
Int Construction and Semibiproducts

Naohiko Hoshino and Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
Kyoto, 606-8502, Japan {naophiko,sinya}@kurims.kyoto-u.ac.jp

Abstract. We study a relationship between the Int construction of Joyal et al.
and a weakening of biproducts called semibiproducts. We then provide an appli-
cation of geometry of interaction interpretation for the multiplicative additive lin-
ear logic (MALL for short) of Girard. We consider not biproducts but semibiprod-
ucts because in general the Int construction does not preserve biproducts. We
show that Int construction is left biadjoint to the forgetful functor from the 2-
category of compact closed categories with semibiproducts to the 2-category of
traced symmetric monoidal categories with semibiproducts. We then illustrate a
traced distributive symmetric monoidal category with biproducts B(Pfn) and re-
late the interpretation of MALL in Int(B(Pfn)) to token machines defined over
weighted MALL proofs.

1 Introduction

Traced monoidal categories introduced in [19] provide a convenient mathematical tool
to study feedback, interactive computation, fixed point operators and so on. In [19],
the structure theorem for traced monoidal categories is shown; the 2-category of traced
monoidal categories is freely embedded to the 2-category of tortile monoidal categories,
which arises as Int construction (also called G construction in [1]). Int appears in stud-
ies related to bidirectional / interactive computation such as geometry of interaction
(GoI) [7], context semantics [10], game semantics [4] and attribute grammars [20].

We are interested in the categorical structures that are preserved by Int construc-
tion. In this paper, we study the case of biproducts and see if the structure theorem
holds under the presence of biproducts. We found a counterexample to the preserva-
tion of biproducts by Int (see Appendix A), but still the pairwise biproducts (A+, A−)⊕
(B+, B−) := (A+ ⊕B+, A− ⊕B−) in Int(C) behave almost like biproducts; they satisfy the
axioms of biproducts except η-equalities. We characterise such a weak biproduct struc-
ture as semibiproducts. The main theorems of this paper are that Int(C) has semibiprod-
ucts when C is a traced distributive symmetric monoidal category with semibiproducts
(Theorem 4 in Section 4.1), and that the structure theorem holds under the presence of
semibiproducts (Theorem 5 in Section 4.2).

We then give an application of the above results to GoI interpretation of multiplica-
tive additive linear logic (MALL). We construct an example of a traced distributive sym-
metric monoidal categoryB(Pfn) with biproducts and relate the interpretation of MALL
in Int(B(Pfn)) to token machines defined over weighted MALL proofs. Semibiproducts
in Int(B(Pfn)) are sufficient for this GoI interpretation because only β-equalities play a
role.

2 Categorical Preliminary

Traced Symmetric Monoidal Categories and Int Construction

We recall the concept of traced symmetric monoidal categories and Int construction by
Joyal et al [19] (also calledG-construction in [1]). Below we mainly consider strict sym-
metric monoidal categories for legibility. A trace operator on a symmetric monoidal
category (C, I,⊗, σ) is a mapping trA

B,C : C(B ⊗ A,C ⊗ A) → C(B,C) satisfying the
following equations:

(Naturality) h ◦ trA
B,C(f) ◦ g = trA

B′,C′ ((h ⊗ A) ◦ f ◦ (g ⊗ A))
(Dinaturality) trA

B,C((C ⊗ g) ◦ f) = trA′
B,C(f ◦ (B ⊗ g))

(Vanishing I) trI
A,B(f) = f

(Vanishing II) trA⊗B
C,D (g) = trA

C,D(trB
C⊗A,D⊗A(g))

(Superposing) trA
B⊗C,B⊗D(B ⊗ f) = B ⊗ trA

C,D f
(Yanking) trA

A,A(σA,A) = id .

We simplified the original superposing axiom in [19] using naturality and dinatu-
rality [13]. A traced symmetric monoidal category (TSMC) is a pair of a symmetric
monoidal category (SMC) and a trace operator on it.

Joyal et al’s Int construction freely constructs tortile monoidal categories from
traced monoidal categories. In this paper, we restrict this construction to TSMCs. Let
C be a TSMC. We define the category Int(C) by the following data. An object is a
pair (A+, A−) of C-objects, and a morphism from (A+, A−) to (B+, B−) is a C-morphism
f : A+⊗B− → B+⊗A−. The composition of Int(C)-morphisms f : (A+, A−)→ (B+, B−)
and g : (B+, B−)→ (C+,C−) is define by the following trace:

g ◦ f = trB−
A+⊗C− ,C+⊗A− ((id⊗σ) ◦ (g ⊗ id) ◦ (id⊗σ) ◦ (f ⊗ id) ◦ (id⊗σ)).

The category Int(C) is compact closed, whose structure on objects is given as follows.
For more detail, see [19].

IInt(C) = (I, I), (A+, A−) ⊗Int(C) (B+, B−) = (A+ ⊗ B+, A− ⊗ B−),

(A+, A−)∗ = (A−, A+).

Below we write CptCl for the 2-category of compact closed categories, strong sym-
metric monoidal functors and monoidal natural isomorphisms, and TSMC for the 2-
category of TSMCs, traced strong symmetric monoidal functors and monoidal natural
isomorphisms. Every compact closed category has a unique trace called canonical trace
[19, 12], and this gives rise to the forgetful 2-functor U : CptCl→ TSMC.

Theorem 1 ([19, 14]). Int construction can be extended to a pseudo-functor Int :
TSMC → CptCl, and it is a left biadjoint of U.

The unit NC : C → Int(C) of this biadjunction is full and faithful, and defined by
NCC = C ⊗ idI and NC f = f ⊗ idI.

Semifunctors, Seminatural Transformations and Karoubi Envelope

The material in this section is from [15–17]. A semifunctor F : C → D consists
of a mapping from C-objects to D-objects and a mapping from C-morphisms to D-
morphisms, and they satisfy the conditions of functors except the preservation of iden-
tity morphisms. A seminatural transformation α : F → G between semifunctors
F,G : C → D is a collection of morphisms αA : FA → GA satisfying the natural-
ity condition plus an additional condition αA ◦ F(idA) = αA (or G(idA) ◦αA = αA). 1 We
note that this extra condition is redundant when one of F,G is an ordinary functor. An
instance of a seminatural transformation is the identity {F(idA)}A∈|C| on a semifunctor
F : C → D. Small categories, semifunctors and seminatural transformations form the
2-category Catsemi. An adjunction (F,G, η, ε) : C → D in Catsemi is called semiadjunc-
tion, and it specifies the following natural isomorphism (and vice versa):

{ f ∈ C(FA, B) | f ◦ F(idA) = f } → {g ∈ D(A,GB) | G(idB) ◦ g = g}.

Let C be a category. Karoubi envelope K(C) of C (also called Cauchy completion)
is the category defined as follows. An object is a pair (A, f) of a C-object A and an
idempotent f over A (i.e. a morphism f : A → A such that f ◦ f = f). A morphism
ϕ : (A, f) → (B, g) is a C-morphism ϕ : A → B of C such that g ◦ ϕ ◦ f = ϕ. We can
extend K to a 2-functor K : Catsemi → Cat as follows (Theorem 7.3, [16]):

K(F)(A, f) = (FA, F f), K(α)(A, f) = G f ◦ αA (α : F → G).

There are two major effects of Karoubi envelope.

1. It turns semifunctors and seminatural transformations to ordinary ones in a univer-
sal way; precisely speaking, it is a right 2-adjoint of the forgetful 2-functor from
Cat to Catsemi. 2

2. It freely adds a splitting to every idempotent in a category; that is, it is a left bi-
adjoint of the forgetful functor U : Catsplit → Cat, where Catsplit is the full sub
2-category of Cat consisting of the small categories where all idempotents split.
The unit of this biadjunction is a full and faithful functor HC : C → K(C) defined
by HCA = (A, idA) and HC f = f . We note that HKC is an equivalence; the functor
P : KK(C)→ K(C) defined by P((A, f), f ′) = (A, f ′) and P(ϕ) = ϕ is an inverse of
HKC.

By cutting down the 2-adjunction between Cat and Catsemi, we obtain:

Theorem 2 ([17]). Karoubi envelope K : Catsemi → Cat induces the biequivalence
between Catsemi and Catsplit.

1 This condition makes the category of small categories and semifunctors Cartesian closed; see
[16] for detail.

2 In [5, 16], Karoubi envelope K is shown to be an ordinary right adjoint. This can easily be
extended to right 2-adjoint.

Karoubi Enverope of Symmetric Monoidal Categories

Let C be an SMC. The following data equip KC with a SMC structure:

IKC = (I, idI), (A, f) ⊗KC (B, g) = (A ⊗C B, f ⊗C g).

We take this as the default symmetric monoidal structure on KC. The functor HC :
C → KC is strict symmetric monoidal w.r.t. the above structure. We also note that if
F : C → D is strong symmetric monoidal, then so is K F.

Proposition 1. 1. If C is a TSMC, then so is KC.
2. If C is a compact closed category, then so is KC.

Proof. 1. We give the trace of ϕ : (B, f) ⊗ (A, h)→ (C, g) ⊗ (A, h) by trA
B,C(ϕ).

2. We define the duality by (A, f)∗ = (A∗, f ∗). We also give the unit and counit in KC
by (f ⊗ id) ◦ ηA and εA ◦ (id⊗ f), where ηA and εA are the unit and counit in C.

Biproducts and Semibiproducts

The biproduct A ⊕ B of A and B is the structure which is simultaneously the binary
product and coproduct of A and B. Typical categories having biproducts are the category
of Abelian groups, the category of vector spaces and the category of sets and relations.
Here we propose a definition of biproducts that is more friendly to 2-category theory.
We write ∆ : C → C × C for the diagonal functor.

Definition 1. A category C has binary biproducts if there is a functor ⊕ : C × C → C
and adjunctions (⊕ a ∆, η, ε) and (∆ a ⊕, η′, ε′) such that ε′ ◦ η = id (we call this
equation (*)).

We omit the word “binary” when it is obvious from the context. In this paper we speak
about chosen biproducts. We write 〈−,−〉, [−,−], π1, π2, ι1, ι2 for tupling, cotupling, pro-
jections and injections associated to ⊕ a ∆ a ⊕. The equation (*) is the conjunction of
π1 ◦ ι1 = id and π2 ◦ ι2 = id.

Recall that a zero object 0 is an object that is simultaniously initial and terminal.
We say that a category C has finite biproducts if it has biproducts and a zero object.

We next define the preservation of biproducts.

Definition 2. Let C and D be categories with biproducts. A functor F : C → D pre-
serves biproducts if the following canonical maps form an isomorphism:

FA ⊕ FB
[Fι1 ,Fι2]

// F(A ⊕ B).
〈Fπ1 ,Fπ2〉

oo

A symmetric monoidal category C with biproducts is called distributive if A ⊗ − :
C → C preserves biproducts for any C-object A.

It is not difficult to see that G◦F preserves biproducts when F : C → D and G : D → E
preserve biproducts, and that any equivalence preserves biproducts.

In this paper we deal with a weakening of biproducts called semibiproducts as well.
We will see that semibiproducts arise in Int(C) when a TSMC C has semibiproducts
(Theorem 4). We take the following as the definition of semibiproducts.

Definition 3. A category C has (binary) semibiproducts if there is a semifunctor ⊕ :
C × C → C and semiadjunctions (⊕ a ∆, η, ε) and (∆ a ⊕, η′, ε′) such that ε′ ◦ η = id
(we call this equation (*)).

The above abstract definition can be expanded in two ways: one using the operations
on morphisms and the other using seminatural transformations.

B-1 There exists a mapping ⊕ : |C| × |C| → |C| and tupling, projections, cotupling and
injections

〈−,−〉 : C(A, B) × C(A,C)→ C(A, B ⊕C), (πi)A1,A2 ∈ C(A1 ⊕ A2, Ai),

[−,−] : C(B, A) × C(C, A)→ C(B ⊕C, A), (ιi)A1,A2 ∈ C(Ai, A1 ⊕ A2)

(where i ∈ {1, 2}) subject to the following equalities:

πi ◦ 〈 f1, f2〉 = fi, [f1, f2] ◦ ιi = fi, 〈 f ◦ π1, g ◦ π2〉 = [ι1 ◦ f , ι2 ◦ g],

〈 f , g〉 ◦ h = 〈 f ◦ h, g ◦ h〉, h ◦ [f , g] = [h ◦ f , h ◦ g], πi ◦ ιi = id .

