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Abstract

Haghverdi introduced the notion of unique decomposition categories as a foundation for categorical
study of Girard’s Geometry of Interaction (GoI). The execution formula in GoI provides a semantics
of cut-elimination process, and we can capture the execution formula in every unique decomposition
category: each hom-set of a unique decomposition category comes equipped with a partially defined
countable summation, which captures the countable summation that appears in the execution
formula. The fundamental property of unique decomposition categories is that if the execution
formula in a unique decomposition category is always defined, then the unique decomposition
category has a trace operator that is given by the execution formula. In this paper, we introduce a
subclass of unique decomposition categories, which we call strong unique decomposition categories,
and we prove the fundamental property for strong unique decomposition categories as a corollary
of a representation theorem for strong unique decomposition categories: we show that for every
strong unique decomposition category C, there is a faithful strong symmetric monoidal functor from
C to a category with countable biproducts, and the countable biproducts characterize the structure
of the strong unique decomposition category via the faithful functor.

Keywords: Geometry of interaction, unique decomposition category, traced monoidal category,
representation theorem

1 Introduction

Girard introduced Geometry of Interaction (GoI) [3], which aims to capture se-
mantics of cut-elimination process rather than invariant under cut-elimination
like usual denotational semantics. GoI interprets proofs as square matrices,
and if a proof reduces to another proof via cut-elimination, then the execution
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formula

Ex





A B

C D



 := A+

∞
∑

n=0

BDnC

provides an invariant under the cut-elimination.

Work by Hyland, Abramsky, Haghverdi and Scott [4,1] showed that traced
symmetric monoidal categories [11] play important roles in modeling the ex-
ecution formula. Especially, in [4,5], Haghverdi and Scott got much closer
to the original execution formula by using unique decomposition categories.
The notion of unique decomposition categories introduced by Haghverdi is a
generalization of partially additive categories [15]. The main point of unique
decomposition categories is that in a unique decomposition category, we can
uniquely decompose a morphism f : X ⊗ Z → Y ⊗ Z into four components





fXY : X → Y fZY : Z → Y

fXZ : X → Z fZZ : Z → Z



 ,

and each hom-set comes equipped with a partially defined countable summa-
tion. For example, we can partially define the standard trace formula [5]:

fXY +

∞
∑

n=0

fZY ◦ fn
ZZ ◦ fXZ : X → Y.

The following fundamental property of unique decomposition categories con-
nects the standard trace formula with categorical trace operators.

Proposition 1.1 ([4,5]) If the standard trace formula is defined for any mor-
phism of the form f : X⊗Z → Y ⊗Z, then the standard trace formula provides
a trace operator of the unique decomposition category.

In the proof of the proposition, there are certain implicit assumptions
aside from the definition of unique decomposition categories (see Appendix B
in [8]), and a sufficient condition would be to require quasi projections and
quasi injections, which is a part of data of unique decomposition categories, to
be “natural” and “compatible with monoidal structural isomorphisms”. The
main motivation of this paper is to explicitly describe a subclass of unique
decomposition categories that enjoys the fundamental property. Our idea is
to find a subclass of unique decomposition categories that provides “good”
embedding of unique decomposition categories in the subclass into categories
with countable biproducts. We consider categories with countable biproducts
because countable biproducts always provide a trace operator given by the
execution formula (see Section 5). Although we found a subclass of unique
decomposition categories, namely strong unique decomposition categories, in
this paper by trial and error, organization of this paper is top-down:
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(i) In Section 2, we recall Kleene equality, biproducts and categorical traces.

(ii) In Section 3, we recall the definition of Σ-monoids and embed each Σ-
monoid into a total Σ-monoid.

(iii) In Section 4, we introduce strong unique decomposition categories, and we
embed a strong unique decomposition category into a total strong unique
decomposition category via the embedding in (ii). We give examples of
strong unique decomposition categories.

(iv) In Section 5, we embed a total strong unique decomposition category
into a category with countable biproducts by matrix construction [13].
Then, we give a representation theorem for strong unique decomposition
categories (Theorem 5.3). The fundamental property for strong unique
decomposition categories is a corollary of the representation theorem.

