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H & b & D abstract: Frenkel-Reshetikhin introduced g-character of finite
dimensional representations of quantum affine algebras [6]. We give a com-
binatorial algorithm to compute them for all simple modules. Our tool is
t-analogue of the g-characters, which is similar to Kazhdan-Lusztig polynomi-
als, and our algorithm has a resemblance with their definition.

We need the theory of quiver varieties for the definition of ¢-analogues
and the proof. But it appear only in the last section. The rest of the paper is
devoted to an explanation of the algorithm, which one can read without the
knowledge about quiver varieties. A proof is given only in part. A full proof
will appear elsewhere.

1. The quantum loop algebra

Let g be a simple Lie algebra of type ADE over C, Lg = g C[z, 2~ !] be its loop
algebra, and U,(Lg) be its quantum universal enveloping algebra, or the quantum
loop algebra for short. It is a subquotient of the quantum affine algebra U,(g), i.e.,
without central extension and degree operator. Let I be the set of simple roots, P
be the weight lattice, and P* be its dual lattice (all for g). The algebra has the
so-called Drinfeld’s new realization: It is a C(gq)-algebra with generators ¢”, ks
Jfor, hbn (h€ P*, kel reZ neZ\{0}) with certain relations (see e.g., [1,
12.2)).

The algebra U,(Lg) is a Hopf algebra, where the coproduct is defined using
the Drinfeld-Jimbo realization of U,(Lg). So a tensor product M ®c¢(,) M’ of
U,(Lg)-modules M, M’ has a structure of a Uy(Lg)-module.

Let U.(Lg) be its specialization at ¢ = ¢ € C*. For precise definition of
the specialization, we first introduce an integral form U?(Lg) of U,(Lg) and set
U.(Lg) = U?(Lg) ®@z1q,4-11 C, where Z[q, ¢~'] — C is given by ¢*! — ¢!, See [3]
for detail. But we assume ¢ is not a root of unity in this paper. So we just replace
g by ¢ in the definition of U,(Lg).
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The quantum loop algebra U,(Lg) contains the quantum enveloping algebra
U,(g) for the finite dimensional Lie algebra g as a subalgebra. The specialization
U, (Lg) contains the specialization U.(g) of U,(g).

1.1. Finite dimensional representations of U.(Lg). The algebra U.(Lg)
contains a commutative subalgebra generated by ¢”, hgn (h € P kel ne€

Z\ {0}). Let us introduce generating functions 1/),?(,2) (ke )by

def. _ i m
1/);&(,2) = ¢ exp (:I:(q —q Z hi +mzT ) )
m=1

A U.(Lg)-module M is called of type 1 if M has a weight space decomposition
as a U, (g)-module:

M:@M(/\), M(A):{mEM‘qh*mze(h’A)m}.
AEP
We will only consider type 1 modules in this paper.
A type 1 module M is an [-highest weight module (*’ stands for the loop) if
there exists a vector mg € M such that

err *mg =0, U.(Lg)™ *mg = M,
1/)]:;(,2) * Mg = \I!ki(z)mo forkel

for some \I!ki(z) € C[[zF]]. The pair of the I-tuple (U+(2),¥~(2)) = (¥ (2),
U (2))ker € (C[[zT])1)? is called the [-highest weight of M, and my is called the
l-highest weight vector.

THEOREM 1.1.1 (Chari-Pressley [2]). (1) FEvery finite-dimensional simple
U.(Lg)-module of type 1 is an [-highest weight module, and its l-highest weight
15 giwven by

L) _ e, Pk<e-1/z>)*
(1.1.2) U(z)=¢ ( Pi(e/2)
for some polynomials Pp(u) € Clu] with P,(0) = 1. Here ( )ﬂE € C[[zF]] denotes
the expansion at z = oo and 0 respectively.

(2) Conversely, for given Py(u) as above, there exists a finite-dimensional sim-
ple I-highest weight U, (Lg)-module M of type 1 such that the [-highest weight is
given by the above formula.

Assigning to M the I-tuple P = (Py)rer € Clul! (Pr(0) = 1) defines a bijection
between the set of all P’s and the set of isomorphism classes of finite-dimensional
simple U, (Lg)-modules of type 1.

We denote by Lp the simple U.(Lg)-module associated to P. We call P the
Drinfeld polynomial. For the abuse of terminology, we also say ‘P is the [-highest
weight of Lp’.

Since C{g", hy, ,) is a commutative subalgebra of U.(Lg), any U, (Lg)-module
M decomposes into a direct sum M = @ M(¥T,¥~) of generalized eigenspaces,
where

MUt o)

def. {m eM | (1/)%(,2) - \I!ki(z) Id)Y % m = 0 for k € T and sufficiently large N} ,
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for UE(z) € C[[zF]]. The pair of the I-tuple (¥, ¥~) = (¥}, ¥} )¢s is called an
l-weight, and M (¥* W) is called an lweight space of M if M(¥+ ¥~) # 0.

THEOREM 1.1.3 (Frenkel-Reshetikhin [6]). Any [-weight of any finite dimen-
stonal U, (Lg)-module M of type 1 has the following form

L desquoaegm, (@ /ARi(/2)\ T
— it = (Germe)

for some polynomials

Sk Tk

(1= agiu), Re(u) = [(1 = brju).

i=1 ji=1

&
=
]
=

Again for the abuse of terminology, we also say ‘Q/R is an l-weight of M’. We
denote the [-weight space M (VT ™) by M(Q/R).
Frenkel-Reshetikhin [6] defined the g-character of M by

Sk Tk

Xo(M) E S dimM(Q/R) TTTT I Vi Vi,

Q/R keli=1j=1

THEOREM 1.1.5 (Frenkel-Reshetikhin [6]). (1) x, defines an injective ring ho-
momorphism from the Grothendieck ring Rep U.(Lg) of finite dimensional U (Lg)-
modules of type 1 to Z[kaa]kel,ae@ (a ring of Laurent polynomials in infinitely
many variables).

(2) If we compose a map Ykﬂfa
the usual character of the restriction of M to a U.(g)-module.

— y;ct (forgetting ‘spectral parameters’), it gives

sk TR
DeFINITION 1.1.6. A monomial H H H kaalek_blkj appearing in the g-char-
keli=1j=1
acter y, is called l-dominant if r; = 0 for all &, i.e., a product of positive powers
of Yj .’s or 1.

If Lp is the simple U.(Lg)-module with [-highest weight P, its g-character
contains an [-dominant monomial corresponding to the I-highest weight. We denote
it by mp. Its coefficient in y,(Lp) is 1.

Since {Lp}p forms a basis of Rep U, (Lg), we have the following useful condi-
tion for the simplicity of a finite dimensional U,.(Lg)-module M of type 1:

(1.1.7) If x,(M) contains only one {-dominant term, then M is simple.
1.2. Example. We give examples of g-characters.
If g = A, we have an evaluation homomorphism ev,: U.(Lg) — U.(g) corre-

sponding to Lg — g; z — a (Jimbo). Hence pullbacks of simple U, (g)-modules are
simple U, (Lg)-modules.