B-2 There exists a semifunctor ⊕ : C × C → C and seminatural transformations

δA : A→ A ⊕ A, γA : A ⊕ A→ A,

(πi)A1,A2 : A1 ⊕ A2 → Ai, (ιi)A1,A2 : Ai → A1 ⊕ A2

(where i ∈ {1, 2}) subject to the following equalities:

πi ◦ δ = id, γ ◦ ιi = id, πi ◦ ιi = id,

(π1 ⊕ π2) ◦ δ = id⊕ id, γ ◦ (ι1 ⊕ ι2) = id⊕ id .

From Theorem 2, one can easily check that a category C has semibiproducts if and
only if KC has biproducts.

Definition 4. Let C and D be categories with semibiproducts. A functor F : C → D
preserves semibiproducts if we have: the following equations:

F(idA ⊕ idB) = F(A ⊕ B)
〈Fπ1 ,Fπ2〉 // FA ⊕ FB

[Fι1 ,Fι2]
// F(A ⊕ B)

idFA ⊕ idFB = FA ⊕ FB
[Fι1 ,Fι2]

// F(A ⊕ B)
〈Fπ1 ,Fπ2〉 // FA ⊕ FB.

A symmetric monoidal categoryCwith semibiproducts is called distributive if A⊗− :
C → C preserves semibiproducts.

This is a generalisation of Definition 2. Another equivalent definition is that the canoni-
cal seminatural transformations between F(−⊕+) and F(−)⊕F(+) form an isomorphism
in Catsemi. From Theorem 2, a semifunctor F : C → D preserves semibiproducts if and
only if K F : KC → KD preserves biproducts. In compact closed categories tensor
products always distribute over semibiproducts.

Commutative Monoid Enrichment by (Semi) Biproducts

We show that binary biproducts on a category C induces a commutative-monoid en-
richment on C. This is a slight improvement of the well-known fact that a category with
finite biproducts is commutative monoid enriched. 3

3 The unicity of the enrichment is discussed in [26].

Proposition 2. 1. Let C be a category with binary biproducts. Then there is a com-
mutative monoid enrichment on C (which we call the canonical enrichment).

2. Let C,D be categories with binary biproducts. Then a functor F : C → D preserves
biproducts if and only if it is enriched w.r.t. the canonical enrichments on C andD.

Proof. We define the unit 0A,B ∈ C(A, B) and multiplication + ∈ C(A, B)2 → C(A, B)

by 0A,B = A
ι1 // A ⊕ B

π2 // B = A
ι2 // B ⊕ A

π1 // B and f + g = [idA, idA] ◦ 〈 f , g〉. See
Appendix C for the proof.

We also have ι1 ◦ π1 + ι2 ◦ π2 = id.
We note that in a SMC (C, I,⊗) with biproducts, tensor products are ditributive if

and only if they are bilinear:

0 ⊗ f = f ⊗ 0 = 0, (f + g) ⊗ h = f ⊗ h + g ⊗ h, h ⊗ (f + g) = h ⊗ f + h ⊗ g.

The next fact is probably less known. We weaken Proposition 2 by replacing biprod-
ucts with semibiproducts.

Proposition 3. 1. Let C be a category with binary semibiproducts. Then there is a
commutative monoid enriched on C (which we also call the canonical enrichment).

2. Let C,D be categories with binary semibiproducts. Then a functor F : C → D pre-
serves semibiproducts if and only if it is enriched w.r.t. the canonical enrichments
on C andD.

Comparison with Other Definitions of biproducts

In [22], the concept of binary biproducts is defined in Abelian categories (which are
Abelian-group enriched categories with extra properties). This definition reliese on the
enrichment, hence is not suitable for extending it to general categeories. In [18], Hous-
ton adopted the following definition: a category has finite biproducts if it has finite
products and finite coproducts such that the following two canonical maps are invert-
ible:

?1 : 0→ 1, mA,B = [〈idA, 0A,B〉, 〈0BA, idB〉] : A + B→ A × B,

where 0A,B is the zero morphism defined to be ?B ◦ (?1)−1◦!A. This definition is inde-
pendent from the enrichment. On the other hand, mA,B refers to zero morphisms that are
defined through a zero object. The definition of binary biproducts in this paper is inde-
pendent from zero object and enrichment, and is written in the 2-categorical language.
The following proposition shows that our definition of binary biproducts is compatible
with Houston’s definition:

Proposition 4. A category C has finite biproducts in the sense of Houston if and only if
C has a zero object and binary biproducts in the sense of Definition 1.

Proof. See Appendix C.

The separation of zero objects and binary biproducts also revealed that the commutative
monoid enrichment by finite biproducts relies only on binary biproducts.

3 Categorical Structure of Int(C) for a Traced Distributive
Symmetric Monoidal Category C with Biproducts

We show that Int(C) has semibiproducts if C is a traced distributive SMC with biprod-
ucts. Motivation of this setting comes from the fact that if a compact closed categoryA
has a zero object and binary products or coproducts thenA has biproducts [18]. In gen-
eral, Int(C) does not have biproducts for traced distributive SMCs C with biproducts;
in Appendix A we give such an example.

3.1 Matrix of Morphisms

Let C be a traced distributive SMC with biproducts. The trace operator preserves the
unit and multiplication on each homset:

Lemma 1. We have trC
A,B(0) = 0 and trC

A,B(f + g) = trC
A,B f + trC

A,B g.

We next associate to a morphism f : A⊗ (B1 ⊕ B2)⊗ A′ → C ⊗ (D1 ⊕D2)⊗C′ a matrix
(

f11 f12

f21 f22

)

(where fi j = (A ⊗ πi ⊗ A′) ◦ f ◦ (C ⊗ ι j ⊗C′)).

The original f can be recovered from the matrix by the following sum:

f =
∑

1≤i, j≤2

(C ⊗ ιi ⊗C′) ◦ fi j ◦ (A ⊗ π j ⊗ A′).

Below we identify morphisms and matrices associated to them. We show some useful
equations that hold for matrix representations of morphisms. They are very much like
matrix calculations in linear algebra.

(

g11 g12

g21 g22

)

◦

(

f11 f12

f21 f22

)

=

(

(g11 ◦ f11 + g12 ◦ f21) (g11 ◦ f12 + g12 ◦ f22)
(g21 ◦ f11 + g22 ◦ f21) (g21 ◦ f22 + g22 ◦ f22)

)

g ⊗

(

f11 f12

f21 f22

)

⊗ h =

(

(g ⊗ f11 ⊗ h) (g ⊗ f12 ⊗ h)
(g ⊗ f21 ⊗ h) (g ⊗ f22 ⊗ h)

)

A ⊗ (f ⊕ g) ⊗C =

(

A ⊗ f ⊗ B 0
0 A ⊗ g ⊗ B

)

σ =

(

σ 0
0 σ

)

: A ⊗ (B ⊕C)→ (B ⊕ C) ⊗ A.

Lemma 2. 1. For any C-morphism f : A ⊗ (B1 ⊕ B2)→ C ⊗ (B1 ⊕ B2), we have

trB1⊕B2
A,C

(

f11 f12

f21 f22

)

= trB1
A,C(f11) + trB2

A,C(f22).

2. For any C-morphism f : (B1 ⊕ B2) ⊗ A→ (C1 ⊕C2) ⊗ A, we have

trA
B1⊕B2,C1⊕C2

(

f11 f12

f21 f22

)

=

(

trA
B1,C1

(f11) trA
B1,C2

(f12)
trA

B2,C1
(f21) trA

B2,C2
(f22)

)

.

3.2 Semibiproducts in Int(C)

Our interest is whether we can construct biproducts in Int(C) from those in C. The
example in Appendix A shows that in general Int(C) may not have biproducts. Instead,
we show that semibiproducts exist in Int(C).

We define a binary operator⊕ on Int(C)-objects by

(A+, A−)⊕ (B+, B−) = (A+ ⊕ B+, A− ⊕ B−).

We show that this becomes the object part of the binary semibiproducts in Int(C). First,
the following isomorphism:

Int(C)(A, B1 ⊕ B2) = C(A+ ⊗ (B−1 ⊕ B−2), (B+1 ⊕ B+2) ⊗ A−)

'
∏

1≤i, j≤2

C(A+ ⊗ B−i , B
+
j ⊗ A−) =

∏

1≤i, j≤2

Int(C)(A, (B+i , B
−
j))

allows us to identify an Int(C)-morphism f : A→B1⊕B2 and the tuple 〈〈 f11, f12, f21, f22〉〉

of Int(C)-morphisms fi j : A → (B+i , B
−
j). Similarly, we identify g : B1 ⊕ B2 → C and

the tuple [[g11, g12, g21, g22]] of morphisms gi j : (B+i , B
−
j) → C. The composition of

Int(C)-morphisms involving B1 ⊕ B2 is calculated like inner-product of vectors.

Lemma 3. We consider the following diagram in Int(C):

C
h // A

〈〈 fi j〉〉
// B1 ⊕ B2

[[gi j]]
// C

i // D .

Then we have

[[gi j]] ◦ 〈〈 fi j〉〉 =
∑

gi j ◦ fi j, 〈〈 fi j〉〉 ◦ h = 〈〈 fi j ◦ h〉〉, i ◦ [[gi j]] = [[i ◦ gi j]],

where the big sum means the addition of IntC-morphisms as C-morphisms.

We are now ready to give binary semibiproducts in Int(C).

Proposition 5. The assignment (B1, B2) 7→ B1 ⊕ B2 for B1, B2 in Int(C), together with
the following morphisms:

〈 f , g〉 = 〈〈 f , 0, 0, g〉〉, π1 = [[id, 0, 0, 0]], π2 = [[0, 0, 0, id]]

[f , g] = [[f , 0, 0, g]], ι1 = 〈〈id, 0, 0, 0〉〉, ι2 = 〈〈0, 0, 0, id〉〉

satisfy Condition B-1 (which is equivalent to Condition B in Definition 3).

Theorem 3. For any traced distributive SMC C with biproducts, Int(C) is a compact
closed category with semibiproducts. Moreover, Int(C) is distributive as an SMC and
the unit functor NC : C → Int(C) preserves semibiproducts.

Proposition 6. Let C be a traced distributive SMC C with biproducts. We write (0C,+C)
and (0Int(C),+Int(C)) for the canonical enrichments over C and Int(C), respectively. Then
we have

0Int(C) = 0C, f +Int(C) g = f +C g.

The preservation of zero object by Int is easy: one can easily show that if C has a
zero object 0, then for any C-object A, the pair (A, 0) and (0, A) are both zero object in
Int(C); in particular, N(0) is a zero object.

4 Int Construction and Semibiproducts

4.1 Preservation of Semibiproducts

We Give an extension of Theorem 3. We show that we can construct semibiproducts
in Int(C) from semibiproducts in a traced distributive SMC C, and that the unit NC of
biadjunction Int a U preserves semibiproducts. We observe that it is enough to show
that NC preserves semibiproducts when C has biproducts. Then by Theorem 3, we see
that NC preserves semibiproducts for the general case.

Proposition 7. For a traced SMC C, K Int(C) is equivalent to K IntK(C) as SMCs.

Proof. We define Φ : K Int(C)→ K IntK(C) by

Φ(((A+, A−), f)) = ((A+, idA+), (A−, idA−), f) Φ(ϕ) = ϕ

for ϕ : ((A+, A−), f)→ ((B+, B−), g) and Ψ : K IntK(C)→ K Int(C) by

Ψ (((A+, f +), (A−, f −)), h) = ((A+, A−), h) Ψ (ϕ) = ϕ

for ϕ : (((A+, f +), (A−, f −)), h)→ (((B+, g+), (B−, g−)), k). Obviously Ψ ◦ Φ = idK Int(C).

We also have a monoidal natural isomorphism α : Φ ◦ Ψ
�
→ idK IntK(C) given by

α(((A+ , f +),(A− , f −)),h) = h. Hence K Int(C) and K IntK(C) are equivalent as SMCs.

Proposition 8. If a traced distributive SMC C has semibiproducts then K Int(C) has
biproducts and is distributive as an SMC.

