ///Vk ‘/l/// g /”‘/l
The other components for V" and "V are the same, so we have isomorphisms V" ="'V,

6(ii). Identification of data, Part (I). Our remaining tasks are to identify (B",i", ;")
with (" B,”4,"” j) under this isomorphism.

Take h € H, h' € H such that in(h) = k, in(h') =1, h # ho, b/ # hg. By Proposition 4.19(2),
B is identified with the composition of

y inclusion 54 projection 7 .
Kerr Vi out(h) = Vout(h)-

By Lemma 6.5(2) it is identified with the composition of

Kerg inclusion ‘V/k & ‘V/l projection ‘/Om(h)‘
By Proposition 4.19(2), B> = By is identified with the composition of

; inclusion {5, projection ’
Kerr ‘/l out(h’) = ‘/Out(h/)'

By Lemma 6.2(2) it is identified with the composition of

inclusion - ~_ projection
_

KeeH —— V@&V, Vout(h')-

Noticing that the above identifications are interchanged under k < [, G < H, h < I/, hy < ho,
N/ N/

we find that By, B are identified with "' By, " Byr respectively. Similarly ji’, ji" are identified
with " jx, "' j; respectively.
6(iii). Identification of data, Part (II). By Proposition 4.19(3), B;, = By, is identified
with the composition of

e(h")(C,e4Cr,c)®idy, s

out(h/) / inclusion ‘7, the first component of
out(h’)

(6.9)  Voun) = Vo/ut(h/) Ker 7'

oy

(4.18) for (B',#',5")
Let us consider the compositon of

6.10 Vout(h (6.9) Ker 7/ Lemma 6.2 Ker H inclusion ‘V/l @‘v/k
(h") — —_—

Using Lemma 6.2(2) and the definition of (4.18), we find that the Vj-component of (6.10) is
given by

V]

e(h)(Cre + Guc)tw + 70" Bur : Vounry — Vi,
where ¢ 0 Vouwnry — \71 is the inclusion.
Let us compute the Vi-component of (6.10). By Lemma 6.2(3) it is given by the composition

of

‘/out(h/) —>(6‘9) Ker ’7—/ —>(6‘3) Vk

V]



Spelling out the definition of (6.9) and (6.3), we find that this is equal to

1 /

e(h) (G + Coe)P——Bi—(e(h')By) = BB—By,
where P is the composition of
Vk, Proposition 4.19(1) Ker inclusion ‘7k projection ‘v/k

If we rewrite B;L—O by Proposition 4.19(3), the above becomes

1 _ _
A (e(ho) Bz) e(ho) ko B = my, 0 BBy

Thus (6.10) is given by

e(h')(Cre + Q)i + my0' B | L
7y, 0 BB Vo) = Vi ® Vi

By Proposition 4.19(3), B;” is identified with the composition of

e(h ®id
(We Vc::u(h) " inclusion ‘7,, the first component of

6.11 Vous(h) = Var ou
( ) t(h) out(h) N t(h) K (4.18) for (B”,i",5')

Ker7”.

Let us consider the composition of

6.12 ‘/outh (6.11) Ker 7" Lemma 6.5 Kerg inclusion ‘v/k@‘v/l
(h) ? . —_—

o

Using the above calculation after replacing k, [, ho, b', V, (B, i, ) by I, k, ho, h, V', (B',#,5")
respectively, we find that (6.12) is given by

€(h>€l,CLh —+ WVkU/,B;L

wo B B | ¢ Ve = Vi@V

where ¢, is the inclusion Vi) — Vk By Proposition 4.19, we have

B;LOB;L = By, By,
Ty, 0" By, = e(h)Ck.ctn + 0 Bh,

Thus the above is equal to

e(h)(Cr.c + Cuc)in + Ty, 0By,
0" Bho B

Noticing that the above identifications are interchanged under k < [, G < H, h < I/, hy < ho,
we find that B}, B}, are identified with "' By, " By, respectively.
Similarly, ¢/, i/ are identified with ", "i; respectively.



6(iv). Rewrite B;' . By Proposition 4.19(2), B}’ is identified with the composition of

inclusion {3, projection
(6.13) Ker 7" vy v/

We want to study the composition of

Lemma 6.5(1) y (6.13)
——

(6.14) KerG Ker 7" —— V)"

o~

Proposition 4.19(1) for (B’,4’, 5’ Lemma 6.2(1
e N

inclusion >
Kerr KerH ——— V@ V,.

~ ~

First consider the Iv/l-component. By Lemma 6.2(2), the f/l-component of the composition of
the last two maps of (6.14) is equal to the composition of

Ker 7_/ inclusion ‘7[/ _ “’/l @Vk/ projection ‘v/l
Substituting this back to (6.14), we find that the Vj-component of (6.14) is equal to the
composition of

Kerg inclusion ‘V/k @‘V/l projection ‘v/l
by Lemma 6.5(3).

Next consider the Vi-component of (6.14). By Lemma 6.2(3), the Vi-component of the
composition of the last two maps of (6.14) is equal to the composition of

; inclusion projection
_—

Ker ‘Aﬁllffz@ffk@vl V.
Substituting this back to (6.14), we find that the Vj-component of (6.14) is equal to the

composition of

(6.6)

= inclusion >
KerG — Ker7” |74 V.
By Lemma 6.5(4) this is equal to
inclusion ¥ ~_ projection v —€(h0)<Ck,q: ide Ty, U”Vk)

Ker G 29500 72y Vi V.

6(v). Rewrite B%. By Proposition 4.19(3), B% is identified with the composition of

" E(E)Cl,a:@idvlu
(6.15) Vl Vl

inclusion 5, the first component of
" V/l
k

= (4.18) for (B”,i",5")

Ker 7”.

We want to study the composition of

Lemma 6.2(1) , Proposition 4.19(1) for (B’,#, j')

(6.16) KerH Ker 7

~ ~

"
Vi

(6.15) Lemma 6.5 inclusion ~
— Ker7" ———= KerGg —— V, @ V.

First consider the Vk-component. By Lemma 6.5(2), the Vk-component of the composition of
the last two maps of (6.16) is equal to the composition of

projection
E—

inclusion {5 ~
Ker 7/ 2500 P — 7y V" V.