Consequences of the representation theorem are:

• A proof of Proposition 1.1 in which we do not need to be careful with partial-
ity of summations on hom-sets of strong unique decomposition categories.

• We show that all strong unique decomposition categories are partially traced.

Related work

The paper by Malherbe, Scott and Selinger [14] is closely related to our
work. They gave an embedding of partially traced symmetric monoidal cate-
gories introduced in [6] into traced symmetric monoidal categories. Since our
result tells us that every strong unique decomposition category is partially
traced (Corollary 5.4), we can embed a strong unique decomposition cate-
gory into a traced symmetric monoidal category by their result. On the other
hand, our result also provides an embedding of a strong unique decomposition
category into a traced symmetric monoidal category since a category with
countable biproducts is traced (Theorem 3 in [16]). As we concentrate only
on strong unique decomposition categories, our embedding tells us further in-
formation on strong unique decomposition categories: an explicit description
of their trace operators, for example. However, there are some other partially
traced symmetric monoidal categories that are not strong unique decomposi-
tion categories. At this point, we do not know clear comparison between our
work and their work.

2 Preliminary

2.1 Kleene equality

For expressions e and e′ that possibly include partial operations, we write
e � e′ if e is defined, then e′ is defined, and they denote the same value. We
use ≃ for the Kleene equality : we write e ≃ e′ when we have e � e′ and e′ � e.
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For example, the following Kleene equality holds for all real numbers x and y.

x · 3

x2
·
1

y2
· y ≃

3

x · y
.

2.2 Biproducts

Definition 2.1 Let C be a category. For a set I, an I-ary biproduct of a
family {Xi ∈ C}i∈I consists of an object

⊕

i∈I Xi and a family of C-morphisms
{

πi :
⊕

i∈I Xi ⇆ Xi : κi
}

i∈I
such that

• πi ◦ κi = idXi
for every i ∈ I.

•
⊕

i∈I Xi with {πi}i∈I forms a product of {Xi}i∈I .

•
⊕

i∈I Xi with {κi}i∈I forms a coproduct of {Xi}i∈I .

• For each fi : Xi → Yi, the tupling 〈fi ◦πi〉i∈I :
⊕

i∈I Xi →
⊕

i∈I Yi coincides
with the cotupling [κi ◦ fi]i∈I :

⊕

i∈I Xi →
⊕

i∈I Yi.

A zero object 0 is a ∅-ary biproduct, and a binary biproduct of X0 and X1 is
a {0, 1}-ary biproduct of {Xi}i∈{0,1}, for which we write X0 ⊕X1.

We use countable to mean at most countable. We say that C has countable
(finite) biproducts when for every countable (finite) set I and every I-indexed
family of C-objects, there exists an I-ary biproduct of the family.

Definition 2.2 Let F : C → D be a functor between categories with finite
biproducts. We say that F preserves finite biproducts when for any objects
X0, X1 ∈ C, the canonical morphisms [Fκ0, Fκ1] : FX0⊕FX1 ⇆ F (X0⊕X1) :
〈Fπ0, Fπ1〉 and F0 ⇆ 0 form isomorphisms.

The definition of biproducts is from [9]. Definition 2.1 depends on neither
abelian-group enrichment as in [13] nor existence of zero morphisms defined
through a zero object as in [10]. The above definition of finite biproducts is
equivalent to the definition of finite biproducts in [10].

2.3 Partial trace operators

Let C be a symmetric monoidal category (for the definition, see [13]). We
recall the definition of partial trace operators in [6] that is a generalization of
trace operators introduced in [11].

Definition 2.3 A partial trace operator of C is a family of partial maps

{trZX,Y : C(X ⊗ Z, Y ⊗ Z)⇀ C(X, Y )}X,Y,Z∈C

subject to the following conditions:
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• (Naturality) For g : X ′ → X , h : Y → Y ′ and f : X ⊗ Z → Y ⊗ Z,

h ◦ trZX,Y (f) ◦ g � trZX′,Y ′((h⊗ idZ) ◦ f ◦ (g ⊗ idZ)).

