Notation for an Oriented Graph

- $I = \{1, 2, \dots, n\}$: the set of vertices,
- \bullet E: the set of edges (assume no edge loops)
- *H*: the set of pairs consisting of an edge together with its orientation.
- for $h \in H$, let in(h), out(h), \overline{h} be

• Ω : orientation of the graph, i.e., a subset $\Omega \subset H$ such that $\overline{\Omega} \cup \Omega = H$, $\Omega \cap \overline{\Omega} = \emptyset$. (assume that Ω has no cycle.)

Notation for Quiver Varieties

Put vector spaces V_k , W_k for each vertex $k \in I$.

$$\mathbf{M} \stackrel{\text{def.}}{=} \left(\bigoplus_{h \in H} \text{Hom}(V_{\text{out}(h)}, V_{\text{in}(h)}) \right)$$

$$\oplus \left(\bigoplus_{k=1}^{n} \text{Hom}(W_k, V_k) \oplus \text{Hom}(V_k, W_k) \right).$$

For $(B_h, i_k, j_k) \in \mathbf{M}$, let

$$\mu(B_h, i_k, j_k) \stackrel{\text{def.}}{=} \left(\sum_{h \in H: k = \text{in}(h)} \varepsilon(h) B_h B_{\overline{h}} + i_k j_k \right)_k \in \bigoplus_k \text{End}(V_k).$$

Definition.

 $(B_h, i_k, j_k) \in \mu^{-1}(0)$ is <u>stable</u> if if a collection $S = (S_k)$ of subspaces is *B*-stable and contained in Ker j, then S = 0.

Definition.

$$\mathfrak{M} \stackrel{\text{def.}}{=} \{ (B_h, i_k, j_k) \in \mu^{-1}(0) \mid \text{stable} \} / \prod_k \text{GL}(V_k)$$

$$\mathfrak{M}_0 \stackrel{\text{def.}}{=} \mu^{-1}(0) / / \prod_k \text{GL}(V_k) \quad (\text{GIT quotient})$$

$$\binom{(B_h, i_k, j_k) \sim (B'_h, i'_k, j'_k) \iff}{\text{closures of } \prod_k \text{GL}(V_k) \text{-orbits intersect.}}$$

Theorem

- 1. The differential $d\mu$ is surjective at stable points.
- 2. The stabilizers are trivial at stable points.
- 3. \mathfrak{M} is a nonsingular variety of dimension $2^t \mathbf{v} \mathbf{w} {}^t \mathbf{v} \mathbf{C} \mathbf{v}$.
- 4. \mathfrak{M}_0 is an affine algebraic variety.
- 5. The natural map $\pi \colon \mathfrak{M} \to \mathfrak{M}_0$ is projective morphism.

Tautological Complex of vector bundles over $\mathfrak{M}(\mathbf{v}^1, \mathbf{w}) \times \mathfrak{M}(\mathbf{v}^2, \mathbf{w})$:

$$\bigoplus \operatorname{Hom}(V_{\operatorname{out}(h)}^{1}, V_{\operatorname{in}(h)}^{2})$$

$$\oplus$$

$$\bigoplus \operatorname{Hom}(V_{k}^{1}, V_{k}^{2}) \stackrel{\sigma}{\longrightarrow} \bigoplus \operatorname{Hom}(W_{k}, V_{k}^{2}) \stackrel{\tau}{\longrightarrow} \bigoplus \operatorname{Hom}(V_{k}^{1}, V_{k}^{2})$$

$$\oplus$$

$$\bigoplus \operatorname{Hom}(V_{k}^{1}, W_{k})$$

where

$$\sigma(\xi_k) = (B_h^2 \xi_{\text{out}(h)} - \xi_{\text{in}(h)} B_h^1) \oplus (-\xi_k i_k^1) \oplus j_k^2 \xi_k$$

$$\tau(C_h \oplus a_k \oplus b_k) = \left(\sum_{k=\text{in}(h)} \varepsilon(h) B_h^2 C_{\overline{h}} + \varepsilon(h) C_h B_{\overline{h}}^1 + i_k^2 b_k + a_k j_k^1\right)$$

Lemma

 σ is injective and τ is surjective. Hence $\operatorname{Ker} \tau / \operatorname{Im} \sigma$ is a vector bundle over $\mathfrak{M}(\mathbf{v}^1, \mathbf{w}) \times \mathfrak{M}(\mathbf{v}^2, \mathbf{w})$.