Proof. By Theorem 7, K Int(C) is equivalent to K IntK(C) as SMCs. This equiva-
lence induces biproducts on K Int(C), and Φ and Ψ preserves these biproducts. Since
K IntK(C) is distributive, K Int(C) is also distributive.

Theorem 4. Let C be a traced distributive SMC with semibiproducts. Then Int(C) has
semibiproducts and is distributive as an SMC. The canonical functor NC : C → Int(C)
preserves semibiproducts.

Proof. By Theorem 3, NK(C) : K(C) → IntK(C) preserves semibiproducts. Hence
K(NK(C)) preserves biproducts. Since HK(C) : K(C) → KK(C) and Φ : K IntK(C) →
K Int(C) are equivalences, they preserve biproducts. Hence Φ ◦ K(NK(C)) ◦ HK(C) pre-
serves biproducts. By the definition of these functors, Φ ◦ K(NK(C)) ◦ HK(C) is equal to
K(NK(C)). Hence NK(C) : C → Int(C) preserves semibiproducts.

4.2 The Structure Theorem

Let TSMC⊕s be the sub 2-category of TSMC whose 0-cells are traced distributive
SMCs with semibiproducts and whose 1-cells preserve semibiproducts. Let CptCl⊕s

be the sub 2-category of CptCl whose 0-cells are distributive compact closed cate-
gories with semibiproducts and whose 1-cells preserve semibiproducts. By Theorem 4,

Int(C) is a CptCl⊕s
-object and NC : C → Int(C) is a TSMC⊕s -morphism. Hence

N∗
C

: CptCl(Int(C),D)→ TSMC(C,D) is restricted to a full and faithful functor

N∗C : CptCl⊕s
(Int(C),D)→ TSMC⊕s (C,D)

for C ∈ TSMC⊕s and D ∈ CptCl⊕s
. As in the proof of the biadjunction Int a U [19,

14], there is F′ : Int(C)→ D such that N∗
C

(F′) � F for any F ∈ TSMC(C,D). Here F ′

is defined by F′(A+, A−) = FA+ ⊗ (FA−)∗ and F′(f : (A+, A−) → (B+, B−)) is defined
by

FA+⊗(FA−)∗ FA+⊗FB−⊗(FB−)∗⊗(FA−)∗
1⊗η⊗1

//

FB+⊗FA−⊗(FB−)∗⊗(FA−)∗
(m−1◦F f◦m)⊗1

//

FB+⊗(FB−)∗⊗FA−⊗(FA−)∗� // FB+⊗(FB−)∗⊗FA−⊗(FA−)∗ FB+⊗(FB−)∗.
1⊗ε′ //

Theorem 5. (Int,N) is a left biadjoint of the forgetful functor CptCl⊕s
→ TSMC⊕s .

Proof. We show that K(F′) preserves biproducts. By the definitions of functors PK(D) :
KK(D)→ K(D) and Φ : K Int(C)→ K IntK(C), we see K(F ′) = PK(D) ◦K((KF)′) ◦Φ.
Here (KF)′ makes sense since K(D) is a compact closed category when D is a com-
pact closed category. Since PK(D) and Φ are equivalences, they preserve biproducts.
By Lemma 4, (K F)′ : Int(K(C)) → K(D) preserves semibiproducts and especially
K((KF)′) also preserves biproducts. Hence K(F′) preserves biproducts. This is equiv-
alent to the preservation of semibiproducts by F ′. Then, as in [19, 14], we see N∗

C
is

essentially surjective on objects and full and faithful.

Lemma 4. For a traced distributive SMC C with biproducts and distributive compact
closed categoryD with biproducts, F ′ : Int(C)→ D preserves semibiproducts.

Proof. The canonical seminatural transformations

θ : F′((A+, A−) ⊕ (B+, B−))� F′(A+, A−) ⊕ F′(B+, B−) : θ′

are represented by (a) and (b)

(a)
θ Z00 Z01 Z10 Z11

Z00 idZ00 0 0 0
Z11 0 0 0 idZ11

(b)

θ′ Z00 Z11

Z00 idZ00 0
Z01 0 0
Z10 0 0
Z11 0 idZ11

(c)

θ′ ◦ θ Z00 Z01 Z10 Z11

Z00 idZ00 0 0 0
Z01 0 0 0 0
Z10 0 0 0 0
Z11 0 0 0 idZ11

via isomorphisms F′(A+, A−) ⊕ F′(B+, B−) � Z00 ⊕ Z11 and F′((A+, A−) ⊕ (B+, B−)) �
Z00⊕Z01⊕Z10⊕Z11 where Z00 = (FA+)⊗ (FA−)∗, Z01 = (FA+)⊗ (FB−)∗, Z10 = (FB+)⊗
(FA−)∗ and Z11 = (FB+)⊗(FB−)∗. Then θ◦θ′ = id and θ′◦θ is represented by (c). Hence
θ and θ′ are seminatural isomorphisms since (c) corresponds to F ′(id(A+ ,A−) ⊕ id(B+,B−)).

5 Application to GoI Interpretation of MALL

We apply semibiproducts in the categories constructed by Int to GoI-style interpreta-
tion of the multiplicative additive linear logic (MALL for short) [6]; its proof system
is described in Appendix B. The interpretation given here extends the multiplicative
fragment of categorical GoI interpretation [3, 11] with additives. 4

In Section 5.1, we introduce the matrix constructionB that adds small biproducts to
a given category. Roughly, an object in B(C) is a set-indexed family of C-objects, and
morphisms between such families are matrices of sets of C-morphisms. This construc-
tion sends traced SMCs to traced distributive SMCs with biproducts.

Category Int(B(Pfn)) is a compact closed category with semibiproducts. In Sec-
tion 5.2, we give an Int(B(Pfn))-objectU equipped with equalityU = U∗ and isomor-
phismsU⊗U � U andU⊕U � U. With this structure we give an interpretation of a
MALL proofΠ ` A1, · · · , Ak as an Int(B(Pfn))-morphism ~Π� : I →U⊗k, whereU⊗k

is the k-fold tensor ofU. This interpretation is sound with respect to cut eliminations.
We then introduce a token machine that computes denotations of weighted proofs

(Section 5.3); a weight is a decoration of &-rules in a proof, and it tells the direction to
proceed to the machine. We then show that the contents of the morphism ~Π� (which is
a matrix of sets of partial functions) consists of the denotation [Π]w of Π by the token
machine, with w ranging over all possible weights on Π (Section 5.4).

5.1 Adding Small Biproducts

We first give the matrix construction, which adds small biproducts to a given category.

Definition 5. For a category C, we define the category B(C) by the following data:

– object: a family A = {Ai}i∈|A| of C-objects indexed by a set |A|
– morphism: ϕ : A → B is a |A| × |B|-indexed family of sets of C-morphisms {ϕi, j ⊂

C(Ai, B j)}i∈|A|, j∈|B|. The identity morphism on A is

idi, j =

{

{idAi} (i = j)
φ (i , j)

and the composition of ϕ : A→ B and ψ : B→ C is defined by

(ψ ◦ ϕ)i,k = {g ◦ f | ∃ j ∈ |B|.g ∈ ψ j,k ∧ f ∈ ϕi, j} (i ∈ |A|, k ∈ |C|).

The small biproduct of a family of B(C)-objects {Al}l∈Λ: is given as follows:
∣

∣

∣

∣

∣

∣

∣

⊕

l∈Λ

Al

∣

∣

∣

∣

∣

∣

∣

=
∑

l∈Λ

|Al|,















⊕

l∈Λ

Al















(l,i)

= (Al)i.

The matrix construction preserves traced symmetric monoidal structures.

4 Our interpretation eagerly applies cuts to the denotation of proofs; the original GoI suspends
the application of cuts until the execution formula is applied.

Proposition 9. Let C be a traced SMC. Then B(C) is a traced distributive SMC with
biproducts.

We equip B(C) with the following symmetric monoidal structure: the unit is {I}∗∈1 and
the tensor product of A and B is {Ai ⊗ B j}(i, j)∈|A|×|B|. The trace of ϕ : B ⊗ A → C ⊗ A is
given by trA

B,C(ϕ)i, j = {tr
Ak
Bi,C j

(f) | ∃k ∈ |A|. f ∈ ϕ(i,k),(j,k)} (i ∈ |B|, j ∈ |C|). It is easy to
show that the tensor product of B(C) distributes over biproducts.

5.2 GoI Interpretation of MALL Proofs

We next extend the categorical GoI interpretation of MLL to MALL. Let Pfn be the
traced SMC of sets and partial functions [11]. We set-up an Int(B(Pfn))-objectU with
two isomorphisms and one equality:

U ⊗U � U, U ⊕U �U, U∗ = U

then interpret a MALL proof Π ` A1, . . . , Ak as an Int(B(Pfn))-morphism ~Π� : I →
U⊗k. We note that the above isomorphism can be weaken to retracts.

The object U and the above isomorphisms are given as follows. We fix two bijec-
tions d−,−e : N × N � N and c : N + N � N, then define a B(C)-object U to be the
N-fold copy of N, that is, |U | = N and Ui = N (i ∈ N). There are two isomorphisms
f : U ⊕ U → U and g : U ⊗ U → U defined by

fx,y =

{

{idN} (y = c(x))
∅ (otherwise)

, g(x,x′),y =

{

{c} (y = dx, x′e)
∅ (otherwise)

.

These give rise to an Int(B(Pfn))-object U = (U,U) such that U∗ = U and two
isomorphisms:

a = f ⊗ f −1 : U ⊕U → U, m = g ⊗ g−1 : U ⊗U → U.

Note that a−1 = a∗ and m−1 = m∗. Below we write αi : U → U for αi = a ◦ ιi+1.
We move on to the interpretation of proofs. We identify a context consisting of

k formulae and U⊗k. The interpretation employs the compact closed structure (unit
ηU : I → U ⊗ U and counit εU : U ⊗ U → I; see [19] for their definition) and the
semibiproduct structure on Int(B(Pfn)):

~AxA� = ηU

~Cut(Π0, Π1)� = (Γ ⊗ εU ⊗ ∆) ◦ (~Π0� ⊗ ~Π1�)

~Ten(Π0, Π1)� = (Γ ⊗ m ⊗ ∆) ◦ (~Π0� ⊗ ~Π1�)

~Par(Π)� = (Γ ⊗ m) ◦ ~Π�

~Permσ(Π)� = fσ ◦ ~Π� (fσ is a morphism corresponding to σ)

~And(Π0, Π1)� = (Γ ⊗ α0) ◦ ~Π0� + (Γ ⊗ α1) ◦ ~Π1�

~Ori(Π)� = (αi ⊗ Γ) ◦ ~Π� .

In the above definition + in And-rule is the canonical enrichment given by semibiprod-
ucts on Int(B(Pfn)).

Proposition 10. If a cut elimination in Π yields Π ′, then ~Π� = ~Π ′�.

5.3 The Token Machine for Weighted MALL Proofs

We define a token machine that computes denotations of weighted proofs in [23]. A
weight assigns left or right to each &-rule in a proof, and it tells the direction to pro-
ceed to the token machine. Since a proof can have different weights, the token machine
may compute different denotations of a proof depending on the weight. We formulate
a weight as a mapping w from the set of occurrences of &-rules in Π to {0, 1}, which
denotes left and right.

For a proof Π and a weight w of Π , we define a machine whose state is a triple
(A, n, ↑) or (A, n, ↓) where A is a formula in Π and n is a natural number. Our presen-
tation is from [21]. The transition rules of the machine are shown below. There, we
distinguish the same formulae that appear in different places by superscription, and we
treat contexts Γ and ∆ as formulae for simplicity. The expressions n and n stand for
c(inl(n)) and c(inr(n)) respectively.