Spelling out the definition of maps in (6.15), we find that the f/k-component of the composition
of the last three maps of (6.16) is equal to the composition of

B//

(6_17) Vl” ho Vk” U_N) ‘7// _ “’/k@vl/, projection ‘v/k

The composition of the last two maps of (6.17) is equal to the composition of

(& 7]
heH:in(h)=k
h#ho

By Proposition 4.19(2), this can be rewritten as

Y]

inclusion 5 > projection
Ker1 —— V=V, &V, ———— V}..

Proposition 4.19(1)

V=V

o

o~

Let us substitute this back to (6.17), compose the map Ker 7 — V}” in (6.16) and then rewrite
B;;—O by Proposition 4.19(2). We get

projection
_

Vie.

s inclusion ‘7, projection V! Proposition 4.19(1) inclusion
l k

Kerr Ker7—>\7k=17k@1/l

o~

This is nothing but (6.3). By Lemma 6.2(3) this is identified with
Ker H inclusion ‘V/k & ‘V/l projection ‘v/k

under the first map Ker H — Ker 7/ in (6.16).
Next study the Vj-component of (6.16). By Lemma 6.5(3), the V;-component of the compo-
sition of the last two maps of (6.16) is equal to the composition of

/1 projection

(6 18) Ker ,7_// inclusion ‘7k ‘/l”

Proposition 4.19(1)

; projection ¥

inclusion > >,
Ker 7/ 2uion, g y7 gy Brofection, g7

If we compose (6.15) with the first two maps of above, we get
(6.19) e(ho)Gc ® idyy + By Bi=: V" — V"
We study each summand separately. The first summand gives us

o~ ; ; ~ foct ho)¢ cidy,
= inclusion projection e(ho)<, A
V" = Ker 7! v Vi Vi

If we compose first two maps Ker H — Ker 7" — V)" of (6.16) with above, we get

o e(ho)Cc dy,

inclusion - ~,  projection
Kee H —— V@& V}, Vi Vi

by Lemma 6.2(2).
Next consider the second summand of (6.19). Let us rewrite B by Proposition 4.19(3),
and then compose with the last three maps in (6.18). The result is

IR AR vd -
7T‘7ZUBhO. Vi — V.



By Proposition 4.19(2), this is equal to

inclusion {5 projection

V! = Kerr Vi

V=V —— W
If we rewrite B;;—O by Proposition 4.19(2) and compose with above, we get

oy

/
o inclusion 3, projection = inclusion 5 projection K
V" = Ker 7' v/ V! = Kert Vi Vi=V — V.

If we compose first two maps Ker H — Ker 7" — V/ of (6.16) with above, we get

—a(hO)T/LVl T0 o

inclusion - ~, projection ¥
KereH —— V, @V} Vi v/

by Lemma 6.2(4). Thus the Vj-component of (6.16) is given by

T : =
inclusion ~ ~_ projection ~ E(hO)Cl»‘CIdVl _a(hO)WVlUTLVl v

KerH —— V, @V, Vi Vi.
Since e(hg) = —¢(hg), this shows that (6.16) and (6.14) is interchanged under k « I, G «

H, ho < ho. Thus By, B% are identified with " By, " By~ respectively. Combining all
identifications together, we find that (B",:", j”) is isomorphic to (" B,"i," j).

7. COMPOSITION

Suppose that we have another admissible collection {(fll, v e M(VEL W, @E} . We
l€1,heQ

apply the reflection functor Fae e ge) to each (A, ) to get data (A", ") for V", W'
Let
D, STL(VH VY - VIeEVH, Ve (V)
be the operator (3.8) for (A!,¥'). Here we use W! = C for m = [ and 0 otherwise. Then
V" was defined as Ker Dg. Let Il and P! be the inclusion and the orthogonal projection of
Ker Dl in V! & E(V*, V) & (VF)".
For each h € Q we define @™ € St @ L(V/n() J/7out(h)) by

y Phy
< ‘T)E I;n(h)) o] et (ids+ ©Pouginy) OO + ngff((g)) ®b
b — <w¢ii§((£)))T Ch + bA;
v B B
for %' S Vkm(h) o E(V*, Vm(h)) D (Viﬁ(h))*‘

Here @j;ltt(%) ® b is considered as an element of S* @ E(V*, V") via the inclusion (V)" ®
Voit;t((}g) - E(vk) Vout(h)).

Proposition 7.1. {(fl’l,@’l)? @’E}l g is an admissible collection.
el,he

Proof. Let us consider the complex (3.9) for V = V!, W = W' and denote the operators by o
and fL:

Bi

— al — — * —
L(VE VY — VIaEWVF, VY e (VF) —— LV V.



Thus we have the isomorphism V! = Ker 8! /Tm ol B
Our first aim is to give the holormorphic description of @' Let B* i* j* &" be the holo-
morphic description of A*, ¥F &
Let
Q;ZL: VkOUt(h) D E(Vk, Vout(h ) (V

[e)

ut(h) )* — Vm @ E(VF, Vi) g (Vﬁ(h))*>

v B ¢kvi_ b
i |C| = |90 i) @b
b Jom(m) Cr + OBE

We claim that ¢* maps Ker 3," W) (resp. Im aom(h)) to Ker ﬁk ) (resp. Im ofkn(h)). In fact,
we have

) v
out T
b

= 2 (B"Mg'C + ¢"CBY) + BRI @ b — i @ bBE + Gl @ j* + W (7N Gy + bBY)

v
=" (e (B™MC + CBY) + v jF + "M @ b) = ¢"g" ™ | C
b

where we have used (3.2) in the second equality. Similarly we have

I out(h in(h
;{?hak " )77 = O‘k( )(¢h77)-

These show the claim.
Thus ¢} induces a homomorphism from V. outh) — Ke ﬁom(h /Im o/m(h to V’ln = Ker ﬁ,in(h) /Im a}ﬁn(h).
We denote the induced map by ¢’h for brev1ty. It is clear that ¢’h is the holomorphlc descrip-
tion of ®*. By the technique explained explained in §1(iv), our remaining task is to check
(3.2) for ¢} and (B", ", j").
For ‘[vcb] € VOUt(h @ E(Vouth)) jrouth)) g <V°m(h/))* we have

out(h’) out(h)
o1 B+ (a*s;; i Clr = e ()i @ b) iousr)
=/in(h) 7. h
By )¢gf1t(h/) g = | (W)@t v ® Jm h/ o+ <¢h0 - (h)zin(h) ® b) "