Theorem (Kronheimer - N) (over \mathbb{C})

When $\mathfrak{M}(\mathbf{v}^1, \mathbf{w})$ is an ALE space, we can construct the "moduli space" of holomorphic vector bundles over $\mathfrak{M}(\mathbf{v}^1, \mathbf{w})$, and can be identified with $\mathfrak{M}(\mathbf{v}^2, \mathbf{w})$. Moreover $\ker \tau / \operatorname{Im} \sigma$ is identified with the universal bundle.

Convolution Algebra on Homology

$$Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w})$$

$$\stackrel{\text{def.}}{=} \{ (x^1, x^2) \in \mathfrak{M}(\mathbf{v}^1, \mathbf{w}) \times \mathfrak{M}(\mathbf{v}^2, \mathbf{w}) \mid \pi(x^1) = \pi(x^2) \}$$

For
$$c \in H_*(Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w})), c' \in H_*(Z(\mathbf{v}^2, \mathbf{v}^3; \mathbf{w})), \text{ let}$$

$$c * c' \stackrel{\text{def.}}{=} (p_{13})_* (p_{12}^{-1} c \cap p_{23}^{-1} c') \in H_* (Z(\mathbf{v}^1, \mathbf{v}^3; \mathbf{w}))$$

Fix **w** and consider the direct sum $\bigoplus_{\mathbf{v}^1,\mathbf{v}^2} H_*(Z(\mathbf{v}^1,\mathbf{v}^2;\mathbf{w}))$. The convolution * makes it a \mathbb{Q} -algebra.

For $x^0 \in \mathfrak{M}_0(\mathbf{v}^0, \mathbf{w})$, consider $\bigcup \pi^{-1}(x) \subset \bigcup_{\mathbf{v}} \mathfrak{M}(\mathbf{v}, \mathbf{w})$. Then $H_*(\bigcup_{\mathbf{v}} \pi^{-1}(x))$ is a $\bigoplus H_*(Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w}))$ -module.

Convolution Algebra on Functions

Assume the base field is a finite field of p elements. Let

$$\mathfrak{F}(Z(\mathbf{v}^1,\mathbf{v}^2;\mathbf{w})\stackrel{\mathrm{def.}}{=} \{f\colon Z(\mathbf{v}^1,\mathbf{v}^2;\mathbf{w}) o \mathbb{Q}\}.$$

For
$$f \in \mathfrak{F}(Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w}), g \in \mathfrak{F}(Z(\mathbf{v}^2, \mathbf{v}^3; \mathbf{w}), \text{ let})$$

$$(f * g)(x^1, x^3) \stackrel{\text{def.}}{=} \sum_{x^2} f(x^1, x^2) g(x^2, x^3) \in \mathfrak{F}(Z(\mathbf{v}^1, \mathbf{v}^3; \mathbf{w}).$$

Hecke correspondence

$$\mathfrak{P}_k(\mathbf{v}, \mathbf{w}) \stackrel{\text{def.}}{=} \{(B, i, j, S) \mid \sum_{\text{in}(h)=k} \text{Im } B_h + \text{Im } i_k \subset S \subset V_k$$

codimension 1 subspace} / $\prod GL(V_l)$

$$\xrightarrow{\pi_1 \times \pi_2} \mathfrak{M}(\mathbf{v} - \mathbf{e}^k, \mathbf{w}) \times \mathfrak{M}(\mathbf{v}, \mathbf{w}).$$

Let $\Delta(\mathbf{v}, \mathbf{w})$ be the diagonal in $\mathfrak{M}(\mathbf{v}, \mathbf{w})$. Let consider

$$a_{\lambda} \mapsto [\Delta(\mathbf{v}, \mathbf{w})] \quad (\lambda(\mathbf{v}, \mathbf{w}) = \sum w_k \Lambda_k - \sum v_k \alpha_k),$$

$$e_k a_{\lambda(\mathbf{v}, \mathbf{w})} \mapsto [\mathfrak{P}_k(\mathbf{v}, \mathbf{w})],$$

$$a_{\lambda(\mathbf{v}, \mathbf{w})} f_k \mapsto \pm \omega^{-1} [\mathfrak{P}_k(\mathbf{v}, \mathbf{w})],$$

where ω is the exchange of the component.