ExaMPLE 1.2.1. Let g = Ay = sly and V' be the 2-dimensional simple U, (Lg)-
module. Then the g-character of M, = ev,(M) is given by!

Xq(Ma) = Yl,a + Y_l

1,ae2"

1This can be checked directly. But it also follows from Theorem 5.2.1 below.
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Since y, is a ring homomorphism, we have

Xq¢(My ® My) = (Yl,a + Yfl ) (Yl,b + YljblaQ)

ae?

= Ylyaylyb + Y_l Yl,b + Yl,aY_12 + Y_l Y_l

1,ae? 1,be l,ae2 " 1,be2"

If b # ac?, ac=2, then M, © M, is simple by the criterion (1.1.7).

If b = ac? or as~?, then the second or third term becomes 1. In fact, it is
known that M, ® M,.> decomposes (in Rep U, (Lg)) to a sum M, d M" where M’
is the 3-dimensional simple U, (Lg)-module, and M" is the trivial module. Thus
we have

Xg(Ma ® Maez) = xq(Mg) +xq(M")

= }/1,(1}/1,(152 + Yl,aY_l «t Y_l Y_l .+ 1.

1,ae 1,082 % 1,a¢

See also Examples 4.1.6, 6.1.3, 7.2.1.

2. Standard modules

2.1. In [15] we defined a family of finite dimensional U, (Lg)-modules of type
1 and called them standard modules. They are parametrized by the [-tuples P =
(Pe)rer € Clu]! exactly as simple modules. We denote by Mp associated to P.
The definition will be recalled in §8, but we give here their algebraic identification
due to Varagnolo-Vasserot [16].

DeriNITION 2.1.1. We say Lp an l-fundamental representation if

1—su if k = ko,
Pk(u)z{ °

1 otherwise,

for some s € C* and ko € I. We denote Lp by L(Ag,)s. (A is the k-th fundamental
weight of g.)

For s € C* and a finite sequence (ko)o = (k1,k2,...) in I and a sequence
(na)e = (n1 > ng > ...) of integers, we set

M(5: (ka)as (na)a) S LAk, )errs © L(Ag,)enas @ -+ .

Note that U.(Lg) is not cocommutative Hopf algebra, so the tensor product de-
pends on the ordering of factors.

THEOREM 2.1.2 (Varagnolo-Vasserot [16]). (1) A standard module M is iso-
morphic to a module of the form

& M55 (ko (nh,)a)
= M (kY s (0, Do) © M35 (2 Doy, (02,)a) @ (fimite tensor product)

such that s'/s? ¢ el fori # j and ni > nb > ... for cachi.

(2) The above tensor product is independent of the ordering of the factors
M3 (K, Yo, (1, ) ):

(3) The I-tuple of polynomials P corresponding to M is the product of Drinfeld
polynomaials of I-fundamental representations appearing as factors of M.
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Note that if P is given, we can define a module M of the above form by decom-
posing P into a product of Drinfeld polynomials of [-fundamental representations.
Thus we may denote the above module by Mp.
The following properties of Mp were shown in [15]:
(1) {Mp} is a basis of Rep U, (Lg).
(2) Mp is an [-highest weight module with l~highest weight P (i.e., given by
(1.1.2)).

(3) Lp is the unique simple quotient of Mp.

(4) Mp depends ‘continuously’ on P in a certain sense. For example, dim Mp
is independent of P.

(5) for a generic P, Mp = Lp.

Conjecturally Mp is isomorphic to the specialization of the module V™a*(}),
introduced by Kashiwara [8], and further studied by Chari-Pressley [4].

3. t-analogues of g-characters

A main tool in this paper is a t-analogue of the g-character:

Xgq,t* Rep Ua(Lg) - Z[tat_l][kaa]kEI,ae@*'
This is a homomorphism of additive groups, not of rings, and has the property
Xg.t=1 = Xgq- We define y, ¢ for all standard modules Mp. Since {Mp}p is a basis
of Rep U, (Lg), we can extend it linearly to any finite dimensional U, (Lg)-modules.
For the definition we need geometric constructions of standard modules, so we
will postpone it to §8.3. We give an alternative definition, which is conjecturally
the same as the geometric definition.

3.1. A conjectural definition. Let M = Mp be astandard module, @/R be
an [-weight of M, M(Q/R) be the corresponding l-weight space. Define a filtration
on M(Q/R) by

0=M""Q/R) C M°(Q/R)C M"(Q/R)C ---
M™(Q/R) € (| Ker(¢E(z) — Wi (z)id)"*1.

CONJECTURE 3.1.1. The t-analogue x4+(Mp), defined geometrically in §8.3, is
equal to

Xt (Mp) = Y 2= QM) dim (M™(Q/R)/M" = (Q/R)) mqr,
Q/R n
where d(Q/R, P) is an integer (determined explicitly from Q/R, P by (5.1.2) be-
low), and mg g is @ monomial in Ykﬂfa corresponding to the l-weight space M(Q/R).

This definition makes sense for any finite dimensional modules, but 1s not well-
defined on the Grothendiek group Rep U.(Lg). Thus the above does not hold for
simple modules.

3.2. A main result of this paper is a combinatorial algorithm for computing
Xq.t(Mp) and [Mp : Lg]. It is divided into three steps:
Step 1: Compute Y, ; for all [-fundamental repsentations.
Step 2: Compute y,+(Mp) for all standard modules Mp.
Step 3: Express the multiplicity [Mp : Lg] in terms of vy, +(Mg) for various
R.
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Step 1is a modification of Frenkel-Mukhin’s algorithm [5] for computing x, of {-
fundamental representations. Step 2 is nothing but a study of x, ; of tensor products
of {-fundamental representations. Although x, ; is not a ring homomorphism, y,
of tensor products is given by a simply modified multiplication. For the proof we
use an idea in [13]. Step 3 was essentially done in [15].

4. Step 3

We start with Step 3. The algorithm is similar to the definition of Kazhdan-
Lusztig polynomials [9]. Tt is also similar to the algorithm for computing the
transition matrix between the canonical basis and the PBW basis of type ADE
[10].

4.1. Let
def.
Ak,a = Yk,aaYk,aa—l H }/lf;la
Li#k
where e is the (k,{)-entry of the Cartan matrix.

DEFINITION 4.1.1. (1) Let m, m’ be monomials in Ykia (kel aeC). We
define an ordering < among monomials by

/
m' . C e
mgm'@—lsamommlalmflk}l (kel,aeC").
m ,

Here a monomial in A;}l means a product of nonnegative powers of A;i It does
not contain any factors yAkya. 7

(2) If W% W'* are [-weights of finite dimensional U, (Lg)-modules, or Q/R, Q' / R/
are related to l-weights by (1.1.4), we write U < W'* Q/R < Q'/R' if the corre-
sponding monomials m, m’ satisfy m < m’.