< -out(h) O +bBout(h )Qslhli(h)

out(h
“h Bout(h Chi out(h')\ 5 h bi .out(h) —out(h)
in(h') + Ot out(h/) hh/g( )2 ® out(h jout(h)v

n(h)
n(h)
= €(h’)¢0ut(h/)y ®]m n) + <¢h0 — €(h) ® b) ¢h/

~out(h) A out(h .in(h
out((h O_aslhn + b¢out(h + 5hh/€(h)bzoutgh§ ® ]m((h))

v
— —rout(h =/in(h =/out(h
= <¢iﬁ(h/)3;ﬂ ™ 6hh/€(h‘)2;n(g)) ®](/)ut(f(L))) g



We also have

Th Eout(h)
in(h)5rin(h) h) fout(h) Sath) ooty | _ g srouin)
in(h)=in ou .ou / ~/ou
By iy = 5(h n(h) @ Jout(n) | = g(h>21n(h) ® Jout(n) | = Pout(h) lout(h) -
__ in(h) ¢h .out(h) out(h)
jm(h 1n jout(h)
For ‘[vcb] € Vom(h @ E(Vinth) jouth)) gy <Vout(h ) we have
=rout(h) p/out(h) o *out(h out(h)
jout(h) h - out(h <B R Vin(h ) + b¢out(h ) “out(h)

—out(h) .i in(h .in(h)
= Jint) Phuii + Fomt) Crtnir) + DBy i

v
=/in(h) 7
= Ji/n(f(L))fﬁ{ﬁ(h) ¢
b
Thus we have checked (3.2). O

Let w be an element of the Weyl group and s;, - - - s;, its reduced expression. We consider
the composition of reflection functors:

Siy - Sin Me(v, W) — My (w x v, w),
where we assume

C¢ U R* ® Dy

0eR

so that M5 (v/, w) = M¢(v', w) for any v'. By Theorem 4.4 the composite is independent of
the choice of the reduced expression, so we may denote it by S,,.
We apply S, to the trivial admissible collection (the first example) to get data (A*, ¥*) €

M (w0, €). By Proposition 7.1 (and induction), there exists ®" such that {(Ak, wk ) I
el,he

is an admissible collection. This is the admissible collection explained in Conjecture 3.15(2).

8. REFLECTION FUNCTORS ARE HYPER-KAHLER ISOMETRY

Theorem 8.1. The reflection functor Sy: M (v, w) — ML (s, x v, w) is a hyper-Kdhler
isometry, i.e., it respects the Riemannian metrics and three almost complex structures I, J,
K.

Proof. Take a point in M (v, w) and fix its representative (A,¥) in p~'(—=¢). A tangent
vector of M ® (v, w) at (.A V) is represented by (0.4, 0%) € M(V, W) such that

(8.2) dpyaw (0A,6¥) =0, (0.A,0¥) is orthogonal to the orbit Gy - (A, ¥).
We take a family (A, ¥;) (—e <t < ¢) of data for V', W such that
A=A, V¥|_, =V 5A—i A 5W—i v,
T o - dt], i - dt], ;



be the derivative of A;, ¥; at t = 0. Let (A}, ¥/) be the data for V', W obtained by applying
the reflection functor Sy to (A, ¥). Then dSk(d.A, V) is given

of. d def. d
SA = A 11/ Sl Y 73
dt|,_, " dt|,_, *
We want to show

(8.3) g((6A, %), (0A,60)) = ¢ ((0.A",5%"), (0.A", 6¥"))
(8.4) I(0A,00)=T'(6A, 60", J(6A,00) = J (0A, 60", K(6A,0W) = K'(0A', 0¥'),
where (g, 1, J, K) (resp. (¢, I', J', K')) is the hyper-Kahler structure on 9 (v, w) (resp. M, ¢ (sp*

v, W)).
Let D be as in (3.8). Let {e,} be an orthonormal basis of V; = KerD'. The derivative

§(Ie,) with respect to t satisfies D'd(le,) = —(0D')Ie,. If we normalize e, by requiring
§(Ie,) L Ker DI, this equation implies
(8.5) §(Ie,) = —D(lg+ @ AN (6D Ie,.

Let us choose a complex structure, say I, and use the holomorphic description. We consider
operators in (4.8) for (A, ¥) and (A’,¥’) and denote them by o, 7 and o', 7/. We have

(8.6) sto+7160=0, dr71 —oldo=0.
Here the first equation comes from the differentiation of 70 = —(jc. The second equation is
a consequence of 771 — ofo = —Cﬂ(gk) and the second condition in (8.2).

Let us consider (7/,¢,) as an element of IA/k* By (8.5), its derivative is given by

o= (o[ ) (2 )
() () T 0B 1))
(i) (e )] )

() = o 0] 1e,~ [ —=] |2 a7 D0 o] 1o,

Similarly we have

Let us check that analogue of (8.6) for o/, 7":
87) (7' en) 0'(en) + (7', €4) 6 (0'(er)) = 0,
| (1, en) T (en) = (0, e,) 8(0" () = 0.

The first equation is a consequence of 7’0’ = (. The second equation is equivalent to

(-2 )
|



By (4.10, 8.6), the left hand side is equal to

0 0 0 0
-P {O Zo 00 A=z + ZQO—T):| I'+p {O Z1(—Z30 + leT)A_léT] L.

If v’ lies in Ker D' = Ker [71 7' |, we have

21
22

(e[ - (ol e

Hence the first term vanishes. Taking the hermitian adjoint, we have

(el o [E)-o

Hence the second term also vanishes. Thus we have checked (8.7).
Next we calculate the norm of 6(7',e,) and d(o”(e,)). We have

S 6 e, 87 e,)

I

= tr (P [507 ] [or1 0] I) —tr (P [507 ] [t %] ['Z;] A0 o] I)
_u (p w A o] {_TZ J (57t 0] 1)
fu (p m A [z of] {_TZ J =] m A0 o] 1).
By

(8.8) IP = {1 — (a1 P+ [22)H)A™ =z AT — AT ]

—Z1oAT — 27 TATL 1 —oATleT — 7TATE
the first term is equal to
tr (1 — (|z1]* + |z2)*) A o7 677)
The second term is
tr ((z_la + 20T ATST (27T — Z_QO')A_I(SUT)
= |z1]* tr (UA_lcST TTA_I(SUT) + 2129 tr (TTA_I(ST TTA_I(SUT)
— Z12a tr (UA_lcST UA_I(SUT) — |z tr (TTA_I(ST UA_I(SUT) )

The third term is

| 21| tr (A_IUT SoA~lr (57’T) — z129tr (A_IUT do A" lol (57’T)

Lzt (A oA 67 — |l tr (A7 6o Aot 57
The fourth term is

(Jz2]* + 22)?) tr (1 — oA loT — TTA_IT)((SO'A_I(SUT)) .