Theorem

- 1. $Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w})$ is a Lagrangian subvariety.
- 2. The correspondence defines a homomorphism $\Phi \colon \widetilde{\mathbf{U}}_q|_{q=1} \to \bigoplus H_{\mathrm{top}}(Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w})).$
- 3. (Dynkin graph) Φ is surjective and in fact we have

$$\bigoplus_{\lambda} \operatorname{End}(\Lambda_{\lambda}) \xrightarrow{\cong} \bigoplus H_{\operatorname{top}}(Z(\mathbf{v}^{1}, \mathbf{v}^{2}; \mathbf{w}))$$

where the range where λ runs is determined (explicitly) by \mathbf{w} .

4. There is a q-analogue using $\mathfrak{F}(Z(\mathbf{v}^1, \mathbf{v}^2; \mathbf{w}))$ instead of homology.

Suppose that the following data are given:

- 1. P: free \mathbb{Z} -module, $P^* = \operatorname{Hom}_{\mathbb{Z}}(P, \mathbb{Z})$
- 2. a natural pairing $\langle , \rangle : P \otimes P^* \to \mathbb{Z}$,
- 3. $\alpha_k \in P, h_k \in P^* (k = 1, 2, \dots, n),$

such that

- (a) $\mathbf{C} = (\langle h_k, \alpha_l \rangle)_{k,l}$ is a symmetric generalized Cartan matrix, i.e., $\langle h_k, \alpha_k \rangle = 2$, and $\langle h_k, \alpha_l \rangle = \langle h_l, \alpha_k \rangle \leq 0$ for $k \neq l$,
- (b) $\{\alpha_k\}_{k=1}^n$ is linearly independent,
- (c) there exists $\Lambda_k \in P$ (k = 1, 2, ..., n) such that $\langle h_l, \Lambda_k \rangle = \delta_{kl}$.

Let q be an indeterminate. Let introduce q-integers, q-factorials and q-binomial coefficients:

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [n]_! = [n][n - 1] \cdots [1],$$
$$\begin{bmatrix} m \\ n \end{bmatrix} = \frac{[m]_!}{[n]_![m - n]_!}.$$

The quantized enveloping algebra U_q is the

 $\mathbb{Q}(q)$ -algebra generated by e_k , f_k (k = 1, 2, ..., n), q^h $(h \in P^*)$ with relations

$$q^{h} = 1 \quad \text{for } h = 0, \quad q^{h}q^{h'} = q^{h+h'} \quad \text{for } h, h' \in P^{*},$$

$$q^{h}e_{k}q^{-h} = q^{\langle h,\alpha_{k}\rangle}e_{k}, \quad q^{h}f_{k}q^{-h} = q^{-\langle h,\alpha_{k}\rangle}f_{k},$$

$$e_{k}f_{l} - f_{l}e_{k} = \delta_{kl}\frac{q^{h_{k}} - q^{-h_{k}}}{q - q^{-1}},$$

$$\sum_{p=0}^{1-c_{kl}} (-1)^{p} \begin{bmatrix} 1 - c_{kl} \\ p \end{bmatrix} e_{k}^{p}e_{l}e_{k}^{1-c_{kl}-p} = 0 \quad (k \neq l),$$

(the same equation with $e_k \longleftrightarrow f_k$)

$$\mathbf{U}_q^+ \stackrel{\text{def.}}{=} \langle e_1, \dots, e_n \rangle, \ \mathbf{U}_q^- \stackrel{\text{def.}}{=} \langle f_1, \dots, f_n \rangle, \ \mathbf{U}_q^0 \stackrel{\text{def.}}{=} \langle q^h \mid h \in P^* \rangle$$

triangle decomposition

$$\mathbf{U}_q \cong \mathbf{U}_q^{\ +} \otimes \mathbf{U}_q^{\ 0} \otimes \mathbf{U}_q^{\ -}$$

modified enveloping algebra

$$\widetilde{\mathbf{U}}_q \stackrel{\text{def.}}{=} \mathbf{U}_q^+ \otimes \left(\bigoplus_{\lambda \in P} \mathbb{Q}(q) a_\lambda \right) \otimes \mathbf{U}_q^-$$

where the multiplication is defined by the following rule:

$$a_{\lambda}a_{\mu} = \delta_{\lambda\mu}a_{\lambda},$$

$$e_{k}a_{\lambda} = a_{\lambda+\alpha_{k}}e_{k}, \quad f_{k}a_{\lambda} = a_{\lambda-\alpha_{k}}f_{k},$$

$$(e_{k}f_{l} - f_{l}e_{k})a_{\lambda} = \delta_{kl}[\langle h_{k}, \lambda \rangle]a_{\lambda}.$$