Recall that x,(Lp) contains an /-dominant monomial mp corresponding to
the highest weight vector. It is known that any monomial m appearing x,(Lp),
xq(Mp) satisfies m < mp ([5, 4.1], [15, 13.5.2]).

Let

cop(t) 4 the coefficient of mg in x4 ¢+(Mp).

Then (egp(t))p g is upper-triangular and cpp(t) = 1 by the above mentioned
result.
Let (¢9F(t)) be the inverse matrix (cop(t))™t. Let

def. -
uRp(t) < ZCRQ(t 1)CQp(t).
Q
Let ~ be the involution on Z[t,t~'] given by t¥1 s tF1.

LEmMMA 4.1.2 (Lusztig [10, 7.10]). There exists a unique solution Zgp(t) €
ZIETN(Q < P) of

(4.1.3) Zrp(t) = > Zrg(ugr(t),
Q:R<Q<P
(4.1.4) Zpp(t) =1, Zgp) et 'Zt™] for Q < P.

This lemma is proved by induction, and holds in a general setting. Lusztig has
been using this (or its variant) in many places.
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THEOREM 4.1.5. The multiplicity [Mp : Lg] of a simple module Lg in a stan-
dard module Mp is equal to Zgp(1).

The proof will be given in §8.4.

ExXAMPLE 4.1.6. Let g = Ay, M, = evi(M) where M is the 2-dimensional
simple U, (g)-module as before. By steps 1,2 explained below? we have

(4.1.7) Ngt(Maez @ Ma) = Y10V ez + Y1V L + Y LY 070

1,ae 1l,ae2” 1,ae

Let P(u) = (1—au)(1—ac?u) (i.e., Mp = M2 @ M), Q(u) = 1 (i.e. Mg = trivial
module). Then the above algorithm gives us Zgp(t) = t=1.

5. Step 1

5.1. Some definitions. Let Mp be a standard module. Let mp be the mono-
mial corresponding to the [-highest weight vector. Let Mp(Q/R) be an [-weight
space as before. We denote by mg, g the corresponding monomial. We define

wk,a(P)avk,a(Q/Ra P) € ZZO’uk,G(Q/R) €L by

W ,o (P)
mp=[[ ¥
kel ,aeC*

—vk,a(Q/R,P w(Q/R
Mok = mp H Akyz(;k, (Q/R,P) _ H qu,Z (Q/R)
kel ,aeC* kel aeC*

Suppose two standard modules Mp1, Mpz and l-weight spaces Mp:(Q1/R) C
Mp1, Mp2(Q?*/R*) C Mp= are given. We define
d(Ql/Rl, Pl, QZ/RZ, P2)
def.
GLD) 4 S (0 (@R, PVt gt (QF/ RP) + 0 0o (P s a(Q2/ 2, PP))
k,a

We also define
(5.1.2) d(Q/R, P) L d(Q/R, P;Q/R, P).

We denote d(Q'/R', P*; Q*/R?, P?) also by d(mgi g1, mp1;mqz g2, mp2).
We need the following modification of x,¢. Write x,:(Mp) = >, am(t) m,
where m is a monomial and a,,(?) is its coefficient. Let

(5.1.3) Yoa(Mp) < S dmmedg, (1) m,

m

where d(m, mp) is defined in (5.1.2).3

5.2. Frenkel-Mukhin [5, 5.1,5.2] proved that the image of the g-character yx,
is contained in

N (Z[Yli]l#k,ae@* @ LY (1 + Ai,zlm)]be@*) :
kel

2or direct calculation for the definition (8.3.1)
3Tn fact, d(m, mp) is determined from a.m, (¢) so that td(meP)am(t) is a polynomial in ¢ with
nonzero constant term.
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We have the t-analogue of this result, replacing (1 + A; ,175)” by

1 \" def. o rlner) |7 _r
(1+Ak7’175)t < Zt( )H A
r=0 t

where [}], is the ¢-binomial coefficient. More precisely, we have

THEOREM 5.2.1. (1) For each k € I, xq:(Mp) is expressed as a linear combi-
nation of

n; -1 i _ ni -1 m nag -1 "2
HYk,b, (1 + Ak,b,a)t - Yk,bl (1 + Ak,bla)t Yk,bQ (1 + Ak,an)t

with coefficients in Z[t][yli]l#k,aec*; where b; € C*, n; € Zso with b; # b; for
i

(2) If Lp is an [-fundamental representation (and hence Mp = Lp), then
Xq,t(Mp) contains no [-dominant monomials other than mp and the condition above
uniquely determines yq+(Mp).

REMARK 5.2.2. The statement (1) for t = 1 was proved by Frenkel-Mukhin [5].
And the proof of (2) is the same for t = 1 and the general case, as illustrated in
the following examples. In this sense, (2) should also be creditted to them.

5.3. Graph. We give few examples of x,; of {-fundamental representations
determined by the above theorem.

We attach to each standard module Mp, an oriented colored graph T'p. (It
is a slight modification of the graph in [6, 5.3].) The vertices are monomials in

k .
Xq.t(Mp). We draw an colored edge =% from mq to mg if my = mlA,;}l. We also
write the multiplicity of the monomials in x, +(Mp).

ExaMPLE 5.3.1. Let g = A; = sly and Mp = L(A3);. Then the corresponding
graph I'p is

2,& — 1,52 —
Vo1 —2— V1. YAV, —5 VLY.

2,62 1,3

3,a2l l3,52

_ 1,2 _ _ 2% _
ViVl S YAV eV S Y

1,3 3,e3 2,e4"
Let us explain how we determine this graph inductively. We start with the [-
highest weight Y5 1. We know that its coefficient is 1. Applying Theorem 5.2.1(1)
with k£ = 2, we get YlyaY_1 Y3, with coefficient 1. Then we apply Theorem 5.2.1(1)

2,62

with £ = 1 to get Yl_alg,nga. And so on. All multiplicities are 1 in this case.

For g = A,, it is known that the coefficients of x4 ¢(L(Ag)a) are all 1.* Thus
Xq,t(L(Ak)a) = Xg,e=1(L(Ak)a)-

EXAMPLE 5.3.2. Let g = Dy and Mp = L(Az)1. The graph T'p is Figure 1. Tt is
known that the restriction of Mp to a U.(g)-module is a direct sum of the adjoint
representation and the trivial representation. This fact is reflected in x4 (Mp)
where Y2752Y2;14 has the coefficient [2]; and all others has 1. Note that the number

4More generally, if the coefficients of oy, in the highest root is 1, then the same holds. This
result easily follows from the theory of quiver varieties. Exercise: Check this using the above
algorithm.
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Y2,1
2,&
Y
Yl Edg €2Y3,EY4,E
3,2 4,2
1,52
Y
1
Yl aY 53Y45 Yl €3Y35Y4a Yl aYBa
12 4.2 3.2 42 3,2 12