Similarly we have

> (6(a'(en) 3 (0'(e)))

0
= tr (1 = (|z1)* + |22/") A )d000)
— |z |* tr (UA_I(SUT TTA_I(ST) — 129t (TTA_I(SUT TTA_I(ST)
+zizmtr (cAT 60T e ATIOT) + 2P tr (TTAT 60T o AT 16T
— |z [P tr (A_IUT orTA™r 57) + 2129 tr (A_IUT orTA ot 50)
— Z125 tr (A_IT orTA~r 50) + |z tr (A_IT (STTA_IUT(SU)
+ (|21 + |22 tr (1 — oA ot — 7TAT ) (07TA 1 07))

Combining these terms and using (8.6), we get

> (0 en).6(r' en) + (8(0'(en)) .6 (0 (en))) = (67,67) + (60, 607).

o

This formula implies (8.3) since other components of (A, ¥') are the same as those of (A, V).

Finally let us show (8.4). By the technique explained in §1(iv), it is enough to check (8.4)
only for the complex structure I. By I, do and o7 are multiplied by i. Then do’ and §7" are
also multiplied by ¢ by the above formulas. These are the same as the action of I’. O

9. IDENTIFICATION WITH THE ACTION DEFINED IN [15]

In this section we identify our reflection functor with the action studied in [15, §9].

9(i). Quick review of the ADHM description [8]. (See also [15, §2].) Take and fix an
affine Dynkin graph. Let I, H be as before, and let us choose an orientation 2. Let 0 € [
be the vertex corresponding to the negative of the highest weight root of the corresponding
simple Lie algebra. Let n be the vector in the kernel of the affine Cartan matrix whose 0-
component is equal to 1. Such a vector is uniquely determined. Let GG, be the compact Lie
group corresponding to n as in §2. Choose ¢ € R* ® Z, where Z C R! C g, is the trace-free
part of the center.
Let

Xe E {AeM(D,0) | u(A) = —C}/ (Ga/ U(1)).

Note that the group U(1) of scalars in G, acts trivially on M(n,0), so we can consider the
action of the quotient group G,/ U(1). Kronheimer [7] showed that if ¢ is generic,

(a) X¢ is a smooth 4-dimensional hyper-Kéhler manifold,

(b) the metric is ALE (asymptotically locally Euclidean),

(c) X¢ is diffeomorphic to the minimal resolution of C?/T', where T is the finite subgroup of
SL2(C) associated to the affine Dynkin graph.

By the construction, p~'(—¢) can be considered as a principal Gp/ U(1)-bundle over X.
By defining the horizontal subspaces as the orthogonal complement of the tangent spaces to
fibers, we have a natural connection on p~'(—¢). This is anti-self-dual [3] and has finite action
8, 2.2]. Let ny be the k-component of n. We identify Gn/U(1) with [],_, U(ng). For each
k € I, we have the associated vector bundle

def. _ n
Ri = 17 (¢) XGnyuay C™,



where G/ U(1) acts on C™ through the projection Gyn/U(1) = [, U(nx) — U(ng). When
k = 0, we understand Ry as the trivial vector bundle. We call R, a tautological bundle. It has
an induced anti-self-dual connection and approximate an irreducible flat connection at infinity.
This irreducible flat connection corresponds to an irreducible I'-module R; which corresponds
to the vertex k£ by the McKay correspondence.

By the construction, there exists a bundle homomorphism

§n: Rout(h) — ST @ Rinn)

for each h € €. This homomorphism is called a tautological homomorphism.
Suppose that collections of hermitian vector spaces V., W and a data (A,¥) € M(V, W)
satisfying (A, W) = —( is given. ({ is the same as above.) Let us consider a vector bundle

E(R,V)@®L(R,W),

where (1) V and W are (collections of) trivial hermitian vector bundles, (2) E(, ), L(, ) are
defined exactly as before by replacing vector spaces by vector bundles. Let tq: Eq(R,V) —
E(R,V)®L(R, W), i5: Eg(R,V) - E(R,V)®L(R,W), tw: L(R,W) — E(R,V)®L(R,W)
be the inclusions. We define an operator D: ST @ L(R,V) — E(R,V) & L(R,W) by

D S 1o (wAn — trgr (@ wE)) + i (Al — trgs (7 @ €1) + ¥,

This is an analogue of the operator in (3.8).

If (A, V) is non-degenerate, then (1) D is injective [8, 9.2], and (2) the induced connection
A on Ker DT is anti-self-dual and has finite action [8, 4.1]. Moreover, vectors v, w correspond
to Chern classes of Ker DT and the flat connection (representation of I') which A approximates
at the end of X, [8, §9].

The inverse map is constructed as follows (see [8, §5] for detail). Suppose an anti-self-dual
connection A (satisfying an asymptotic condition) on a C'*°-vector bundle £ with a hermitian
metric is given. We define vector spaces Vi, Wy by

Vi L 12 kernel of D :T(S"®@EQR;) — (ST ®FE®Ry),

W, 4 1 ounded harmonic sections of E R Ry

Here S* is a positive/negative spinor bundle over X, and Djlt is the Dirac operator twisted
by A and the connection on R;. Note that ST is a trivial bundle and the fiber is canonically
identified with the vector space S* in §1. Those V, W have natural hermitian metrics. We
define linear maps Ap: Vouny — ST @ Viagny, W: Wi — ST @V, by

Ah (’Uout(h)) = L2-pr0jection of (15_ Rl ® gh)vout(h%
(W) (s @ wy) = Dy (s @ wy).

Then (A,¥) € M(V, W) satisfies u(A,¥) = —C and the non-degeneracy condition.

These maps are mutually converse and give a hyper-Kéahler isometry between the framed
moduli space Mx (E) of anti-self-dual connections on X¢ and the hyper-Kéhler quotient
M (v, w) [8, §8]. Here the framed moduli space My, (E) is the quotient space of the space of
anti-self-dual connections on a hermitian vector bundle E with finite action modulo the group

of gauge transformations which converge to the identity at infinity. (See [14] for the definition
of My (E).)