−
` A, A⊥

−
` Γ1, A ` A⊥, ∆1

` Γ0, ∆0 −
` A1

σ0, · · · , A
1
σn

` A0
0, · · · , A

0
n

(σ is a permutation)

(A, n, ↑) 7→ (A⊥, n, ↓)
(A⊥, n, ↑) 7→ (A, n, ↓)

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(∆0, n, ↑) 7→ (∆1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(∆1, n, ↓) 7→ (∆0, n, ↓)
(A, n, ↓) 7→ (A⊥, n, ↑)
(A⊥, n, ↓) 7→ (A, n, ↑)

(A0
i , n, ↑) 7→ (A1

i , n, ↑)
(A1

i , n, ↓) 7→ (A1
i , n, ↓)

−
` Γ1, A ` B, ∆1

` Γ0, A ⊗ B, ∆0 −
` Γ1, A, B
` Γ0, A℘B

(Γ0, n, ↑) 7→ (Γ1, n, ↑) (A ⊗ B, n, ↑) 7→ (A, n, ↑)
(∆0, n, ↑) 7→ (∆1, n, ↑) (A ⊗ B, n, ↑) 7→ (B, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓) (A, n, ↓) 7→ (A ⊗ B, n, ↓)
(∆1, n, ↓) 7→ (∆0, n, ↓) (B, n, ↓) 7→ (A ⊗ B, n, ↓)

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(A℘B, n, ↑) 7→ (A, n, ↑)
(A℘B, n, ↑) 7→ (B, n, ↑)
(A, n, ↓) 7→ (A℘B, n, ↓)
(B, n, ↓) 7→ (A℘B, n, ↓)

−
` Γ1, A ` Γ2, B
` Γ0, A&B

(w(&) = 0) −
` Γ1, A ` Γ2, B
` Γ0, A&B

(w(&) = 1)

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(A&B, n, ↑) 7→ (A, n, ↑)
(A, n, ↓) 7→ (A&B, n, ↓)

(Γ0, n, ↑) 7→ (Γ2, n, ↑)
(Γ2, n, ↓) 7→ (Γ0, n, ↑)
(A&B, n, ↑) 7→ (B, n, ↑)
(B, n, ↓) 7→ (A&B, n, ↓)

−
` A, Γ1

` A ⊕ B, Γ0 −
` B, Γ1

` A ⊕ B, Γ0

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(A ⊕ B, n, ↑) 7→ (A, n, ↑)
(A, n, ↓) 7→ (A ⊕ B, n, ↓)

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(A ⊕ B, n, ↑) 7→ (B, n, ↑)
(B, n, ↓) 7→ (A ⊕ B, n, ↓)

This machine is essentially the same as the one given in [23], with a minor difference
that tokens are not altered when passing through &,⊕0,⊕1-rules. This is because our
token machine is defined so that it corresponds to our categorical interpretation given
in Section 5.2 (c.f. Proposition 11). Especially, how it passes tokens depends on our
choice of retracts f : U ⊕U → U and g : U ⊗U → U. For example, if we take another
retraction f : U ⊕ U → U

fx,y =



















{λn.2n} (y = c(x), x = inl(x′))
{λn.2n + 1} (y = c(x), x = inr(x′))

φ (otherwise)

then we still have Proposition 11 by changing the definition of &-rule as follows.

−
` Γ1, A ` Γ2, B
` Γ0, A&B

(w(&) = 0) −
` Γ1, A ` Γ2, B
` Γ0, A&B

(w(&) = 1)

(Γ0, n, ↑) 7→ (Γ1, n, ↑)
(Γ1, n, ↓) 7→ (Γ0, n, ↓)
(A&B, n, ↑) 7→ (A, 2n, ↑)
(A, 2n, ↓) 7→ (A&B, n, ↓)

(Γ0, n, ↑) 7→ (Γ2, n, ↑)
(Γ2, n, ↓) 7→ (Γ0, n, ↑)
(A&B, n, ↑) 7→ (B, 2n + 1, ↑)
(B, 2n+ 1, ↓) 7→ (A&B, n, ↓)

It is straight forward to modify our proofs of Proposition 11.
For a proofΠ ` A1, . . . , Ak and a weight w of Π , we define a partial function [Π]w :

kN⇀ kN (here kN is the k-fold coproduct of N) by

[Π]w(i, n) =

{

(j,m) ((Ai, n, ↑) 7→∗ (A j,m, ↓))
undefined (otherwise)

where (Ai, n, ↑) 7→∗ (A j,m, ↓) means that the many-step 7→ transitions from the initial
state (Ai, n, ↑) terminates at (A j,m, ↓).

5.4 Calculation of Weights from Indices

We show that the categorical GoI in Section 5.2 compiles the computation of the token
machine over a proof and all possible weights on it.

From the equation

Int(B(Pfn))(I,U⊗k) = B(Pfn)(U⊗k,U⊗k) = Nk × Nk → 2Pfn(kN,kN),

every interpretation of a proofΠ determines a family {~Π�n+,n−⊆Pfn(kN, kN)}n+∈Nk ,n−∈Nk

of sets of Pfn-morphisms. We write ‖Π‖ ⊆ Nk × Nk for the set of indeces giving non-
empty sets, that is, ‖Π‖ = {(n+, n−)| ~Π�n+ ,n− , ∅}. The categorical interpretation ~Π�
is a compilation of the denotations of Π with all the possible weights on it. We can
actually compute the index (n+, n−) from w such that ~Π�n+ ,n− contains the denotation
of Π with weight w by the token machine.

For a proof Π ` A1, . . . , Ak with a weight w, we define a relation |Π |w ⊂ Nk × Nk as
follows:

|AxA |w = {((n,m), (m, n))|n,m ∈ N}

|Cut(Π0, Π1)|w = {(n+m+, n−m−) | ∃i, j ∈ N.(n+i, n− j) ∈ |Π0|w, (jm+, im−) ∈ |Π1|w}

|Ten(Π0, Π1)|w = {(n+di+, j+em+, n−di−, j−em−)|

(n+i+, n−i−) ∈ |Π0|w, (j+m+, j−m−) ∈ |Π1|w}

| Par(Π)|w = {(n+di+, j+e, n−di−, j−e)|(n+i+ j+, n−i− j−) ∈ |Π1|w}

| Permσ(Π)|w = {(σ(n+), σ(n−))|(n+, n−) ∈ |Π |w}

|And(Π0, Π1)|w =

{

{(n+i, n− j)|(n+i, n− j) ∈ |Π0|w} (w(And) = 0)
{(n+i, n− j)|(n+i, n− j) ∈ |Π1|w} (w(And) = 1)

|Or0(Π)|w = {(in+, jn−)|(in+, jn−) ∈ |Π0|w}

|Or1(Π)|w = {(in+, jn−)|(in+, jn−) ∈ |Π1|w}.

where we write a list of natural numbers by n1n2 · · · nk. Hence for n = n1n2 · · · nk and
m = m1m2 · · ·ml, a concatenation nim is a list n1n2 · · ·nkim1m2 · · ·ml.

Definition 6. A weight w of Π is well-behaved when |Π |w , φ.

Proposition 11. (1) For any proof Π , ‖Π‖ =
⋃

w:weight of Π |Π |w.
(2) For any proof Π with a well-behaved weight w and (n+, n−) ∈ |Π |w, we have

~Π�n+ ,n− = {[Π]w}.

Corollary 1. The set {[Π]w|w : well-behaved weights of Π} is an invariant under cut
eliminations.

6 Related Work

In recent studies on the axiomatic / categorical quantum mechanics, compact closed
categories with biproducts and dagger structure are employed [2, 24, 25]; the dagger
structure is an axiomatisation of adjoints of linear maps. Among such studies, our work
is strongly influenced by Selinger’s result on CPM construction [25]. Selinger showed
that for a dagger-biproduct dagger-compact closed C, the dagger-Karoubi envelope of
CPM(C) has biproducts. CPM construction may be regarded as the realisation of the
computation with bidirectional information flow, which is reminiscent to Int construc-
tion. This observation is the starting point of this paper.

One of the potential application field of this work is the geometry of interaction
(GoI) [7–9]. In [3], Abramsky, Haghverdi and Scott captured the underlying categorical
structure of GoI, and presented a passage from GoI to combinatory algebras. In [11],
Haghverdi and Scott gave another categorical analysis of GoI I that treats the concept
of execution formula. Extending GoI with additives was considered in GoI III [9], and
later more elementary approaches, such as Mairson and Rival’s context semantics [23]
and Laurent’s token machine [21] (which also covers exponentials) are proposed. In
particular, Mairson and Rival’s context semantics for weighted proofs is almost the
same one that we gave in Section 5.

Acknowledgment

We are grateful to Craig Pastro and Paul-André Mèllies for stimulating discussions,
and to Masahito Hasegawa for technical advices. The second author is supported by
Grant-in-Aid for Young Scientists (B) 20700012.

References

1. Samson Abramsky. Retracing some paths in process algebra. In Ugo Montanari and
Vladimiro Sassone, editors, CONCUR, volume 1119 of LNCS, pages 1–17. Springer, 1996.

2. Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In LICS,
pages 415–425. IEEE Computer Society, 2004.

3. Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geometry of interaction and
linear combinatory algebras. Math. Struct. in Comput. Sci., 12(5):625–665, 2002.

4. Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for pcf.
Information and Computation, 163:409–470, 1994.

5. Peter Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1989.
6. J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.
7. Jean-Yves Girard. Geometry of Interaction I: Interpretation of System F. In R. Ferro et al.,

editor, Logic Colloquium ’88. North-Holland, 1989.
8. Jean-Yves Girard. Geometry of Interaction II: Deadlock-free Algorithms. In Conference on

Computer Logic ’88, volume 417 of LNCS, pages 76–93. Springer, 1990.
9. Jean-Yves Girard. Geometry of Interaction III: Accommodating the Additives. In Advances

in Linear Logic, number 222 in London Math. Soc. Lecture Note Series. Cambridge Univer-
sity Press, 1995.

10. Georges Gonthier, Martı́n Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda
reduction. In POPL, pages 15–26, 1992.

11. Esfandiar Haghverdi and Philip J. Scott. A categorical model for the geometry of interaction.
Theor. Comput. Sci., 350(2-3):252–274, 2006.

12. Masahito Hasegawa. On traced monoidal closed categories. To appear in Mathematical
Structures in Computer Science.

13. Masahito Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec.
Springer-Verlag, 1999.

14. Masahito Hasegawa and Shin-ya Katsumata. A note on the biadjunction between 2-
categories of traced monoidal categories and tortile monoidal categories. Accepted for Math-
ematical Proceedings of Cambridge Philosophical Society, 2009.

15. Susumu Hayashi. Adjunction of semifunctors: categorical structures in nonextentional
lambda calculus. Theoretical Computer Science, 41:95–104, 1985.

16. Raymond Hoofman. The theory of semi-functors. Mathematical Structures in Computer
Science, 3(1):93–128, 1993.

17. Raymond Hoofman and Ieke Moerdijk. A remark on the theory of semi-functors. Mathe-
matical Structures in Computer Science, 5(1):1–8, 1995.

18. Robin Houston. Finite products are biproducts in a compact closed category. Journal of Pure
and Applied Algebra, 212(2), 2008.

19. Andre Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.

20. Shin-ya Katsumata. Attribute grammars and categorical semantics. In Luca Aceto et al.,
editor, ICALP (2), volume 5126 of LNCS, pages 271–282. Springer, 2008.

21. Olivier Laurent. A token machine for full geometry of interaction. In TLCA, pages 283–297,
2001.

22. Saunders MacLane. Categories for the Working Mathematician (Second Edition), volume 5
of Graduate Texts in Mathematics. Springer, 1998.

23. Harry G. Mairson and Xavier Rival. Proofnets and context semantics for the additives. In
Julian C. Bradfield, editor, CSL, volume 2471 of LNCS, pages 151–166. Springer, 2002.

24. Peter Selinger. Dagger compact closed categories and completely positive maps: (extended
abstract). Electr. Notes Theor. Comput. Sci., 170:139–163, 2007.

25. Peter Selinger. Idempotents in dagger categories (extended abstract). In 4th International
Workshop on Quantum Programming Languages (QPL 2006), volume 210 of ENTCS, pages
107–122. Elsevier, 2008.

26. Jamie Vicary. Completeness and the complex numbers, 2009. arXiv:0807.2927v2.

A An Example of a Traced Distributive SMC C with Biproducts
such that Int(C) does not have Biproducts

We show that Int(B(Pfn)) does not have biproducts (see Section 5 for the definition of
B(Pfn)). Note that B(Pfn) is a traced distributive smc with biproducts. Let ({A+}, {A−})
and ({B+}, {B−}) be Int(B(Pfn))-objects such that A+ and B+ and A− and B− are finite
sets and |A+| > |B+| and |A−| > |B−|. We suppose Int(B(Pfn)) has biproducts and we
write ({C+i }i∈I , {C

−
j } j∈J) for the biproduct of ({A+}, {A−}) and ({B+}, {B−}). Then there

should be following bijection.