-1+ -1
Yl 53Y2 52Y Y4,a Y1,€Y2762Y37€3Y47€3 Yl 53Y2 52Y3 aY
2,6° 4.¢° 2,67 1,62 /52 2,e?
A
-1
Y2 54Y4 5Y4 &3 Y1,€Y1,53Y2 e Yl €3Y2 €2Y3 3 Y2 €4Y3,5Y3,a3
1, 1e2 32

i
2
N
w

-1 -1 -1 -1
Y4,a 45 Yl,a 1,5 [Q]tYZ,a2 2,e4 YS,& 3,5
4,52 1,52 2,53 3,52
Y
—1~y—1 -1 1
Y27€2Y47€3Y47€5 Yl €3Y Y27€2 Yl 53 2 €4Y37€3Y47€3 Y2 €2Y Y
4 3¢t
2,53 2% 4.t Le ’

-1
Y1 53Y2 a“YS 53Y Yl €5Y2 54Y3 e Yy &3 Y1 &3 2€4Y37€5Y4,a3
1754 3, 4% 3¢t 4.t 1754
YA Y5V Vy.eaY. VY Y
4
3.t le 4.6t
A
-1
Y1,55Y2754Y3 aSY
2,5
A
-1
2,8

F1GURE 1. The graph for L(Az2)1
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of monomials is 28, which is the dimension of the adjoint representation. See also
Example 7.2.3 below.

Let us give a more complicated example.

EXAMPLE 5.3.3. Let g = Ay and Mp = L(A3)®? @ L(A;);. Although this is
not an I-fundamental representation, x, ;(Mp) has no [~-dominant terms other than
mp, so the condition Theorem 5.2.1(1) gives us x4¢. The graph is Figure 2.

YiaYse
le 2,¢?
Yy 52Y2€ [Q]tY1,1Y1,52Y2aY2_€3
2,52 1763
le 2,7
2111V, 4. BlY7 Y5 ViV Yy
2,52 2,52 e 1,53
21y Ay AYS 3]iY1.2Y2 Y, 3 [21:Y11 Y12 Y 4V,
>< 1,53 be 1,53
152 253 t + 1 1€4Y2 aYQ 513 Yl,lyl 524
/ be
] Yl 52Y1 54Y2 523 Yl 52Y1 54Y25
\ 2,¢?
Yl 54Y2_a3

FIGURE 2. The graph for L(A5)®? @ L(Ay)y

REMARK 5.3.4. As we can see in above examples, the crystal graphs are sub-
graphs of I'p. The set of vertices is the same, but the set of arrows is smaller. We
would like to discuss this further elsewhere.

6. Step 2

6.1. Let Mp = M(s'; (kL)) (n,) @ M(s% (k2,),(n%,)) @ - be astandard
module with s'/s/ ¢ ¢Z as in Theorem 2.1.2.
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ProrosiTiON 6.1.1. We have
Xat(Mp) = xgu(M(s": (ko oy, (o, oy )Xt (M (5% (K2, as s (12, )as)) -
if si/si ¢ el fori#j.
Thus it is enough to study

Xq,t (M (5 (ka)as (na)a)) = Xg,t( LAk, Jerrs @ L(Agy)enzs @ - -).
Let

Xt (L(Ag)enas)) = D my vy (DM,

To

where m, ,, is a monomial in Ykia and ap,, ,, () € Z[t,t~1 is its coefficient.
If ¢ =1, x4,1 is a ring homomorphism, hence we have

Xa (M (a5 (ka)a, (na)a)) = D [T am, ra(Dmar..

THEOREM 6.1.2. Let P® be the Drinfeld polynomial of L(Ap, )eras. Then we
have

Nat(M(a; (ka), (o)) = Y tFes S era e e TTa,, o (H)ma,.,,

T1,72,... o
where the sign for d(ma ., mpe;mg ., mps) is — if a < 3 and + otherwise.
ExaMpPLE 6.1.3. For g = Ay, we have

d(Y_l Yl,a;Yl,aaYLa) = 1a d(Yl,aaYLa;Y_l Yl,aa—Q) =1

1,ae2’ 1,a>

and all others are 0. Then we get (4.1.7).
If P=(1—au)”, we get

n

n n—ry —r
Xq,t(MP) = Z |:7Q:| Yl,a Yl,aa2
3

r=0

from xq4:(L(A1)a) = Yia + Yl_a1€2. This also follows directly from the defini-
tion (8.3.1) below. The t-binomial coefficients appear as Poincaré polynomials

of Grassmann manifolds.

7. Restrition to U.(g)

Finite dimensional simple U, (g)-modules are classified by highest weights. Let
Res Mp be the restriction of a standard module Mp to a U.(g)-module. Tt de-
composes into a sum of various simple modules. Once x,(Mp) is computed, the
character of Res Mp is given by replacing Ykia by yl:f (Theorem 1.1.5(2)). Combin-
ing with the knowledge of characters of simi)le finite dimensional U, (g)-modules,
we can determine the multiplicity of simple modules in Res Mp.

Characters of simple finite dimensional U, (g)-modules are the same as that of
simple g-modules, hence are known. However, we express them in terms of x,; in
this section.
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7.1. For a dominant weight w = > wy A we denote by Ly, the simple highest
weight U, (g)-module with the highest weight w.

We consider a standard module Mp with deg P, = w;,. By the ‘continuity’ of
Mp on P, Res Mp depends only on wy, = deg Py, and not on P itself. Let us denote
the multiplicity of Ly in Res Mp by Zw/ w, 1€,

D71,
Res Mp = P Ly ™"
!

We will give a formula expressing Zw/ w in terms of x,(Mp). Although we
can give algorithm for arbitary P in principle, the following choice will make the
formula simple.

Choose and fix orientations of edges in the Dynkin diagram. We define integer

m(k) for each vertex k so that m(k) —m(l) = 1 if we have an oriented edge from &
to [, i.e., k = I. Then we define P by

Pr(u) = (1 — ue™®)yer,

Let Xg:(Mp) as in (5.1.3). Let {;(Mp) € Z[t] © Z[t{]rer be a t-analogue of
the ordinary character which is obtained from x,¢(Mp) by sending Ykia to y;f.
For another dominant weight w' = > w} Ay, let

cw' wi(t) 4 the coefficient of Hy;f;c in x:(Mp).

The matrix (¢ws w(t))w' w i upper-triangular with respect to the usual order on
weights, and diagonal entries are all 1.

THEOREM 7.1.1. cwi w(0) is the weight multiplicity of w' in the highest weight
module Ly with the highest weight w.

This is just a simple rephrasing of a main result in [12, 14]. The proof will be
given in §8.5.
Note that cw w(1) gives the weight multiplicity of w’ in Res Mp since x;=1 is
the ordinary character. Thus we have
wre(1) = 3 o (0) Zos .
-
This equation determines the multiplicity Zw+ w only from the knowledge of x, ;.