9(ii). A reflection functor is the pull-back of connections. Now suppose an element w
of the finite Weyl group is given. Using the above ADHM description on X,,, we have a hyper-
Kahler isometry between the framed moduli space My, (F) of anti-self-dual connections on a
vector bundle F' over X, and the hyper-Kéhler quotient E)ﬁiveg (v,w) [8, §8]. By a discussion
in [7, §4], or by our reflection functor we have a hyper-Kéhler isometry f,,: X; — X,¢. Hence
the pull-back (f,')* induces a hyper-Kéhler isometry My (E) — Mx, ((f, ') E).

Theorem 9.1. The following diagram is commutative:
My (B) —— ME(v,w)

(fuil)*l lfw,w',@')

My, ((fo') E) —— ME(w=v,w),
where the horizontal arrows are the ADHM description, and (A®,W* ®°*) is the admissible
collection corresponging to w given in §7.

Let R def- (fw)*Ri where Ry, is the tautological bundle on X,,. (Since we do not use it

later, it is not confused with Ry on X..) We also pull-back the anti-self-dual connection on
Ri. Since Ry has the unique anti-self-dual connection, we suppress the notation A. Pulling
back a tautological homomorphism, we get a vector bundle homomorphism

&h Routth)y — ST @ Rinn)-

If we replace Ry, & by Ry, & in the ADHM description, we get the composite of the bottom
arrow and the left arrow in Theorem 9.1.

We apply the ADHM description to Ry to get vector spaces and homomorphisms. For a
later purpose, we slightly change the roles and consider the followings:

% - the dual space of the L*-kernel of Dy : T'(S™ @ Ry @ Rf) — ['(ST @ Rx @ R}),

W - the dual space of the space of bounded harmonic sections of Ry ® R;.

One can check dim V¥ = w4 0, dim W* = e*. In fact, (W})* is isomorphic to the space of the
convariant constant sections at infinity by [8, 5.1]. In this case, it is equal to Homp (R, R;).
Thus dim W} = 0 if k # [ and dim W} = 1 if k = [. The former equality dim V* = w e 0
follows from the computation of the first Chern classes: Let us identify H?(X¢,Z) with Z!
by ¢1(Ry) — ef. By the definition of the reflection functor for simple reflections and the
induction on the length of w, we have ¢;(Ry) = wei (Ri). Now dim VF = w x4k 0 follows from
the formula of the first Chern class of a bundle constructed by the ADHM description (see [8,
p.301 bottom)]).
The tautological homomorphism &, : Rous(n) — S T® Rin(ny induces a homomorphism

" Ringy — ST @ Ry
Using this homomorphism instead of &, in the ADHM description, we get a homomorphism
(Viﬁ(h))* —S5T® (Vo'fm(h))*
as above. Then we take its transpose to get a homomorphism
A Volfm(h) —S5T® Viﬁ(h)'
We also have
(W) — St (V)



as in the ADHM description. Taking the transpose and then taking (w-)f, we get
W,f: W,f — St ® ka.

Then (Ak7wk) satisfies p( AR, ) = —. o
We have a tautological bundle homomorphism & : ﬁout(h) — ﬁin(h). Then we define @Z : Vkm(h) .
S—i— ® Vkout(h) by

t(éﬁ) (Vout(ny) " L2-projection of (1g- @ &, © 1R )V5us(n)

* out(h)\ x
for v,y € (V,, ( )) )

Proposition 9.2. The collection {(A®,W*, ®*)} satisfies the compatibility condition (3.1).

The proof is a straight-forward modification of that of [8, 5.6] and omitted.

As we can see by the reflection functor, 0 (w . 0, €¥) consists of a single point. Combining
this observation with Lemma 3.3, we conclude that {(A®,¥* ®°)} must be the same as the
admissible collection constructed in §7.

Now the commutativity of the square follows from a straightforward modification of the
argument in [8, §7] where the special case w = 1 was studied. We only write the relevant
double complex ([8, §7b)]) here. The detail is left to the reader:

a®lg, BOIR, 02 5
AN _’

QLR V)@ Ry) — Q%% (E(R, V)& L(R,W)) @ Ry) Q"2 (L(R,V) @ Ry)

A Ts Ts

_ a®17§k BR lﬁk _
—

QLR V)@ Ry) — Q% (E(R,V) @ L(R,W)) ® Ry) Q"4(L(R,V) ® Ry)

A Ts Ts

a®lr, Blr,, 0,2 >

QY (LR, V) @ Ri) —= Q% ((E(R,V) ®L(R,W)) @ Ry,) — Q*(L(R,V) ® Ry),

where D = [a sT].

10. IDENTIFICATION WITH LUSZTIG’S ACTION

We shall compare our Weyl group action with Lusztig’s one [11] in this section. We assume
that the graph is of type ADE.
We recall results of Lusztig [10, 11].

Definition 10.1. (1) A path is either (a) a constant path e; consisting a single vertex k, or
(b) a sequence (hy, ha, ..., h,) (r > 1) such that out(h;) = in(hs),...,out(h,—1) = in(h,).
(2) For a path f, we define in(f) and out(f) by

in( f) def. ) Kk if f is a constant path ey,
~)in(hy) if f=(he,... hy).

def. | k if f is a constant path ey,
out(h,) if f=(hy,..., hy).



(3) Let PF be the set of paths f with in(f) = k, out(f) = [. Let F} be the C-vector space

with basis PF. The direct sum F . @k , FF forms an algebra in which the product is the

composition of paths if they can be composed and is zero otherwise.

Let

def.

Qk,gc = Z €(h)hE+Ck,@6k € f,f

heH
in(h)=k

Let Zg¢ be the subset of [], , Hom(F}, Hom(W;, Wy)) consisting elements 7 such that

m(f)m(g) + 7 (fOre9) =0
for all paths f, g with out( ) =in(g) = k.
Ifa point (B,1,7) € ug' (—(c) € M(V, W) is given, we assign a point 7 € [1,,, Hom(F}, Hom(W;, Wy))
by

(f) def Jklk if f is a constant path ey,
Jin(h)Bhy ++* Bhylouy(n,)  if f is a path (hy, he, ... k) (r > 1).

Then 7 is contained in Z$¢ by the equation uc (B, i,j) = —(c. If we choose two points (B, i, 5),
(B',i',j) € ug'(—(c) such that GE(B,i,j) N GE(B',#, ') # 0, then the corresponding point
is the same. Thus we have a map

0 Mooy (V, W) — Z5E.

Remark that any point is (g-semistable if (g = 0, and M ¢.)(v, W) is the affine algebro-
geometric quotient, i.e., its coordinate ring is the invariant part of the coordinate ring of

-1
c (—Co)-
Theorem 10.2 ([10, 1.3, 5.3|, [11, 4.7]). There exists a natural structure of an affine algebraic

variety on ZS¢ such that 9 is a finite, injective morphism. In particular, ¥ is a homeomorphism
onto its 1mage.