P(Pfn(X++A−, A++X−)+Pfn(X++B−, B++X−)) � P

















∑

i∈I, j∈J

Pfn(X+ + C−j ,C
+
i + X−)

















for any sets X+ and X−. Because of cardinarity, I and J and C+i and C−j should be finite
sets. Hence we have

(a+ + x− + 1)(x++a−) + (b+ + x− + 1)(x++b−) =
∑

i∈I, j∈J

(c+i + x− + 1)(x++c−j)
· · · (∗)

for any natural number x+, x− where a+, a−, b+, b−, c+i and c−j are cardinarities of A+,
A−, B+, B−, C+i and C−j respectively.

Lemma 5. There are i0 ∈ I and j0 ∈ J such that c+i0 = a+ and c−j0 = a−.

Proof. By letting x+ = 0 in (∗), we have

lim
x−→∞

∑

i∈I, j∈J(c+i + x−+ 1)c−j

(a++ x−+ 1)a−
= lim

x−→∞

(a++ x−+ 1)a− + (b++ x−+ 1)b−

(a++ x−+ 1)a−
by (∗)

= 1 + lim
x−→∞

(b++ x−+ 1)b−

(a++ x−+ 1)a−
= 1 (a− > b−).

Since

lim
x−→∞

(c+i + x−+ 1)c−j

(a++ x−+ 1)a−
=























∞ (c−j > a−)
1 (c−j = a−)
0 (c−j < a−)

,

there is j0 such that c−j0 = a−. Similarly, by letting x− = 0 in (∗), we have

lim
x+→∞

∑

i∈I, j∈J(c+i + 1)(x++c−j)

(a++ 1)(x++a−)
= lim

x+→∞

(a++ 1)(x++a−) + (b++ 1)(x++b−)

(a++ 1)(x++a−)
by (∗)

= 1 + lim
x+→∞

(b++ 1)(x++b−)

(a++ 1)(x++a−)
= 1 (a− > b−, a+ > b+).

Since

lim
x+→∞

(c+i + 1)(x++c−j)

(a++ 1)(x++a−)
=



















∞ (c+i > a+)
(a+ + 1)c−j −a− (c+i = a+)

0 (c+i < a+)
,

there is i0 such that c+i0 = a+.

We show (∗) implies contradiction. By (∗), both I and J can not be empty sets. If
|I × J| = 1 then the RHS of (∗) is (a++ x−+ 1)(x++a−) by this lemma, that is less than the
LHS of (∗). Hence |I| ≥ 2 or |J| ≥ 2. However, if |I| ≥ 2 then

1 = lim
x−→∞

(a+ + x− + 1)(x++a−) + (b+ + x− + 1)(x++b−)

(a+ + x− + 1)(x++a−)

= lim
x−→∞

∑

i∈I, j∈J(c+i + x−+ 1)(x++c−j)

(a++ x−+ 1)(x++a−)

≥ lim
x−→∞

2(x−+ 1)(x++a−)

(a++ x−+ 1)(x++a−)
= 2,

if |J| ≥ 2 then

1 = lim
x+→∞

(a+ + x− + 1)(x++a−) + (b+ + x− + 1)(x++b−)

(a+ + x− + 1)(x++a−)

= lim
x+→∞

∑

i∈I, j∈J(c+i + x−+ 1)(x++c−j)

(a++ x−+ 1)(x++a−)

≥ lim
x+→∞

(a++ x−+ 1)(x++a−) + (a++ x−+ 1)x+

(a++ x−+ 1)(x++a−)
> 1.

Hence Int(B(Pfn)) does not have birproducts.

B Multiplicative Additive Linear Logic

Here we give a short description of MALL [6]. The set of formulae is defined by the
following BNF:

(Formula) A ::= α | α⊥ | A℘A | A ⊗ A | A&A | A ⊕ A.

We extend the negation to all formulae as follows:

(α)⊥ = α⊥, (α⊥)⊥ = α

(A℘B)⊥ = A⊥ ⊗ B⊥, (A ⊗ B)⊥ = A⊥℘B⊥,

(A&B)⊥ = A⊥ ⊕ B⊥, (A ⊕ B)⊥ = A⊥&B⊥.

The inference rules are given as follows:

AxA ` A, A⊥
(axiom)

Π ` Γ, A Π ′ ` A⊥, ∆
Cut(Π,Π ′) ` Γ, ∆

(cut)
Π ` Γ

Permσ(Π) ` σ(Γ)

Π ` Γ, A Π ` B, ∆
Ten(Π,Π ′) ` Γ, A ⊗ B, ∆

(⊗)
Π ` Γ, A, B

Par(Π) ` Γ, A℘B
(℘)

Π ` Γ, A Π ′ ` Γ, B
And(Π,Π ′) ` Γ, A&B

(&)
Π ` A, Γ

Or0(Π) ` A ⊕ B, Γ
(⊕0)

Π ` B, Γ
Or1(Π) ` A ⊕ B, Γ

(⊕1)

C Proofs

(This part will be removed in the final version)

On the Definition of Biproducts

We compare the definition of biproducts in Definition 1 and the one in [18], which is
given in terms of the invertibility of certain canonical maps in bicartesian categories.

Definition 7. [18] A category C has H-biproducts if it is bicartesian such that X) the
canonical morphism ?1 : 0 → 1 is invertible, and Y) the following canonical natural
transformation is invertible:

mA,B = [〈idA, 0〉, 〈0, idB〉] : A + B→ A × B

where 0 is the zero map defined by 0A,B =?B ◦ (?1)−1◦!A.

Proposition 12. A category C has H-biproducts if and only if C has a zero object and
binary biproducts in the sense of Definition 1.

Proof: (if) In this part, the symbols 〈−,−〉, π1, π2, [−,−], ι1, ι2 denote the tupling,
projections, cotupling and injections associated to ⊕ a ∆ a ⊕. Category C is clearly
bicartesian and the canonical morphism ?1 : 0 → 1 is id0. We therefore show that the
canonical natural transformation mA,B is invertible. Since C has a zero object, we have
π1 ◦ ι2 = π2 ◦ ι1 = 0 (below we proved π1 ◦ ι2 = 0).

A1
ι1 //

!A1

��

A1 ⊕ A2

!A1⊕idA2

��

π2 // A2

idA2

0
ι1 //

?A2

330 ⊕ A2
π2 // A2

Then the canonical natural transformation is equal to the identity map on A ⊕ B:

mA,B = [〈id, 0〉, 〈0, id〉] = [〈π1 ◦ ι1, π2 ◦ ι1〉, 〈π1 ◦ ι2, π2 ◦ ι2〉] = idA⊕B .

Therefore C has H-biproducts.
(only if) Let C be a bicartesian category satisfying Condition X and Y. In this part,

the symbols 〈−,−〉, π1, π2 denote the tupling and projections of binary products, and
[−,−], ι, ι′ denote the cotupling and injections of binary coproducts. We show that the
coproduct functor + : C × C → C is also a right adjoint of ∆. We define the unit of
this adjunction by δA = m−1

A,A ◦ 〈id, id〉 : A → A + A, and counit (=projections) by

pA,B = π1 ◦ mA,B : A + B→ A and p′A,B = π2 ◦ mA,B : A + B→ B. Then we have

pA,A ◦ δA = π1 ◦ mA,A ◦ m−1
A,A ◦ 〈idA, idA〉 = idA .

p′A,A ◦ δA = π2 ◦ mA,A ◦ m−1
A,A ◦ 〈idA, idA〉 = idA .

(pA,B + p′A,B) ◦ δA+B = (π1 ◦ mA,B + π2 ◦ mA,B) ◦ m−1
A+B,A+B ◦ 〈idA+B, idA+B〉

(naturality of m−1)

= m−1
A,B ◦ (π1 ◦ mA,B × π2 ◦ mA,B) ◦ 〈idA+B, idA+B〉

= m−1
A,B ◦ 〈π1 ◦ mA,B, π2 ◦ mA,B〉

= m−1
A,B ◦ 〈π1, π2〉 ◦ mA,B

= id .

We next show that p ◦ ι1 = id and p′ ◦ ι2 = id. We only show the former.

pA,B ◦ ι1 = π1 ◦ mA,B ◦ ι1 = π1 ◦ 〈idA, 0〉 = idA .

Proof of Proposition 2 and 3

Proposition 2-1 Let C be a category with binary biproducts. We define 0A,B and 0′A,B by

0A,B = A
ι1 // A ⊕ B

π2 // B , 0′A,B = A
ι2 // B ⊕ A

π1 // B .

We also define a binary operator + on C(A, B) by

f + g = [id, id] ◦ 〈 f , g〉.

Lemma 6. For any f : A→ B, we have 0B,C ◦ f = 0A,C and f ◦ 0C,A = 0C,B.

All squares below commute by naturality:

A

f

��

ι1 // A ⊕C

f⊕idC

��

π2 // C

idC

��

C

idC

��

ι1 // C ⊕ A

idC ⊕ f

��

π2 // A

f

��
B ι1

// B ⊕C
π2

// C C ι1
// C ⊕ B

π2

// B

Hence we obtain 0B,C ◦ f = 0A,C and g ◦ 0B,C = 0B,D.

Lemma 7. We have 0A,B = 0′A,B.

We have 0′B,C ◦ f = 0′A,C and f ◦0′C,A = 0′C,B for any f : A→ B. Then the above equation
is immediate.

Lemma 8. We have 〈π2, π1〉 = [ι2, ι1].

We have

π1 ◦ [ι2, ι1] = [π1 ◦ ι2, π1 ◦ ι1] = [0′, id] = [0, π2 ◦ ι2] = π2 ◦ [ι1, ι2] = π2.

Similarly we have π2 ◦ [ι2, ι1] = π1. Hence [ι2, ι1] = 〈π2, π1〉.

Lemma 9. We have 〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉].

We calculate the first and second projections of the r.h.s.:

π1 ◦ [〈a, c〉, 〈b, d〉] = [a, b], π2 ◦ [〈a, c〉, 〈b, d〉] = [c, d].

Hence we obtain the equation in question.

Lemma 10. We have 〈id, 0〉 = ι1, 〈0, id〉 = ι2.

We have
〈id, 0〉 = 〈π1 ◦ ι1, π2 ◦ ι1〉 = 〈π1, π2〉 ◦ ι1 = ι1.

Similarly we have 〈0, id〉 = ι2.

Lemma 11. We have 〈0, ι1〉 = ι2 ◦ ι1 and 〈0, ι2〉 = ι2 ◦ ι2.

From Lemma 9 and 10, we have

[〈0, ι1〉, 〈0, ι2〉] = 〈[0, 0], [ι1, ι2]〉 = 〈0, id〉 = ι2.

Therefore ι2 ◦ ι1 = 〈0, ι1〉 and ι2 ◦ ι2 = 〈0, ι2〉.

Lemma 12. The following morphism:

[[ι1, ι2 ◦ ι1], ι2 ◦ ι2] : (A ⊕ B) ⊕C → A ⊕ (B ⊕C).

is the inverse of the following associativity:

a = 〈〈π1, π1 ◦ π2〉, π2 ◦ π2〉 : A ⊕ (B ⊕ C)→ (A ⊕ B) ⊕C.

There is a canonical inverse of a:

a−1 = 〈π1 ◦ π1, 〈π2 ◦ π1, π2〉〉 : (A ⊕ B) ⊕C → A ⊕ (B ⊕C).

We inspect its contents by composing injections:

a−1 ◦ ι1 ◦ ι1 = 〈id, 〈0, 0〉〉 = 〈id, 0〉 = ι1
a−1 ◦ ι1 ◦ ι2 = 〈0, ι1〉 = ι2 ◦ ι1

a−1 ◦ ι2 = 〈0, 〈0, id〉〉 = 〈0, ι2〉 = ι2 ◦ ι2.

Therefore we obtain
a−1 = [[ι1, ι2 ◦ ι1], ι2 ◦ ι2].