According to a conjecture of Lusztig [11] together with a formula (8.5.1) below,
cw' w(t) should be written by ferminonic form of Hatayamael al. [7]. More precisely,
we should have ), cw”’wl(O) cw wi(t) = M(w,w" t?), where (cw”’wl(O)) is the
inverse matrix of (cwn w(0)). See [11] for the defintion of M (w,w’, ¢). Although
this formula can be checked in many examples, the complexity of the combinatorics
prevent us from proving it in full generality. Conjecturally M(w,w’, ¢ = 1) gives
us the multiplicities of the restriction of Mp (Kirillov-Reshetikhin®). Thus the
conjecture is compatible with our result in this section.

7.2,

EXAMPLE 7.2.1. Let g = A; and w = 2A;. We take P = (1—u)? by the above
choice. By Example 6.1.3, we have

G(Mp) =i + (1 + %)+ 977

5In fact, they consider more general modules, not necessarily standard modules.
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Thus Zow = 1. Since Res(Mp) = La, @ La, = Loa, & Lo, this is the correct
answer !

ExaMPLE 7.2.2. Let g = Az and w = A;. By Example 5.3.1 all the coefficients
of x4:(L(A2)1) are 1. Hence Res Mp = Res L(A2); is simple as a U.(g)-module.

ExXAMPLE 7.2.3. Let g = Dy, w = Ay, w' = 0. By Example 5.3.2 we have
cw wl(t) =4+ 12 Thus Zw: w = 1, i.e. Res(L(A2)1) = La, & Lo.

8. Quiver varieties

In this section, we give the definition of y,; and prove Theorems 4.1.5, 7.1.1.
As we mentioned, those proofs are essentially given in [12, 14] and [15] respectively.
The only things we do here are translation of results into the language of x, ;. We
believe that this section gives good introductions to [12, 14, 15].

8.1. Let w = > wpApr (wp € Zy>o) be a dominant weight of the finite di-
mensional Lie algebra g. In [12, 14, 15], we have attached to each w, a map
7 M(w) = Mo(o0, w) with the following properties:

(1) 9M(w) is a finite disjoint union of nonsingular quasi-projective varieties of

various dimensions.

(2) Mo(oo, w) is an affine algebraic variety.

(3) m is a projective morphism.

(4) There exist actions of Gy x C* on M(w) and Mo(oo, w) such that = is

equivariant.

(5) Mo(o0, w) is acone, and the vertex (denoted by 0) is the unique fixed point

of the C*-action (restriction of Gy x C*-action to the second factor).
Here G = [];¢; GL(ws, C).
We consider the fiber product

Z(w) MW Xty (00, w) DUW).

The convolution product makes the (Borel-Moore) homology group H.(Z(w),C)
into an associative (noncommutative) algebra. One of main results in [14] is a
construction of a surjective algebra homomorphism

U(g) = Hiop(Z(w), C),

where U(g) is the universal enveloping algebra of g (NB: not a ‘quantum’ version).
Here Hiop( ) means the degree = dimg Z(w) part of the homology group. More
precisely, we take degree = dimension part on each connected components of Z(w),
and then make the direct sum. Note that the the dimension differs on various
components.

Let £(w) = 7#71(0). It is known that 9(w) has a holomorphic symplectic form
such that £(w) is a lagrangian subvariety. The convolution makes Hop(£(w),C)
(the top degree part of the Borel-Moore homology group, in the same sense as above)
into an Hep(Z(w), C)-module. It is a U(g)-module by the above homomorphism.
By [14, 10.2] it is the simple finite dimensional U(g)-module Ly with highest
weight w. And connected components M(v,w) of M(w) are parametrized by
vectors v = Y vpay (o is the kth simple root of g) so that

Huop(£(w), C) = P Heop(M(v, w) N &(w), C)
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is the weight space decomposition of the simple highest weight module Ly, , where
Hiop(M(v, w) N £(w),C) has weight w — v. In particular, v.= 0 corresponds to
the highest weight vector. In fact, (0, w) is consisting of a single point.

The space Mo(o0, w) has a stratification

Mo(o0, W) = Ui)ﬁgeg(v, w),

where v runs over the set of vectors such that w — v is a weight of Ly which is
dominant [12, §3].

8.2. Let us give the U,(Lg)-version of the construction of the previous sub-
section.

We use the following notation: Let R(() denote the representation ring of a
linear algebraic group (. If G acts a quasi-projective variety X, K(X) denotes
the Grothendieck group of G-equivariant coherent sheaves on X .

The representation ring R(Gw x C*) of G x C* is isomorphic to the tensor
product R(Gvw) ©z R(C*). Moreover, R(C*) is isomorphic to Z[q,¢~1], where ¢ is
the canonical 1-dimensional representation of C*.

The convolution makes the Grothendieck group KX (Z(w)) into a R(G X
C*) = R(Gw)[q, ¢ ']-algebra. One of main results in [15] is a construction of an
algebra homomorphism

UX(Lg) @z R(Gw) = K9 (Z(w))/ torsion .

By the equivariance of 7, £(w) = 771(0) is invariant under Gy x C*. The
convolution makes K &w*C" (£(w)) into a KGwxC (Z(w))-module. Moreover, it is

free of finite rank over R(Gy x C*) [15, §7]. Tt is a U?(Lg) ®7 R(Gw)-module by

the above homomorphism. By [15, §13], it contains a vector mg such that

i emo =0, (UN(La)™ ©n R(Gw))  mo = K%< (8(w)).

A—l/qzq_lwk
A=~ We

The right hand side of the third equation needs an explanation: First W is the
vector representation of GL(wy, C), considered as a Gy x C*-module. Then AV =

Zul/\ZV Since /\_q/zq_ka is 1 —(1/2)W, + ... (1 is the trivial module), we

(8.2.1)

+
1/)?(z)*m0:qwk( ) xmg forkel.

-1
can define (/\_q/zq_ka) as a formal power series in 1/z. This gives us the
q/zq_lwk -
(=1/z)wr (/\kak — z/\wk_ka + ) Then A“*W}, is an invertible element,

case ()T of the above formula. In the case ( )™, we expand as A_

-1
we can also define (/\_q/zq_ka) . The vector mg is the canonical generator of

K%xC(9M(0,w)). (Recall M(0,w) is a point.)

The module K%w*C"(£(w)) should be considered as a ‘universal’ standard
module since standard modules are obtained from it by specializations as we explain
now.

Let a = (s,£) € Gw x C* be a semisimple element. Tt defines a homomorphism
Xao: R(Gyw x C*) = C by sending a representation to the value of the character at
a. Then

(8.2.2) K9 (2(w)) ®p(a,xcr) C
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is a module over U, (Lg) = U?(Lg) @71q,4-11 C. By (8.2.1) it is a finite-dimensional
[-highest weight module. This is the standard module Mp, where Pp(u) = xa(A_,
q~1W4). Note that the set of conjugacy classes of @ = (s,¢) bijectively corresponds
to the set of I-tuple of polynomials P with deg P, = wy,.