For each vertex k € I let us define a map Si: ], , Hom(F}, Hom(W;, W;)) — [, Hom(F}, Hom(W;, W;))
by

def. | m(ex) + Cec idw, if f is a constant path e,
(Skm)(f) = A e
>saca Hieseh)Cec (ha, hay ..oy hy) if fis a path (h1,he,..., k) (r > 1).
Here Jy = {t € [2,7] | in(hy) = k,in(hy_y) = out(hy)}, and (hy, ha, ..., k)" means the path
obtained by omitting h;_1, h; for all t € J. Then

(1) Si’s satisfy the defining relation of the Weyl group ([11, §1]),
(2) Sk maps Z§¢ to Z:sk¢e ([11, 2.2)).

Now we compare our action with Lusztig’s one.
Theorem 10.3. The following diagram is commutative:
Moo (v, W) ——  Z§

5 | |5

m(O,SkCc) (V> W) ? Z\fcha
9



where we set Sy = id in the left arrow when (o = 0. (¢f. Remark 4.3).

Proof. If (c = 0, then both Si’s are identity. So we may assume (¢ 7 0.
Suppose that a data [B,4,j] € M (v, W) is given. Let [B',i,j'] = Sk - [B,4,j]. The
following follows from the holomorphic description of the reflection functor.

BB, = ByBu, + 0y e(h)Grcidy,,,,, for h,hi € H such that in(h) = in(h,) =k,
J1Br, = jxBr,
Briy, = By,
Jrte = Jrik + G idw, -
By induction we get

Jin(h)Bhi Bhy *+* Bhy iout(h,) = Z Hg(ht)Ck,C (Jin(h) Bhy -+ - Bhylous(n,)
JoICdo ted

)/\J

if » > 1. Here J, is as above and (jleh1-~~Bhs_liks)M means that multiplication after
omitting By, , By, for all t € J. Now the commutativity is clear. O

Our S; and Lusztig’s one are almost the same, but have the following difference:

(1) it is clear that Lusztig’s Sk is a morphism of an affine algebraic variety by definition,
while our Sy is a homeomorphism which induces a hyper-Kéahler isometry between open
subsets M= ) (v, w) and M ® (s, * v, W).

(2) our Sy is defined for all ¢ = ((g, (c) while Lusztig’s S is defined only for (g = 0.

Note that if the singularities of Mo . (V, W) are normal (a conjectural property of the

quiver variety), then our Sy extends to the whole Mg ¢ (V, W).
Using Si and the observation that a natural projective morphism (for fixed w, (g)

T |_| le(Cﬂch)(V>W)_) |_| ngq:

(eeCl v Ceel!

is small ([11, 6.5]), Lusztig constructed a Weyl group representation on @, H* (M ¢y .co) (V, W), R).
This is an analogue of his construction [9] of Springer representation. Hotta [5] proved that
Lusztig’s Weyl group representations coincide with Slodowy’s ones [19, IV]. The same proof
works for our case thanks to Theorem 10.3. Thus Lusztig’s Weyl group representations in [11]
coincide with ones given in Theorem 4.5 and hence also with ones in [15, §9].

11. LUSZTIG’S OPPOSITION

The purpose of this section is to relate Lusztig’s new symmetries of quiver varieties [12]
with our reflection functors. His symmetries were analogue of oppositions for Lie algebras and
a necessary ingredient for his (conjectural) definition of canonical bases of finite dimensional
modules of quantum affine algebras.

In this section we assume that the graph is of type ADE. Let wy be the longest element in
the Weyl group. It induces an involution on I, which is denoted by k +— k*, by woap = —a-.
Here «y is the simple root corresponding to the vertex k. Let h — h* be an involution on H
defined by

out(h*) = out(h)*, in(h*) =in(h)".



Let (A* wF, @E) be the holomorphic description of the admissible collection corresponding
to the longest element wy by §7. Let

(11.1) F: M (v, w) — My (wo * v, w)

be the corresponding reflection functor.
The involution k£ — k* on I induces an isomorphism of hyper-Kéahler manifolds

(11.2) M (v, w) — M- (v, w°),

where the k-component of ¢* (resp. v*, w*) is the k*-component of { (resp. v, w).
We define an isomorphism of hyper-Kahler manifolds

(11.3) M_¢(v,w) = M(v,w)

by sending (A, ¥) to ((wA)T, (w)T). If we identify V., Wy with its dual space V;*, W} via her-
mitian inner products, this isomorphism sends the holomorphic description (B, 1, j) of (A, ¥)
to

—e(h) By Vo) = Viny, (1) ks Wi = Vi, T Vi — W

Composing (11.1) with (11.2) (replacing ¢ by wo( and v by wg * v) and (11.3) (replacing v
by wy * v* and w by w*), we get an isomorphism of hyper-Kéhler manifolds

(11.4) M (v, w) — M (wo * v, w"),

where we have used wo(* = —(. Clearly this is an involution, i.e., the composition M, (v, w) —
M (wo * v, w*) — M(v, w) is the identity. This (11.4) is our version of an opposition.

Now we turn to Lusztig’s opposition. We choose the following orientation. Since the graph
is of type ADE, we can assign + to each vertex k € I so that there is no edges starting from a
(+)-vertex (resp. (—)-vertex) and ending at a (+)-vertex (resp. (—)-vertex). Such a choice is
unique up to overall exchange + < —. Then we choose the orientation so that e(h) is equal
to the sign of the vertex out(h).

We choose and fix a parameter (g so that i(xr < 0 for all k. We then set {( = (0,(g). By
the holomorphic description of quiver varieties, we have natural morphisms,

M (v, w) — My(v, w), Mo (v, W) — Mo (v, w).

Let us denote by £¢(v,w) and £,,¢(v,w) the inverse images of the origin 0 € My(v, w).
These are lagrangian subvarieties of M. (v, w) and M, (v, w) ([15, 5.8]).
Let

(11.5) Le(v,w) = Le(wo * v, w)

be Lusztig’s new symmetry (opposition). (See below for the definition.)