We are now ready to prove that C is commutative-monoid enriched. Below we show
that the morphism 0 and the binary operator + form a commutative monoid.

f + 0 = [id, id] ◦ 〈 f , 0〉 = [id, id] ◦ 〈id, 0〉 ◦ f = [id, id] ◦ ι1 ◦ f = f ,

0 + f = [id, id] ◦ 〈0, f 〉 = [id, id] ◦ 〈0, id〉 ◦ f = [id, id] ◦ ι2 ◦ f = f .

f + (g + h) = [id, id] ◦ 〈 f , [id, id] ◦ 〈g, h〉〉

= [id, id] ◦ 〈 f , [id, id] ◦ 〈g, h〉〉

= [id, [id, id]] ◦ 〈 f , 〈g, h〉〉

= [id, [id, id]] ◦ a−1 ◦ a ◦ 〈 f , 〈g, h〉〉

= [[id, id], id] ◦ 〈〈 f , g〉, h〉

= (f + g) + h.

We next show that − ◦ h and h ◦ − are both monoid homomorphisms. From Lemma
6 we have 0 ◦ h = h ◦ 0 = 0. Next, by definition of + we have

(f + g) ◦ h = [id, id] ◦ 〈 f , g〉 ◦ h = [id, id] ◦ 〈 f ◦ h, g ◦ h〉 = f ◦ h + g ◦ h,

h ◦ (f + g) = [h, h] ◦ 〈 f , g〉 = [id, id] ◦ (h ⊕ h) ◦ 〈 f , g〉 = h ◦ f + h ◦ g.

Proposition 2-2 (if)

[Fι1, Fι2] ◦ 〈Fπ1, Fπ2〉 = Fι1 ◦ Fπ1 + Fι2 ◦ Fπ2

(F enriched) = F(ι1 ◦ π1 + ι2 ◦ π2)

= id .

〈Fπ1, Fπ2〉 ◦ [Fι1, Fι2] = [〈Fπ1, Fπ2〉 ◦ Fι1, 〈Fπ1, Fπ2〉 ◦ Fι2]

= [〈Fπ1 ◦ Fι1, Fπ2 ◦ Fι1〉, 〈Fπ1 ◦ Fι2, Fπ2 ◦ Fι2〉]

(F enriched) = [〈id, 0〉, 〈0, id〉]

(Lemma 10) = [ι1, ι2]

= id .

(only if)

F(f + g) = F[id, id] ◦ F〈 f , g〉

(Canonical iso) = F[id, id] ◦ [Fι1, Fι2] ◦ 〈Fπ1, Fπ2〉 ◦ F〈 f , g〉

= [F id, F id] ◦ 〈F f , Fg〉

= F f + Fg

F0A,B = Fπ2 ◦ Fι1
= π2 ◦ 〈Fπ1, Fπ2〉 ◦ [Fι1, Fι2] ◦ ι1

(Canonical iso) = π2 ◦ ι1

= 0FA,FB.

Proposition 3-1 Category KC has binary biproducts, hence is canonically enriched by
Proposition 2-1. Since the functor HC : C → KC fully faithfully embeds C into KC,
the canonical enrichment can be restricted to C by the embedding. This enrichment can
be explicitly described using the isomorphism HC(A,B) : C(A, B) → KC(HCA,HCB) on
homsets:

(0C)A,B = H−1
C(A,B)((0KC)HCA,HCB), f +C g = H−1

C(A,B)(HC(A,B) f +KC HC(A,B)g),

and by expanding the definition of H and the canonical enrichment, we obtain

(0C)A,B = π1 ◦ ι2 = π2 ◦ ι1, (f +C g) = [id, id] ◦ 〈 f , g〉,

that is, the equations defining the canonical enrichment for binary biproducts in Propo-
sition 2 also determine that for binary semibiproducts.

Proposition 3-2 (if) The functor KF : KC → KD is enriched by Proposition 2-2.

F(f +C g) = F(H−1
C(A,B)(HC(A,B) f +KC HC(A,B)g))

(naturality of H) = H−1
D(FA,FB)(K F(HC(A,B) f +KC HC(A,B)g))

(K F is enriched) = H−1
D(FA,FB)(K F(HC(A,B) f) +KD K F(HC(A,B)g)))

(naturality of H) = H−1
D(FA,FB)(HD(FA,FB)F f +KD HD(FA,FB)Fg)

= F f +D Fg.

(only if) We show the equations in Definition 4. First, note that

id⊕ id = (id⊕ id) ◦ (id⊕ id)

= [ι1, ι2] ◦ 〈π1, π2〉

= [id, id] ◦ 〈ι1 ◦ π1, ι2 ◦ π2〉

= ι1 ◦ π1 + ι2 ◦ π2.

Therefore we obtain

[Fι1, Fι2] ◦ 〈Fπ1, Fπ2〉 = F(ι1 ◦ π1) + F(ι2 ◦ π2)

(F enriched) = F(ι1 ◦ π1 + ι2 ◦ π2)

= F(idA ⊕ idB).

For the other equation,

〈Fπ1, Fπ2〉 ◦ [Fι1, Fι2] = 〈[F(π1 ◦ ι1), F(π1 ◦ ι2)], [F(π2 ◦ ι1), F(π2 ◦ ι2)]〉

(F enriched) = 〈[idFA, 0], [0, idFB]〉

= 〈π1 ◦ (idFA ⊕ idFB), π2 ◦ (idFA ⊕ idFB)〉

= 〈π1, π2〉 ◦ (idFA ⊕ idFB)

= (idFA ⊕ idFB).

Remaining proofs can be found at

http://www.kurims.kyoto-u.ac.jp/˜naophiko/paper/app.pdf

D Remaining Proofs

Proof of Lemma 1

From the distributivity, we have 0A,B ⊗ 0C,C = 0A⊗C,B⊗C. Therefore

trC
A,B(0A⊗C,B⊗C) = trC

A,B(0A,B ⊗ 0C,C)

(superposing) = 0A,B ⊗ trC
I,I(0C,C)

(bilinearity) = 0A,B.

We move to trC
A,B(f + g) = trC

A,B(f) + trC
A,B(g). First, we have (for each i ∈ {1, 2})

πi = (πi ⊗ idC) ◦ [ι1 ⊗ idC, ι2 ⊗ idC] : (A1 ⊗C) ⊕ (A2 ⊗C)→ Ai ⊗C. (1)

Proof:

πi

(− ⊗C preserves biproducts) = πi ◦ 〈π1 ⊗ idC , π2 ⊗ idC〉 ◦ [ι1 ⊗ idC , ι2 ⊗ idC]

= (πi ⊗ idC) ◦ [ι1 ⊗ idC, ι2 ⊗ idC].

Second, we have

〈trC
A,B(f1), trC

A,B(f2)〉 = trC
A,B⊕B([ι1 ⊗ idC, ι2 ⊗ idC] ◦ 〈 f1, f2〉). (2)

Proof: We calculate the first and second component of trC
A,B⊕B([ι1⊗idC, ι2⊗idC]◦〈 f1, f2〉).

πi ◦ trC
A,B⊕B([ι1 ⊗ idC , ι2 ⊗ idC] ◦ 〈 f1, f2〉)

(naturality of trace) = trC
A,B((πi ⊗ idC) ◦ [ι1 ⊗ idC, ι2 ⊗ idC] ◦ 〈 f1, f2〉)

(Equation 1) = trC
A,B(πi ◦ 〈 f1, f2〉)

= trC
A,B(fi)

(where i ∈ {1, 2}). From this, we conclude Equation 2. We now prove the lemma in
question.

trC
A,B(f) + trC

A,B(g)

(definition of +) = [idB, idB] ◦ 〈trC
A,B(f), trC

A,B(g)〉

(Equation 2) = [idB, idB] ◦ trC
A,B([ι1 ⊗ idC, ι2 ⊗ idC] ◦ 〈 f , g〉)

(naturality of trace) = trC
A,B(([idB, idB] ⊗ idC) ◦ [ι1 ⊗ idC , ι2 ⊗ idC] ◦ 〈 f , g〉)

= trC
A,B([([idB, idB] ◦ ι1) ⊗ idC, ([idB, idB] ◦ ι2) ⊗ idC] ◦ 〈 f , g〉)

= trC
A,B([idB⊗C, idB⊗C] ◦ 〈 f , g〉)

= trC
A,B(f + g).

Proof of Lemma 2

In this proof we omit the annotation of objects on trace operators.

(1) We have

tr(f) = tr

















∑

16i, j62

(idB ⊗ιi) ◦ fi j ◦ (idA ⊗π j)

















(Lemma 1) =
∑

16i, j62

tr
(

(idB ⊗ιi) ◦ fi j ◦ (idA ⊗π j)
)

(sliding) =
∑

16i, j62

tr
(

fi j ◦ (idA ⊗(π j ◦ ιi)
)

(

π j ◦ ιi =

{

0 (j , i)
id (j = i)

)

=
∑

16i62

tr (fii) .

(2) We have

tr(f) = tr

















∑

16i, j62

(ιi ⊗ idA) ◦ fi j ◦ (π j ⊗ idA)

















(Lemma 1) =
∑

16i, j62

tr
(

(ιi ⊗ idA) ◦ fi j ◦ (π j ⊗ idA)
)

(naturality of trace) =
∑

16i, j62

ιi ◦ tr
(

fi j

)

◦ π j.

From this, we conclude that the matrix representation of tr(f) is

(

tr(f11) tr(f12)
tr(f21) tr(f22)

)

.

Proof of Lemma 3

Let f = 〈〈 f11, f12, f21, f22〉〉 : A → B1 ⊕ B2 be an Int(C)-morphism where each compo-
nent fi j is in Int(C)(A, (B+i , B

−
j)). This morphism corresponds to the following matrix

of C-morphisms

(

f11 f12

f21 f22

)

. Similarly, the tuple g = [[g11, g12, g21, g22]] : B1 ⊕ B2 → C

with gi j ∈ Int(C)((B+i , B
−
j),C) corresponds to the matrix

(

g11 g21

g12 g22

)

(note the order of

g21 and g12). The composite g ◦ f in Int(C) is the trace of the following C-morphism:

(C+ ⊗ σ) ◦ (g ⊗ A−) ◦ ((B+1 ⊕ B+2) ⊗ σ) ◦ (f ⊗ C−) ◦ (A+ ⊗ σ)

=

(

C+ ⊗ σ 0
0 C+ ⊗ σ

)

◦

(

g11 ⊗ A− g21 ⊗ A−

g12 ⊗ A− g22 ⊗ A−

)

◦

(

B+1 ⊗ σ 0
0 B+2 ⊗ σ

)

◦

(

f11 ⊗ C− f12 ⊗ C−

f21 ⊗ C− f22 ⊗ C−

)

◦

(

A+ ⊗ σ 0
0 A+ ⊗ σ

)

=

(

(C+ ⊗ σ) ◦ (g11 ⊗ A−) (C+ ⊗ σ) ◦ (g21 ⊗ A−)
(C+ ⊗ σ) ◦ (g12 ⊗ A−) (C+ ⊗ σ) ◦ (g22 ⊗ A−)

)

◦

(

(B+1 ⊗ σ) ◦ (f11 ⊗ C−) ◦ (A+ ⊗ σ) (B+1 ⊗ σ) ◦ (f12 ⊗C−) ◦ (A+ ⊗ σ)
(B+2 ⊗ σ) ◦ (f21 ⊗ C−) ◦ (A+ ⊗ σ) (B+2 ⊗ σ) ◦ (f22 ⊗C−) ◦ (A+ ⊗ σ)

)

= h

where h is the morphism whose matrix consists of the following elements:

hi j = (C+ ⊗ σ) ◦ (g1i ⊗ A−) ◦ (B+1 ⊗ σ) ◦ (f1 j ⊗C−) ◦ (A+ ⊗ σ)

+ (C+ ⊗ σ) ◦ (g2i ⊗ A−) ◦ (B+2 ⊗ σ) ◦ (f2 j ⊗C−) ◦ (A+ ⊗ σ).

Therefore

tr
B−1⊕B−2
A+,C+ (h) =

∑

1≤i, j≤2

tr
B−1⊕B−2
A+ ,C+ (hi j) =

∑

1≤i, j≤2

gi j ◦ fi j.