8.3. Let A be the Zariski closure of aZ in Gy, x C*. Tt is an abelian reductive
group. We have K&w*C"(g(w)) OR(GwxC) R(A) = KA(L(w)) [15, §7]. Since x4
factors through R(A), the standard module Mp is isomorphic to K4 (£(w))@ra)C.
By Thomason’s localization theorem, it is isomorphic to K(£(w)%) @z C, where
£(w)# is the fixed point set. Furthermore, it is isomorphic to H.(£(w)4,C) via
the Chern character homomorphism [15, §7].

Let 74: M(w)? — Mo(co,w)? be the restriction of the map =: M(w) —
Mo (o0, w) to the fixed point set. Let M(w)4 = |_|p M(p) be the decomposition
into connected components. Each 9M(p) is a nonsingular quasi-projective variety.
Then we have the direct sum decomposition

Mp = H.(&(w)*,C) = €D H.(M(p) N £(w), C).

In [15, §13, §14] we have shown that this is the [-weight space decomposition of
Mp. In particular, the index p can be considered as an [-weight of Mp. Thus we
have arrived at a geometric interpretation of y,:

Xo(Mp) =~ dim Ho(M(p) N L(w), C) m,,

where m,, is the monomial corresponding to the [-weight p.
Now we define the t-analogue x,: by

(8.3.1) Xot(Mp) SN dim Hy(M(p) N L(w), ©) = dime M)
4 k

By [15, §14] we have a stratification
mo(ooa W)A = U mgeg(p)a

P

consisting of nonsingular locally closed subvarieties. Here the index set {p} is the
subset of the above index set consisting of [-dominant [-weights.

8.4. Proof of Theorem 4.1.5. The [-highest weight P is fixed throughout
the proof. Thus the dominant weight vector w and the element a = (s,¢) € Gy
are fixed.

We change the notation now. If p corresponds to an l-weight space Mp(Q/R),
we denote above M(p) by M(Q/R, P). We also denote by Mg ®(Q, P) for above
My B(p) if p corresponds to an [-dominant {-weight @. Thus we have

M(w)* = | | MQ/R,P), Mo(oo,w)* = JMEQ, P).
QIR Q

In this notation H,(9M(P, P)NL(w),C) is the [~highest weight space. Since MM(0, w)

is a single point as we explained, we have MM(P, P) = M(0,w). We also have

My 8 (P, P) = {0}.
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LEMMA 8.4.1. (1) dimgM(Q/R, P) = d(Q/R, P). dime¢ M 2(Q, P) = d(Q, P).

(2) If MES(Q, P) C MB(R, P), then R < Q.

(3) Choose = € ME(Q, P). Then (74)~Yz) N M(S/T, P) is isomorphic to
M(S/T,Q)N L(w).

ProoOF. (1) The first equation is the dimension formula [15, 4.1.6]. The second
equation follows from dime¢ Mg ®(Q, P) = dimeM(Q, P), which is clear from the
definition [15, §4].

(2),(3) The results are known or trivial for @ = P. Now use the transversal
slice at # € M 8(Q, P) [15, §3] to reduce a general case to this case. O

Let D*(Mo(c0, w)?) be the bounded derived category of complexes of sheaves
such that cohomology sheaves are constant along each stratum MG ®(Q, P). Let
IC(MB(Q, P)) be the intersection homology complex associated with the con-
stant local system Copres(g py on Mo 8(Q, P). By using the transversal slice [15,
§3], one can check that it is an object in D°(Mg(o0, w)?). Let Co(q/r,p) be
the constant local system on M(Q/R, P). Then wf(@m(Q/Ryp)) is an object of
D*(Mg(00, w)?) again by the transversal slice argument. Using the decomposi-
tion theorem of Beilinson-Bernstein-Deligne, we have shown that there exists an
isomorphism in D? (Mg (o0, w)4):

(84.2) 7 (Conrp[dime MR, PY)) = D Lo k(R P) © ICENEH(Q, P
Q.k

for some vector space Lq x(R, P) [15, 14.3.2]. Since 74(M(R, P)) C ME(R, P)
by definition [15, §4], the summation runs over ) > R by Lemma 8.4.1. Let

LRQ(t) d%f' ZdimLka(R, P)t_k.
k

Applying the Verdier duality to the both hand side of (8.4.2) and using the self-
duality of wf(@m(ﬂp)[dim@ M(R, P)]) and IC(My®3(Q, P)), we find Lro(t) =
Lro(t).

Choose a point zq from MGB(Q, P) for each stratum. Let iy,: {rg} —
Mo(co, w)? denote the inclusion. Consider

Hk(z'wame(Ryp)[dlmm(R,P)]) = Hdimc gm(R’P)_k((ﬂ'A)_l(l‘Q) ﬂm(R, P),C)

By Lemma 8.4.1(3) this is isomorphic to H gimg m(r,p)- & (MR, @Q)NL(w), C). There-
fore we have

Z dim H*(it, , 7 Con( e, py[dim M( R, P)]) (dime M(Q, P)—k
(8.4.3) i . .
= Z dim Hy(M(R, Q) N £(w),C) d+dime M(Q,P)—dime M(R,P) _ cro(),
d

where we used dimg M(R, P)—dimeM(Q, P) = dimg M(R, Q) in the last equality.
By [15, 14.3.10], we have

[Mq : Lg) = dim H" (i}, . IC(My8(R, P))).

(In fact, we defined the standard module Mg as H.((7%4)71(zg),C) in [15, §13],
which apriori depends on P. Thus the definition coincides only when @ = P.
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However, by using the transversal slice, we can show that the right hand side is the
same for both definitions. cf. Lemma 8.4.1.)
Let

Zrq(1) Y dim H*(ih,, IC(ME(R, P))) hm (@ P)E,
%
We have [Mg : Lr] = Zrg(1). By the defining property of the intersection homol-
ogy, Zro(t) satisfies (4.1.4).
Substituting (8.4.2) into (8.4.3), we get

csQ(t) = Lsr(t)Zrq(1).

Now Lgg(t) = Lsg(t) implies (4.1.3). This completes the proof of Theorem 4.1.5.

8.5. Proof of Theorem 7.1.1. By the result explained in §8.1, the weight
multiplicity of w’ in Ly is equal to

dim Hyop (M(w — w',w) N L(w), C).
The assertion follows from more general formula
(8.5.1)
CMp) = 3737 HalMw = w'w) 01 £(w), ©) ¢ime v =0 TPk,
d

w/! k

Note that M(w —w', w) N £(w) is a lagrangian subvariety in 9M(w —w’, w), so we
have top = dimg M(w — w', w).

In order to prove (8.5.1), we use [12, 5.7], where the Betti numbers are given
in terms of those of fixed point components. It looks almost the same as above.
However, there is one significant difference. The C*-action used there is different
from our C*-action used here, defined in [15, §2]. This is the reason why we choose
P and corresponding a = (s,¢) as explained in §7. Then A = aZ is isomorphic to
C* and the action is the same as the C*-action considered in [12, §5].

We decompose M(w)? = | |M(p) into connected components as before. By
[12, 5.7] we have®

dim Hg(M(w — w' w) N L(w),C) = Z dim Hgime m(w—w',w)—a(M(p), C),
P
where the summation runs over the set of p such that the corresponding monomial
m, is sent to [], y, * after Yi o — yx. The C*-action makes Mo (0o, w)© = {0},
so M(p) = M(p) N £(w). Hence the above expression coincides with the definition
of the coeflicients Y.