Note that (11.2) (after replacing v by wg * v) sends £¢(wp * v, w) to Le«(wp * v, w*).
Furthermore, we have an isomorphism of complex varieties £¢+(wo * v*, w*) — £ (wg * v*, w*)
since (p-stability and (g-stability are equivalent. (NB: The map M (v, w) — M (v, w) is
an isomorphism of complex manifolds, but not of hyper-Kéhler manifolds.)

We further compose a map £¢(wo * v, w*) — £¢(wo * v*, w*) given by

Le(wo * v*, W) 3 (Bp,ir, 0) = (e(h)Bp, —ix, 0) € L¢(wo * v*, W)

Composing (11.5) with these maps, we have an isomorphism of algebraic varieties
(11.6) Le(v,w) — Le(wo * v, wh).



Theorem 11.7. (1) The following diagram is commutative:

(v, w) N M (v, w)

(11.6)l l(11~4)

Le(wo * v, w*) —— M (wo * v, w*),

where the horizontal arrows are natural inclusions.
(2) The isomorphism (11.4) is identified with the map sending an instanton A defined on a
vector bundle E to its dual A* on E*.

Remark 11.8. In (11.4) W is changed to a collection of vector spaces whose k-component is
W.. On the other hand, it is changed to a collection of vector spaces whose k-component is
Wi ® L;. for some 1-dimensional vector space Lg« in (11.6) as we shall explain during the
proof.

11(i). Definition of Lusztig’s new symmetry (opposition). We first recall Lusztig’s con-
struction [12]. Let ¢ be the Coxeter number of the Weyl group, and set ¢’ = ¢ — 2 € Z>.

Let P be the preprojective algebra, i.e., the quotient algebra of the path algebra F (see
Definition 10.1) by the two-sided ideal generated by elements

> hh
heH
in(h)=k
(one for each k € I).

There is unique algebra antiautomorphism ¢: P — P such that c(e,) = ey~ and t(h) = &
We write «(x) = T* for x € P. If M is a P-module, then the dual space M* is naturally a
P-module, where x € P acts on M* by the transpose of the multiplication of z*: M — M.

For each n € Z>¢ let P" be the subspace of P spanned by elements of length n. We regard
Pe; as a collection of vector spaces with [-component e;Pe. Similarly we consider P"e;, as a
collection of vector spaces. Then we have

(11.9.1) dim P%;, = e",
(11.9.2) dim P ¢e;, = e,
(11.9.3) dimP"e, =0 forn >,
(11.9.4) dim Pej, = wp *¢x 0.

(See [10, §4]. (11.9.4) is not stated, but can be deduced from, for example, [12, 1.11].) By
b) e P e, is 1-dimensional. We set £}, def. e Per. Since ¢ maps Ly to Ly, there exists a
unique kj, € {—1,1} such that 75 = ki for all z € L.

There exists a perfect bilinear pairing ( , ): Pey ® Pey — L such that

(11.10.1) (y,y/) =0 fory e Pe, v € PVe;, with n+n' # ¢,

(11.10.2) (y, /) =7y fory € Pley’ € P ey,

(11.10.3) (T*y,y') = (y,zy’) for y,y € Pey, z € P,

(11.10.4) (y,9) = ki(y,y) for y,y € Pey.

(See [12, 1.14].) In particular, we have an isomorphism (Pey)* = Pej, ® £;. From (11.10.3) it

is an isomorphism of P-modules.



We have the canonical isomorphism Ch = em(h)Pleout(h) of vector spaces. This induces an
isomorphism

(11.11)

Lout(h) = Ein() P Cout(n) @ €in(ny- P eont(n) = Cout(n) P " ein(n) @ Cout(n) P €in(n) = Linn),

where the first and the last isomorphisms are given by ( , ), and the middle isomorphism is
given by

h®@y— T Qh.
Let us denote the composition by 6. By definition and (11.10) we have

QE = Rout(h)Fin(h) 9}717

(11.12) , — /
On(yh,y') = (y,y'h) fory € Pewmy, ¥ € Peouyn)-

Let W = (Wy)ker as before. We consider a projective P-module

W E PPe o Wi,

kel

where P acts trivially on Wj,. Let Grp(W?) be the projective variety of all P-submodules of
W®. If S is a P-submodules of W, then we define a collection of vector spaces V = (Vi )rer
and data (B,1,75) € M(V,W) by

(11.13)

Vk déf' (S (WQ?/S) N

By, is the multiplication of h: eout(n) WQ?/S — em(h)W@/S,

i 18 the composition of the inclusion Wj, C exW® and the projection e W — e (WQ?/S),
Jr=0.

Then, by definition, we have uc(B,i,5) = 0. Also, there exists no proper T = (T},) C V
which is B-invariant and contains Imi. Hence (B,1,j) is (g-stable. Moreover, it is contained
in £:(v,w) (v = dimW?9/S) by [15, 5.9, 5.11(3)]. This defines a map from Grp(W?) to
L], £c(v,w). This map is an isomorphism ([10, 2.26]).

If S € Grp(W?), then the annihilator S* of S in (WY)* belongs to Grp((W")*). As above,
we can identify it with £.(s, w) (s = dim S). Note also that

w — Cs = w — C(dim W + wev) = wo(w — Cv).
Here we used (11.9.4).

Combining two isomorphisms, we have an isomorphism £.(v,w) — £¢(wo * v, w). This is
the new symmetry (11.5) defined in [12].



We further map S* to get [B,1,j] € £(s*, w*) as in (11.6). Then it is explicitly given as
follows:

(11.14)
Vi = (k)" Wi= L. @ W,
By, is the transpose of the multiplication of e(h)h: (Vi )" = Sinn) = Vour(n))™ = Sout(n)»
i) is (—1) times the transpose of the composition of

= inclusion T

(V)" = Si = ex§ =2 W0 222, ¢ (P e @ W) = (Wi)',

Here we use the isomorphism via the pairing ( , ):

(W) = PPer o L@ Wy,

kel

Then the map (B, i,5) — (B,1,7) is nothing but (11.6).

11(ii). Proof of Theorem 11.7(1). We first give a holomorphic description of (A, ¥*, <I>E)
explicitly. Let

o . |C ifl =k,
Vk d:f. Pek, I/Vlk d:f 1 ‘
0 otherwise.