Thus we obtain 〈〈 fi j〉〉 ◦ [[gi j]] =
∑

gi j ◦ fi j.

We next calculate the composition of h : C → A and f = 〈〈 f11, f12, f21, f22〉〉 : A →
B1 ⊕ B2 in Int(C). The composition is the trace of the following morphism:

((B+1 ⊕ B+2) ⊗ σ) ◦ (f ⊗C−) ◦ (A+ ⊗ σ) ◦ (h ⊗ (B−1 ⊕ B−2)) ◦ (C+ ⊗ σ)

=

(

B+1 ⊗ σ 0
0 B+2 ⊗ σ

)

◦

(

f11 ⊗C− f12 ⊗ C−

f21 ⊗C− f22 ⊗ C−

)

◦

(

A+ ⊗ σ 0
0 A+ ⊗ σ

)

◦

(

h ⊗ B−1 0
0 h ⊗ B−2

)

◦

(

C+ ⊗ σ 0
0 C+ ⊗ σ

)

=

(

(B+1 ⊗ σ) ◦ (f11 ⊗ C−) (B+1 ⊗ σ) ◦ (f12 ⊗C−)
(B+2 ⊗ σ) ◦ (f21 ⊗ C−) (B+2 ⊗ σ) ◦ (f22 ⊗C−)

)

◦

(

(A+ ⊗ σ) ◦ (h ⊗ B−1) ◦ (C+ ⊗ σ) 0
0 (A+ ⊗ σ) ◦ (h ⊗ B−2) ◦ (C+ ⊗ σ)

)

= h

where hi j = (B+i ⊗σ) ◦ (fi j ⊗C−) ◦ (A+ ⊗σ) ◦ (h⊗ B−j) ◦ (C+ ⊗σ). Therefore we obtain

trA−

C+⊗(B−1⊕B−2),(B+1⊕B+2)⊗C−
(h) =

(

tr(h11) tr(h12)
tr(h21) tr(h22)

)

=

(

f11 ◦ h f12 ◦ h
f21 ◦ h f22 ◦ h

)

.

This matrix corresponds to the tuple 〈〈 fi j ◦ h〉〉. Hence we obtain 〈〈 fi j〉〉 ◦ h = 〈〈 fi j ◦ h〉〉.

Proof of Proposition 5

We show that the tupling, cotupling, projections and injections satisfy Condition B-1.

π1 ◦ 〈 f , g〉 = [[id, 0, 0, 0]] ◦ 〈〈 f , 0, 0, g〉〉

= id ◦ f + 0 ◦ 0 + 0 ◦ 0 + 0 ◦ g

= f .

(we omit the proof for π2 ◦ 〈 f , g〉 = g)

[f , g] ◦ ι1 = [[f , 0, 0, g]] ◦ 〈〈id, 0, 0, 0〉〉

= f ◦ id+0 ◦ 0 + 0 ◦ 0 + g ◦ 0

= f .

(we omit the proof for [f , g] ◦ ι2 = g)

〈 f , g〉 ◦ h = 〈〈 f , 0, 0, g〉〉 ◦ h

= 〈〈 f ◦ h, 0, 0, g ◦ h〉〉

= 〈 f ◦ h, g ◦ h〉.

h ◦ 〈 f , g〉 = h ◦ [[f , 0, 0, g]]

= [[h ◦ f , 0, 0, h ◦ g]]

= [h ◦ f , h ◦ g]

π1 ◦ ι1 = [[id, 0, 0, 0]] ◦ 〈〈id, 0, 0, 0〉〉

= id ◦ id+0 + 0 + 0

= id

(we omit the proof for π2 ◦ ι2 = id)

〈 f ◦ π1, g ◦ π2〉 = 〈〈[[f , 0, 0, 0]], 0, 0, [[0, 0, 0, g]]〉〉

= [[〈〈 f , 0, 0, 0〉〉, 0, 0, 〈〈0, 0, 0, g〉〉]]

= [ι1 ◦ f , ι2 ◦ g].

Here 0 = [[0, 0, 0, 0]].

Proof of Theorem 3

That Int(C) has semibiproducts is already proved in Proposition 5. We show that NC
preserves semibiproducts. Below we just write N for NC. We have seen that N0 is a
zero object in Int(C). Next, we have (below we write 0 for [[0, 0, 0, 0]])

〈Nπ1,Nπ2〉 ◦ [Nι1,Nι2] = 〈〈Nπ1, 0, 0,Nπ2〉〉 ◦ [[Nι1, 0, 0,Nι2]]

= 〈〈[[N id, 0, 0, 0]], 0, 0, [[0, 0, 0,N id]]〉〉

= N id⊕N id

[Nι1,Nι2] ◦ 〈Nπ1,Nπ2〉 = [[Nι1, 0, 0,Nι2]] ◦ 〈〈Nπ1, 0, 0,Nπ2〉〉

= Nι1 ◦ Nπ1 + Nι2 ◦ Nπ2

= (ι1 ◦ π1 + ι2 ◦ π2) ⊗ I

= N id .

Therefore N preserves semibiproducts.

Proof of Proposition 10

First, we note that

〈〈 f11, f12, f21, f22〉〉
∗ = [[f ∗11, f ∗21, f ∗12, f ∗22]].

In particular, ι∗i = πi for i = 1, 2.
We only consider the case where the cut elimination happens on an &-rule and

⊕0-rule.

~Cut(And(Π1, Π2),Or0(Π))�

= (Γ ⊗ εU ⊗ ∆) ◦ (~And(Π1, Π2)� ⊗ ~Or0(Π)�)

= (Γ ⊗ εU ⊗ ∆) ◦ (((Γ ⊗ α1) ◦ ~Π1�) + ((Γ ⊗ α2) ◦ ~Π2�)) ⊗ ((α1 ⊗ ∆) ◦ ~Π�))

(tensor products preserve semibiproducts)

= (Γ ⊗ εU ⊗ ∆) ◦ (((Γ ⊗ α1) ◦ ~Π1�) ⊗ ((α1 ⊗ ∆) ◦ ~Π�) +

((Γ ⊗ α2) ◦ ~Π2�) ⊗ ((α1 ⊗ ∆) ◦ ~Π�)))

= (Γ ⊗ εU ⊗ ∆) ◦ ((Γ ⊗ α1 ⊗ α1 ⊗ ∆) ◦ (~Π1� ⊗ ~Π�) + ((Γ ⊗ α2 ⊗ α1 ⊗ ∆) ◦ ~Π2� ⊗ ~Π�))

= (Γ ⊗ (εU ◦ (α1 ⊗ α1)) ⊗ ∆) ◦ (~Π1� ⊗ ~Π�) + (Γ ⊗ (εU ◦ (α2 ⊗ α1)) ⊗ ∆) ◦ (~Π2� ⊗ ~Π�)

= (Γ ⊗ (εU ◦ (U ⊗ (α∗1 ◦ α1))) ⊗ ∆) ◦ (~Π1� ⊗ ~Π�) +

(Γ ⊗ (εU ◦ (U ⊗ (α∗2 ◦ α1))) ⊗ ∆) ◦ (~Π2� ⊗ ~Π�) +

(α∗1 ◦ α1 = ι
∗
1 ◦ a∗ ◦ a ◦ ι1 = π1 ◦ ι1 = id, α∗2 ◦ α1 = ι

∗
2 ◦ a∗ ◦ a ◦ ι1 = π2 ◦ ι1 = 0)

= (Γ ⊗ εU ⊗ ∆) ◦ (~Π1� ⊗ ~Π�)

= ~Cut(Π1, Π)� .

Proof of Proposition 11

In order to prove Proposition 11, we introduce coherence ^
_A ⊂ N

2 × N2 for each
formula A.

Definition 8. For a reflective relation ^
_ ⊂ X × X, we define _

^,_,^⊂ X × X by

x _^ y⇔ x = y ∨ ¬(x ^_ y)

x ^ y⇔ x , y ∧ x ^_ y

x _ y⇔ ¬(x ^_ y)

Definition 9. For a formula A, we define a reflective relation ^
_A ⊂ N

2 × N2 by

– (n,m) ^_α(a, b)⇐⇒ n = a ∧ m = b
– (n,m) ^_α⊥(a, b)⇐⇒ (m, n) _^α(b, a)
– (dn, ke, dm, le) ^_A⊗B(da, ce, db, de) iff

(n,m) ^_A(a, b) ∧ (k, l) ^_B(c, d)

– (dn, ke, dm, le) ^_A℘B(da, ce, db, de) iff

(n,m) ^A (a, b) ∨ (k, l) ^B (c, d)

or
(dn, ke, dm, le) = (da, ce, db, de)

– (n,m) ^_A⊕B(a, b) iff

(n,m) = (k, l) ∧ (a, b) = (c, d) ∧ (k, l) ^A (c, d)

or
(n,m) = (k, l) ∧ (a, b) = (c, d) ∧ (k, l) ^B (c, d)

or
(n,m) = (a, b)

– (n,m) ^_A&B(a, b) iff (m, n) _^A⊥⊕B⊥(b, a)

We can extend (−)⊥ to all formulae

(n,m) ^_A⊥(a, b)⇐⇒ (m, n) _^A(b, a).

This is consistent to the extention of the negation of the MALL since we have:

^
_(A⊥)⊥ =

^
_A

^
_(A⊗B)⊥ =

^
_A⊥℘B⊥

^
_(A℘B)⊥ =

^
_A⊥⊗B⊥

^
_(A&B)⊥ =

^
_A⊥⊕B⊥

^
_(A⊕B)⊥ =

^
_A⊥&B⊥

For a k-tuple of formulae A1, · · · , Ak and k-tuples of natural numbers n, m, a, b, we
write (n, m) ^_A1,··· ,Ak

(a, b) when

(ni,mi) _^Ai
(ai, bi) for each 1 ≤ i ≤ k implies (n, m) = (a, b).

We define (n, m) _^A1,··· ,Ak
(a, b) by the negation of (n, m) ^_A1,··· ,Ak

(a, b).

(n, m) _^A1,··· ,Ak
(a, b)⇐⇒ ∀i.(ni,mi) _^Ai

(ai, bi).

Proposition 13. Let Π ` A1, · · · , An be a MALL proof. For (n, m), (a, b) ∈ ||Π ||,

(n, m) ^_A1,··· ,Ak
(a, b)

Proof. We prove by the induction of Π .
• Ax ` A, A⊥

For (nm,mn), (ab, ba) ∈ ||AxA ||,

(n,m) _^A(a, b) ∧ (m, n) _^A⊥(b, a)⇔ (n,m) _^A(a, b)∧ (n,m) ^_A(a, b)

⇒ (n,m) = (a, b)

• Cut(Π0, Π1) ` Γ, ∆
Let (n+m+, n−m−) and (a+b+, a−b−) be elements of ||Cut(Π0, Π1)|| such that

(n+m+, n−m−) _^Γ,∆(a+b+, a−b−).

From the definition of || − ||, there are natural numbers i, j, p, q such that

(n+i, n− j) ∈ ||Π0|| (jm+, im−) ∈ ||Π1||

(a+p, a−q) ∈ ||Π0|| (qb+, pb−) ∈ ||Π1||

We show (i, j) _^A(p, q): If (i, j) ^A (p, q) then (j, i) _^A⊥(q, p). We have

(jm+, im−) _^A⊥,∆(qb+, pb−)

since (m+, m−)_^∆(b+, b−). Then by the I.H., (j, i) = (q, p). This contradicts to (i, j) ^A

(p, q). Hence (i, j) _^A(p, q).
Since (n+, n−) _^Γ(a+, a−), we have (n+i, n− j) _^Γ,A(a+p, a−q). Then by the I.H.,

(i, j) = (p, q) and we see (n+, n−) = (a+, a−) and (m+, m−) = (b+, b−).
• Ten(Π0, Π1) ` Γ, A ⊗ B, ∆
For

(n+di+, j+em+, n−di−, j−em−) ∈ ||Ten(Π0, Π1)||

and
(a+dp+, q+eb+, a−dp−, q−eb−) ∈ ||Ten(Π0, Π1)||,

such that

(n+di+, j+em+, n−di−, j−em−) _^Γ,A⊗B,∆(a+dp+, q+eb+, a−dp−, q−eb−)

we have
(i+, i−) _A (p+, p−)

or
(j+, j−) _B (q+, q−)

or
i+ = p+, i− = p−, j+ = q+, j− = q−.