Acknowledgement. We would like to thank E. Frenkel and E. Mukhin for
explanations of their algorithm computing g-characters of fundamental representa-
tions.

6In fact, this formula even holds for general P if we replace dimc M(w —w',w) —d by a
suitable degree. However, this degree shift is given by a complicated expression in p. So our choice
of P is most economical.
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Appendix A. FRZHE

A.l. f& (quiver). quiver Q (X, THRDOHREAR T & (NEDDONWZ) WOES
QThHoT, WOBREKRREEIEDEHout: @ > ,in: Q> 1 HEZXLHNT
WHHLDODZEThD. Thbb, ARY 77O ME & ALz b DI 5720,

y

oa——@
in(
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° h
out(h)

FIGURE 3. quiver D]

Dk ?‘_—(EE (path) &li, ﬂ@ﬁlﬁﬁu (hl,hg,. .. ahN) < m(hl) = Out(hg), ey
in(hy_1) = out(hy) DKV LD B DD EEHFH. N ZIEOEI LW . EHILE
SNBODE, TRDLBLOEDDEAE e [ TIN50 HETHD ERKRTS.

FaAldsLE BRE (path algebra) FQ #iE% KK & T2 ~7 MLZEMIC
BEOARRICE > THEAMNEZLDOETD. LY OOENFRTERNVE X, T2
OHEENETNOKREBREREN B LWL & BI0EEDD. FIZIE T 4
DED HEREIE, — AR Flo] ICfli7e 5720, — i, mR B IEA #aod
BRIZR 5.

FIGURE 4. Flz] IZXkHid 5 quiver

F T2 TFQOMAT T NVETH L& EREEEGBAT CHSR FQ/T b
$<EZS. BT, EoflTcmElEbLBZL—7 A % 0 LT 5BHRAEE 2 T,
KT 2 BRI Fle] /2™ IZfl72 720,

quiver DRBLEVE, EREFQ OLENMBEOZ L 2T H. SVEET, FHA Lk € I
*f LT F-~X7 k/LVZEfH Vi NHZ Eﬂ, Kl h e ‘zﬁbff(ﬁ%@g‘@ﬁ By Vout(h) —
Vi) DEABN TV HDDZ L THD. £l FQ/TORBIL, LDLX 57 By 12
IDREDDLFHERLZH DI B2,

L7285 C, quiver DRBLOFRIBSH (7277 LIRIENFLC b O TEE D) OES
(Thebb, RELOETY 27 A Z2[#) 12,

(A.1.1) P Hom(Vour(ny, Vinny) / [ GL(Vi)
heq kel
iz ey, X7 hVvZERE Eq(V), [[ier GL(VE) 2 Gy TEDT.
RIBDEY 27 A Z2{#(A.1.1)1X, Riemann [ EOIERIR Y MVERDEY 2T A Z2[{]
EHRLEN D D EEBEL, (BIRKITD) T 7 7 A 22/ % (013 0 WERKITD ) Lie
BECHI > EMIT > T D,
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relation OFITH & ORMEEEAR LS BERT 20003 H L0 THATSH. OF %
Q=(I, Q) DETNET S, Thbb, [IREAXT, QO hICZOREZHIC LT
LD R EMIMATZHbDTHD. ZDOLE, Q¥ O hITxL, e(h)Z heQ DL
WWLAEQDLEIZ -1 LEDD. £ T,

> e(hhh=0, (keI

in(h)=k

THERESNDEHMA T T NAE2EZ T LB FQ# /T I preprojective algebra & FHE

N5bDOThHD. ZDORIDFRRIAIL
> e(h)ByBy =0 /Gv
in(h)=k

THZbN5. Equg(V) = Ea(V)SEq(V) X v 7L 7T 4w 77 hVZERTT,
> e(h)ByBy 1% Gy OAERICET 2E— A hi—ﬂ%ﬂ% v v&—rmﬂb
KOE— AV FEBICHOWTE, LW —iXFR At CAEIT 72 DT Tlidz
WA, B EICHTL AP AL RGO hyper Kahler gL OE L E DT, (19,
FIFE Z22RINNUEH VBTV, Ko TEOZERIE, L HEEMBSEERORE
EzRTEWDW LTV T 4y 7ERAD T ERHED. v 7Ly
T4y 7O LU, (A1) D Eq(V)/Gy BDEEERIT 2T, £ ORPER
T*(Eq(V)/Gy) LREIZ/e . &2 A0, Gy O X 5 R REFHCBIT D E2EmiL, —
BRIZIIAARZER & U € Hausdorff (272 572\, Z O WEEZ fRIE 5 72 O 1T 8T 52R0
RERGRPMET, DHITIR_RDAREERIR S E ORRITER I D, £ DR 72
B RN & DI &L, preprojective algebra DM FEH 2 BRI ‘REEFR TH 5.

ALE Z5f (LY ERECITE O MG OB R M) M EE2R(A12) L <X
%@ modification & L CERIND. TOEWT, (A1) IFHER VI LIT 1w
I BRERERERT ALV E L B Z L kS,

A2, FRZHIK (quiver variety). FREFRADER L TH. £T(A.1.1) D Eq(V)
& X DB EMOEME SR D

Eq(V) & Eq(V)" = @) Hom(Voustay, Viatny) & Hom(Viagny, Vous(n))
heQ

X, EDF TN, F o H E O E O A INA T TE 2 quiver (Zh
 QF TERDOI)I ﬁﬁia“ém& MZEMERZ L. EOX T Ve H TEDT. &6

(A.1.2) {(Bh) € Equa(V)

W2, BTHRZ T MVZER W, VT,

(A.Q.l) (@ HOHl(Vout(h), Vin(h))) D (@ HOHl(Wk, Vk) ©® HOHl(Vk, Wk))
heH kel

<‘:b\9/\7 ZEMEHZ L. ZONY MVERE M(V,W) EEZS. MV, W) I

é'C, (A.2.1) DEOBERT D EZAIIMTHA 202? B —DKSIE, quiver H O
KRB THLINOHEWIALNTHA . —F, 8 pm [17] THNTZH DD, quiver
DORIBGHTHEONTZ L3 o7 X 5 THS. fiffio X 512K & OBEN 5

TS DERE T A PR ML E L TOEKRNBEI- XY L TL 5D TIEdH 573, ::
T7] COEKREZHRIIL X 5. AL ALE 22/ EOERINY MLVROEY 27
A ZEMELTRL L E, (Wy)ker 13, framing, 72D HMERETONT FL o E B

TZOWMRTIE, YT LT 40 7 BRI TN TEERELTEX S, oI TIL, EoOv 7L
7T 4w 7R E KRBT D -OICERS oL 7T 4y 7R E RSB E B LD THE.
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BIZxIT 5. Zhg quiver D SEEICIEEIEICHFIER T2 LD L H1272 5. quiver
Q# b —UDINEIRY Rz quiver 2 Q' L5, 2D L&, Q ORBLLIL, TEHED
Flz_7 P VEREEWZL O, Z LTRY MLZER ORI OB G4 —8%E 2 72
bolzfze b2, QF ORI (Virer, (Bu)nen XL, By 5o &, Q' ORB
NEZBND. 2L, REOEOBMTTH 5. (L0 ki, OF 0N 7 7 7 %252
E, FEOBE TR EREND.) ZOBTEHREEE S, 8T, LORT, (Wi)ker
X, Q OERBLEEZDHZENTES. T5HE

@ HOHl(Wk, Vk)

kel
X, Wirer 225 (Vi)rei, (Br)ner PHIR~D quiver Q' TOMERDO AL TH 5.