As above we associate (B*,i*, j*) € M(V* W*) to V*. Explicitly it is given as follows:
(a) BF: Vme(h) — Vh'f(h) is the multiplication of A from left: fe, +— hfes,
(b) ik: Wk — V¥ is the map C 3 1 — ¢, € P, C Pey,
(¢) ji = 0.
This defines a point in M (wp *er 0,€%). As M (wp *ex 0, ") is isomorphic to My, (0, e) via
F, it consists of a single point. So the above (B*,i*, j*) must be the holomorphic description
of (A*¥, w*). Furthermore, by (3.2), ¢" € L(Vout() Vinm) must be equal to

(11.15) Peou(ny 3 Y = yh € Peingn).

Remark 11.16. More precisely, we proved the following: there exist elements ¢¥ € G®(VF)
such that g®(B* i, j*) and g"("gh(gotM)~1 satisfy the equation ur(g*(B*,i*, %)) = —Cg,
the condition (3.1) and are holomorphic descriptions of (A¥, ¥* ®"). But we can use the
reflection functor Fpe ;e je ¢e) instead of F 4e we oe) in the following proof. In fact, if we could
prove directly that F(pe ;e je 4¢) preserves the stability condition (see Conjecture 3.15(1)), we
do not need to invoke F( 4 we o+) and we could avoid the use of a result in §7.

Later we shall use the dual space of Peg. We consider the perfect pairing (, ): exP®@Pej, —
L given by

Wv)=W"y).
Then we have an isomorphism of vector spaces



Lemma 11.18. We have the following identification under (11.17):

(1) The transpose of the multiplication map Pey > y +— hy € Pey is identified with the map
erPRLi2y@x—yh® ) €exP @ L.

(2) The transpose of (11.15) is identified with the map eumpy-P ® Lo 2 Y RY—hy®
tth S 6out(h)*]-:) (%9 ‘C:;ut(h)'

The assertion follows from (11.10), (11.12).
Take a point (B,i,j) € £¢(v,w) corresponding to S € Grp(W) as in (11.13). Consider
the complex (3.9). We have isomorphisms

LV W) = @P(ePer) @ W, = P erPe @ Ly @ Wi = ep WY ® L],
l

(11.19) :

LVEV) = P(ePe) @ Vi = @erPa e Li@aV,
1 1
where we have used (11.17) in the middle (twice). Since j = 0, the L(V* W)-component of
ay is 0. Thus the projection to L(V*, W)-component gives us a well-defined linear map

(11.20) Ker g/ Im oy, — W ® L.

Lemma 11.21. Let Uy eW® — eV be the natural projection. The map (11.20) induces
an isomorphism between Ker B/ Im oy and Si @ L} = Ker ¥« ® L.

Proof. We have the multiplication map
LV V) = @PenPea @ Ly @eV — eV @ Ly = Ve @ L,
by the P-module structure of V. Composing with 3, we get a map
Ve =Vi ®E(VF VY@ L(VE, W) = Vi ® L.

By the definition of B, the Vj-component and the E(V*, V)-component are mapped to 0 (note
4% = 0) under this map. Moreover, the restriction to the L(V*, W)-component is nothing but
the projection ¥p« ® 12:. Thus the kernel of 3 is mapped to Sg- @ L.

In order to prove that this map is an isomorphism, it is enough to show that (11.20) is
surjective onto Si ® L since dim Sg« = dim Ker i/ Im cy.. We claim that for any f ®@ w €
L(VE, W) there exists an element f’ ® v € E(V*, V) such that

0
Be | ['®@v| = e @ (Vg @ 12 ) (f @ w).
fRw

Here we consider f ® w in the right hand side as an element of e W ® £, via (11.19) and
ek @ (U @ 12:)(f ® w) as an element of L(V*, V) via (11.19) and the inclusion e;-P%;- ®
Vie @ L C P, enrPe; @V, ® L.

If f®w is of the form e @ w € epPlesr @ Wi ® L5, then we take f/ @ v =0. If f@w is
of the form hy ---h, @ w € ex-Pegus(n,) @ Wouny ® Ly, we set
f/ ®v== <€k* & (Bh2 te Bh,«)iout(h,«)w + hl & (Bh3 e Bh,«)iout(hr)w + o+ (hl e hr—l) ® 2.out(h,«)uj) .

If we choose the sign appropriately, we get

ﬁk(f/ Q) =€ @ Bpy -+ Bh, iout(hyw — hy--h,® Lout(hy) W = €+ @ Vi (f @ w) — Bi(f ® w).



0
This shows the claim. If ¥4«(f ® w) = 0, then we have [ [;gv} = 0. Hence (11.20) is a

surjection onto Si- ® L. O

Lemma 11.22. Under the isomorphism Ker i,/ Im oy, — Six ® L,
(a) By, is given by
Sout(h)* ® ‘C:;ut(h) DY X h'*y ® tth S Sin(h)* ® ‘C;kn(h)

(b) i), is zero,
(¢) jp is the composition of

Sk* ® Ez == ek*S ® Ez M €k*W© ® EZ M) €k*(PC/6k ® Wk) ® EZ = Wk

The assertions follows from the definition of B}, i}, 7, and Lemma 11.18.

Now we further map (B’,7, j) into M, (wo*v*, w*) as in (11.4). Furthermore, we identifying
L5 iny @ Linny with C by 6. Then the resulting data coincides with (11.14). This completes
the proof of Theorem 11.7(1).

11(iii). Proof of Theorem 11.7(2). Let R; be the dual bundle of Ry. It has the dual of
the connection of R. It approximates a flat connection which is dual of the flat connection
which Ry approximates. By the McKay correspondence, this flat connection corresponds to
the vertex k*. Moreover, we have a tautological homomorphism (wé&,)T: Ry — S +®an(h).

As in §9(ii) we get an admissible collection (A*, W* ®") by applying the ADHM description
to Rj.. Comparing Chern classes we find that (A¥, ¥*) is isomorphic to the data corresponding
to ( f;ol)*Rk. Thus the addmissible collection coincides with one corresponding to wg by
Lemma 3.3.

Suppose that an anti-self-dual connection A corresponds to (A,¥) € M (v,w) via the
ADHM description, where we use tautological bundles Ry. Then its dual A* corresponds to
the data (A*,¥*) € M_«(v*, w*), which is obtained by applying (11.2) and (11.3) (replacing
¢ by —C* and v, w by v*, w*) to (A,¥) via the ADHM description, where we use Rj.,
Hwé )T instead of Ry, &. If we describe the connection A by the original Ry, &, then the
corresponding data is given by the reflection of (A*,¥*) corresponding to wy by Theorem 9.1.
This shows Theorem 11.7(2).
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