For the first case, since (n+, n−) _^Γ(a+, a−), we see

(n+i+, n−i−) _^Γ(a+p+, a−p−)

and by the I.H., (i+, i−) = (p+, p−). This contradicts to (i+, i−) _A (p+, p−). The second
case is similar. Hence i+ = p+, i− = p−, j+ = q+, j− = q− stand. Then by I.H., we have
(n+, n−) = (a+, a−) and (m+, m−) = (b+, b−).
• Par(Π) ` Γ, A℘B
Let (n+di+, j+e, n−di−, j−e) and (a+dp+, q+e, a−dp−, q−e) be elements of || Par(Π)|| such
that

(n+di+, j+e, n−di−, j−e) _^Γ,A℘B(a+dp+, q+e, a−dp−, q−e).

By the definition, this is equivalent to

(n+i+ j+, n−i− j−) _^Γ,A,B(a+p+q+, a−p−q−).

Then by the I.H.,
(n+i+ j+, n−i− j−) = (a+p+q+, a−p−q−)

• Permσ(Π)
For (σ(n+), σ(n−)), (σ(a+), σ(b−)) ∈ || Permσ(Π)||,

(σ(n+), σ(n−)) _^σ(Γ)(σ(a+), σ(b−))⇒ (n+, n−) _^Γ(a+, b−)

⇒ (n+, n−) = (a+, b−)

• And(Π0, Π1)
For (n+i, n− j), (a+p, a−q) ∈ ||And(Π0, Π1)||, if

(n+i, n− j) _^Γ,A&B(a+p, a−q)

then from the definition of _
^A&B and ||And(Π0, Π1)||, there are two cases:

i = i′, j = j′, p = p′, q = q′

or
i = i′, j = j′, p = p′, q = q′.

For the first case,

(n+i, n− j) _^Γ,A&B(a+p, a−q)

⇒ (n+, n−) _^Γ(a+, a−) ∧ (i, j) ^_A⊥⊕B⊥(p, q)

⇒ (n+, n−) _^Γ(a+, a−) ∧ (i, j) ^_A⊥(p, q)

⇒ (n+, n−) _^Γ(a+, a−) ∧ (j, i) _^A(q, p)

⇒ (n+, n−) = (a+, a−) ∧ (j, i) = (q, p).

The second case is similar.
• Or0(Π) ` A ⊕ B, Γ: For (n+i, n− j), (a+p, a−q) ∈ ||Or0(Π)||,

(n+i, n− j) _^Γ,A⊕B(a+p, a−q)⇒ (n+, n−) _^Γ(a+, a−) ∧ (i, j) _^A⊕B(p, q)

⇒ (n+, n−) _^Γ(a+, a−) ∧ (i, j) _^A(p, q)

⇒ (n+, n−) = (a+, a−) ∧ (i, j) = (p, q)

• Or1(Π) ` A ⊕ B, Γ: Similar to Or0.

Corollary 2. Let Π be a proof of MALL. For every (n+, n−) ∈ ||Π ||,

[[Π]]n+ ,n−

is a singleton or the empty set.

Proof. We show by the induction of Π . We only prove the case of Cut rule. We have

[[Cut(Π0, Π1)]]n+m+ ,n−m− = {cut(f , g) | ∃i, j. f ∈ [[Π0]]n+i,n− j ∧ g ∈ [[Π1]] jm+,im− }

where

cut : Pfn((k + 1)N, (k + 1)N) × Pfn((h + 1)N, (h + 1)N)→ Pfn((k + h)N, (k + h)N)

is given by

cut(f , g) = trN(k+h)N,(k+h)N((kN ⊗ σhN,N) ◦ (kN ⊗ g) ◦ (f ⊗ hN) ◦ (kN ⊗ σN,hN))

If there are i, j and p, q such that

∃ f ∈ [[Π0]]n+i,n− j ∃g ∈ [[Π1]] jm+,im−

∃u ∈ [[Π0]]n+ p,n−q ∃v ∈ [[Π1]]qm+,pm−

then
(n+i, n− j), (n+p, n−q) ∈ ||Π0||

and
(jm+, im−), (qm+, pm−) ∈ ||Π1||.

By Proposition 13, we have (i, j) ^_A(p, q) and (j, i) ^_A⊥(q, p). Hence (i, j) = (p, q) and
Cut(Π0, Π1) is a singleton or the empty set.

We write W(Π) for the set of weights of Π .

Proposition 14. For a weighted MALL proof (Π,w) and (n+, n−) ∈ |Π |w, we have

(1) ||Π || =
⋃

w∈W(Π) |Π |w
(2) [Π]w ∈ [[Π]]n+ ,n−

Proof. We prove (1) and (2) simultaneously by the induction of Π .
• AxA

(1) By the definition.
(2)[[AxA]]nm,mn = {σN,N} = {[AxA]w} where σN,N : N+N⇀ N+N is the swapping map.
• Cut(Π0, Π1)
(1)

⋃

w∈W(Cut(Π0,Π1))

|Cut(Π0, Π1)|w =
⋃

w∈W(Cut(Π0,Π1))

{

(n+m+, n−m−)

∣

∣

∣

∣

∣

∣

∃i, j.
(n+i, n− j) ∈ |Π0|w
(jm+, im−) ∈ |Π1|w

}

=

{

(n+m+, n−m−)

∣

∣

∣

∣

∣

∣

∃i, j.
(n+i, n− j) ∈

⋃

w∈W(Π0) |Π0|w
(jm+, im−) ∈

⋃

w∈W(Π1) |Π1|w

}

=

{

(n+m+, n−m−)

∣

∣

∣

∣

∣

∣

∃i, j.
(n+i, n− j) ∈ ||Π0||

(jm+, im−) ∈ ||Π1||

}

= ||Cut(Π0, Π1)||

(2) For (n+m+, n−m−) ∈ |Cut(Π0, Π1)|w, there is i, j such that

(n+i, n− j) ∈ |Π0|w (jm+, im−) ∈ |Π1|w

By the definition, [Cut(Π0, Π1)]w is cut([Π0]w, [Π1]w). By the I.H., [Π0]w ∈ [[Π0]]n+i,n− j

and [Π1]w ∈ [[Π1]] jm+,im− . Hence

[Cut(Π0, Π1)]w = cut([Π0]w, [Π1]w) ∈ [[Cut(Π0, Π1)]]n+m+,n−m−

• Permσ(Π)
(1)

⋃

w∈W(Permσ(Π))

| Permσ(Π)|w =
⋃

w∈W(Permσ(Π))

{

(σ(n+), σ(n−)) | (n+, n−) ∈ |Π |w
}

=



















(σ(n+), σ(n−))

∣

∣

∣

∣

∣

∣

∣

∣

(n+, n−) ∈
⋃

w∈W(Π)

|Π |w



















=
{

(σ(n+), σ(n−))
∣

∣

∣(n+, n−) ∈ ||Π ||
}

= || Permσ(Π)||

(2) For (σ(n+), σ(n−)) ∈ |Π |w

[Permσ(Π)]w = θσ ◦ [Π]w ◦ θ
−1
σ ∈ θσ ◦ [[Π]]n+ ,n− ◦ θ

−1
σ = [[Π]]σ(n+),σ(n−)

where θσ is the permutation of coproducts of N following σ.
• Ten(Π0, Π1)
(1)

⋃

w∈W(Ten(Π0,Π1))

|Ten(Π0, Π1)|w

=
⋃

w∈W(Ten(Π0,Π1))

{

(n+di+, j+em+, n−di−, j−em−)

∣

∣

∣

∣

∣

∣

(n+i+, n−i−) ∈ |Π0|w
(j+m+, j−m−) ∈ |Π1|w

}

=

{

(n+di+, j+em+, n−di−, j−em−)

∣

∣

∣

∣

∣

∣

(n+i+, n−i−) ∈
⋃

w∈W(Π0) |Π0|w
(j+m+, j−m−) ∈

⋃

w∈W(Π1) |Π1|w

}

=

{

(n+di+, j+em+, n−di−, j−em−)

∣

∣

∣

∣

∣

∣

(n+i+, n−i−) ∈ ||Π0||

(j+m+, j−m−) ∈ ||Π1||

}

= ||Ten(Π0, Π1)||

(2) For (n+di+, j+em+, n−di−, j−em−) ∈ |Ten(Π0, Π1)|w,

[Ten(Π0, Π1)]w = (id⊗c ⊗ id) ◦ ([Π0]w ⊗ [Π1]w) ◦ (id⊗c−1 ⊗ id)

∈ [[Ten(Π0, Π1)]]n+di+, j+em+,n−di−, j−em−

• Par(Π)
(1)

⋃

w∈W(Par(Π))

| Par(Π)|w

=
⋃

w∈W(Par(Π))

{

(n+di+, j+e, n−di−, j−e)
∣

∣

∣ (n+i+ j+, n−i− j−) ∈ |Π |w
}

=
{

(n+di+, j+e, n−di−, j−e)
∣

∣

∣ (n+i+ j+, n−i− j−) ∈
⋃

w∈W(Π) |Π |w
}

=
{

(n+di+, j+e, n−di−, j−e)
∣

∣

∣ (n+i+ j+, n−i− j−) ∈ ||Π ||
}

= || Par(Π)||

(2) For (n+di+, j+e, n−di−, j−e) ∈ | Par(Π)|w,

[Par(Π)]w = (id⊗c) ◦ [Π]w ◦ (id⊗c−1) ∈ [[Par(Π)]]n+di+, j+e,n−di− , j−e

• And(Π0, Π1)
(1)

⋃

w∈W(And(Π0,Π1))

[And(Π0, Π1)]w

=

















⋃

w∈W(Π0)

{(n+i, n− j) | (n+i, n− j) ∈ [Π0]w}

















∪

















⋃

w∈W(Π1)

{(n+i, n− j) | (n+i, n− j) ∈ [Π1]w}

















=



















(n+i, n− j)

∣

∣

∣

∣

∣

∣

∣

∣

(n+i, n− j) ∈
⋃

w∈W(Π0)

[Π0]w



















∪



















(n+i, n− j)

∣

∣

∣

∣

∣

∣

∣

∣

(n+i, n− j) ∈
⋃

w∈W(Π1)

[Π1]w



















=
{

(n+i, n− j)
∣

∣

∣(n+i, n− j) ∈ ||Π0||
}

∪
{

(n+i, n− j)
∣

∣

∣(n+i, n− j) ∈ ||Π1||
}

= ||And(Π0, Π1)||

(2) For a weight w(And) = 0 and (n+i, n− j) ∈ |And(Π0, Π1)|w,

[And(Π0, Π1)]w = [Π0]w ∈ [[Π0]]n+i,n− j = [[And(Π0, Π1)]]n+ i,n− j

The case w(And) = 1 is similar.
• Or0(Π)

(1)
⋃

w∈W(Or0(Π))

|Or0(Π)|w =
⋃

w∈W(Or0(Π))

{(n+i, n− j) | (n+i, n− j) ∈ |Π |w}

=



















(n+i, n− j)

∣

∣

∣

∣

∣

∣

∣

∣

(n+i, n− j) ∈
⋃

w∈W(Π)

|Π |w



















=
{

(n+i, n− j)
∣

∣

∣(n+i, n− j) ∈ ||Π ||
}

= ||Or0(Π)||

(2) For (n+i, n− j) ∈ |Or0(Π)|w,

[Or0(Π)]w = [Π]w ∈ [[Π]]n+ i,n− j = [[Or0(Π)]]n+i,n− j

• Or1(Π) : Similar to Or0.

Corollary 3 (Proposition 11).

(1) For any proof Π , ‖Π‖ =
⋃

w:weight of Π |Π |w.
(2) For any proof Π , well-behaved weight w of Π and (n+, n−) ∈ |Π |w, we have

~Π�n+ ,n− = {[Π]w}.

Proof. (1) is exactly (1) in Proposition 14.
(2) From Proposition 14, we see {[Π]w} ⊂ [[Π]]n+ ,n− . Then by Proposition 13, [[Π]]n+,n−

is a singleton set and the inclusion is equality.