@Hom(Vk,Wk)
kel
T BAA, (Vidker, (Bn)her PHIEDS (Wi)gei ~D quiver Q' TOHERBIDAE
Thb.
ANCIR 72 X 9 72 quiver DFEIH LT MLVEOHFHBOL & TiX, kOISR H 5
Z EIFERITSTH A S
(1) EoBEFIE, X7 VR ZHSZHREA~HIRT 2 Z L ioxtisT 5.
(2) (A.2.1) DEFERRNE, H SRR G- 2 bivTe~ 2 hLVR & oo HEFE AL
ST 5.
ST, (A21) DFRSTE B, g, jr EHI D). ZDEE ROBBEEZD.

p: M = P End(Ve);  (Bay ik, ji)hemker — ( > e(h)ByBy+ ikjk)

kel he H:in(h)=k kel

M(V, W) 1, 20 24y

(A22) @ Hom(vout(h)a Vln(h)) D @ Hom(Wk, Vk)
heQ kel
DERERERDLZENTE, FRCARR Y TV I T v 7 BREF>. Lo~ |
WVEEE Mo(V, W) &EZ 5. Gy DFERIE, M(V.W) Oy 7L 77 v 7 TEX%E
o, EOEM pid, EEESBTHD. ZOHTDIX, preprojective algebra ¢ #H
L& LA THD.
ST, VTV I T4 IR

p=1(0)/Gv

EEZTV. b LHEZER Mo(V,W)/Gy BERETHIUE, ZhidToRERE
REITH D, LoL, BATROREERT BRI RE SRR 5 2 LM TE
7RV, SIS R [18] ORI, FIZEMI %5 2 B 10b 0 ICREZER R0 BB (]
MEEZEL, EFHILEThHDL. HSOHEIE, Zo0BEMRH L. ETHE DL,
pmH0) 27 7 7 A BRI L BT, EARBR O Gy AL BRICIET 57
T A REEKEREEZ D LOTHD. ZhE pm Y 0))Gy L EIND DT, %
DL pH(0) ORABLEIZ M 7e 220,

b9 =0l p1(0) LOBEKE (5 OBE, BRI bOERD) T, Gy OfEMZH
b RS, BEREROT VY AVFED Gy REZRGIE O 783 B> & BRISKHG T 2 Y5
REEEZL2HbOTHS. AURERK~OIERORH BT %, GL(V;) 075D
WD L, LTOLIITERSND “LIE (stable)’ 72 DK DPHERNZ /25 .
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DEFINITION A.2.3. (By, ik, jk)neH kel DRETH D E1E, IROKMHEDK D Lo &
XEE DV, OBAERSZEROEE Y (Sy)rer THo T,

o Sy, CKerj DT R_RTD EIZONWTHLY LD
. Bh(Sout(h)) - Sin(h) N _RTD hIZDOVWTHEY YLD

LW SUEEBTETEDIE, TRTDEIZHONT S, =0&RD5BDITRS.

LEREOREE pm1(0) LEL . Lo ToonoREE, pm(0)5 /Gy THD.
DX oIC L TR SN Z>DpEZEM 2 EnEh

Mo (v, W), M(v,w)
TEbZTY. L, v, widThEh
v:Zdikaak, W:ZdikaAk

ThHzbNnD. BV b
7 M(v, w) = Mo(v, w)

EWVI B EGN B 5. BARIIZIE, M(v, w) DO, Teb BRERBLEIC KL
T, ZOHBIZEEND L ORI —oDHEEZ X IEDEBRTHD.

AIHIC M B (v, w) & EWTZ b DI, stabilizer 235 B TH 5 PHILED 2RO 72
Mo(v, w) DEEFDZRETH S

ZIT, 2 0) 721 T < Ma(V, W) ORMEINAERGRIC L A b B 2 78
WDDEERNZBDIRNEA 502 FE, ZORREEEZ 2D Z LILARETH D)

o Mq(V, W) OBIBLEEL 0 LA, 725 Ma(V, W) Gy 13— A0
LIRDHZERTHS.
o 2L OYE, HERHIBEITFEIEL 220,
REOBGENRHY, HFEV AR LD LITEBEZLNRVDTHD. L7ein>T, Ma(V, W)

IEPEZER Ma(V, W) /Gy 282 5D TIE%R <, Gy-RZEZR Mo(V, W) Loxt4%
EZDDNNNEHITH B,

Flo, ROLHIRBIGLHD. quiverQ 1L, 77 7DLIZMEE ANTZLDOTHH-T
N, BRHREEMNDEEEZD. 0)}: & quiver QIXZE DB, Z D double Q#
ITEDLLRW. ZLT, Mo(v, w), M(v, w) IXAIEDIY FIZ L 572008 Ma(V, W)
DEEDORY HIZLoT, BER R E STV /o7 W Eb>TLEIDOTHS.

Thebb, IROY %#%Dﬁofwé.

aZef Ma(V, W)/ Gy IEER & Ff 272, Z O RBEd ER T Ab“(“&)é.‘

L)L, TbF LR EREEMEEZEZLD Z ERMELRON, Gy-RERR TS
fafb\@?b‘&b‘?%EFEjig?)%? EHEOBIL, IRETLIE CREMENRBRIIL B % FF
ODERDHZETHZILNS.

MZREIERDOB E 52X 5. 77713 A48, 30 bEANR—ETHIER2VWHE D L
TH. ZOEEV, WENT MVERT ¢ W=V, 5. VasWERD p=0I3,
=0T, RECHB L, j RERTHDZ & LFABTHSD. 22T, Mv, w) i
O T A ZRRMRDRBER~D G4 %

M(v,w) > Gy - (4,5) — (Image j, ji) € T" Grass(v, W)
TE®HD. 72721,
T* Grass(v, W) = {(S,€) | S1Z W © v RILH B ZEM T, £ W/S — S}
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i 7% (Hiraku Nakajima)

ThhH. KR T 2y 7 TEHE ST, HURRMTHS. £7, Mo(V, W) DH 1,

Mo(V, W) 3 Gy - (i,§) > ji € {6 € End W | €2 =0, rank ¢ < dim V}

WIRAREGR 2 52 %.
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