• (Dinaturality) For f : X ⊗ Z → Y ⊗ Z ′ and g : Z ′ → Z,

trZX,Y ((idY ⊗ g) ◦ f) ≃ trZ
′

X,Y (f ◦ (idX ⊗ g)).

• (Vanishing I) For f : X ⊗ I → Y ⊗ I,

trIX,Y (f) ≃ f.

• (Vanishing II) For f : X ⊗ Z ⊗W → Y ⊗ Z ⊗W ,

trWX⊗Z,Y⊗Z(f) is defined =⇒ trZ⊗W
X,Y (f) ≃ trZX,Y (tr

W
X⊗Z,Y⊗Z(f)).

• (Superposing) For f : X ⊗ Z → Y ⊗ Z,

idW ⊗ trZX,Y (f) � trZW⊗X,W⊗Y (idW ⊗ f).

• (Yanking)
trXX,X(σX,X) ≃ idX .

Here we omit several coherence isomorphisms. Although our superposing rule
is weaker than the original superposing rule in [6], we can derive the original
superposing rule from the above axioms. A trace operator is a partial trace
operator consisting of total maps. We say that a partial trace operator is
uniform when for any f : X ⊗ Z → Y ⊗ Z, g : X ⊗ Z ′ → Y ⊗ Z ′ and
h : Z → Z ′, if (idY ⊗ h) ◦ f = g ◦ (idX ⊗ h), then trZX,Y (f) ≃ trZ

′

X,Y (g).

3 Σ-monoids

We recall the definition of Σ-monoids from [4]. For a set X , a countable family
on X is a map x : I → X for a countable set I. We denote such a family
x by {xi}i∈I . A countable partition of a set I is a countable family {Ij}j∈J
consisting of pairwise disjoint subsets of I such that

⋃

j∈J Ij = I. We define
X∗ to be the set of countable families on X whose indexing sets are subsets
of the set of natural numbers N = {0, 1, 2, · · · }. This restriction on indexing
sets is to define Σ in the following definition to be a set theoretic partial map.

Definition 3.1 A Σ-monoid is a non-empty set X with a partial map Σ :
X∗ ⇀ X subject to the following axioms:

• If I is a singleton {n}, then Σ{xi}i∈I ≃ xn.

• If {Ij}j∈J is a countable partition of a countable subset I ⊂ N, then for every
countable family {xi}i∈I on X , we have Σ{xi}i∈I ≃ Σ

{

Σ{xi}i∈Ij
}

j∈J
.
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A countable family {xi}i∈I is summable when Σ{xi}i∈I is defined. We say
that a Σ-monoid (X,Σ) is total when the operator Σ is a total map.

In the following, we simply say that X is a Σ-monoid without mentioning
its sum operator, and we write

∑

i∈I xi for Σ{xi}i∈I . We informally write
x0 + x1 + · · · for

∑

i∈N xi and x0 + x1 + · · · + xn for
∑

i∈{0,1,··· ,n} xi. By the
definition of Σ-monoids, every subfamily of a summable countable family is
summable. Especially, the empty family ∅ is summable. The zero element
0 :=

∑

∅ behaves as a unit of the summation:
∑

i∈I xi ≃
∑

j∈{i∈I|xi 6=0} xj . We

note that Σ{xi}i∈I ≃ Σ{yj}j∈J when there is a bijection θ : I → J such that
xi = yθ(i) for every i ∈ I. For a proof, see [7].

For every countable set S, we can define S-indexed summation
∑

s∈S xs by
choosing a bijection θ : I → S for some subset I ⊂ N: we define

∑

s∈S xs to be
∑

i∈I xθi. The definition does not depend on our choice of I and the bijection
θ : I → S since the summation is independent of renaming of indexing sets.
Hence, the definition is well-defined. In the following, we implicitly extend
summations in this way.

Example 3.2 LetM be a commutative monoid that does not have non-trivial
subgroup. M forms a Σ-monoid by the following summation:

∑

i∈I

xi :=

{

∑

i∈I′ xi (I ′ := {i ∈ I | xi 6= 0} is finite)

undefined (otherwise).

Examples are the set of natural numbers and the set of non-negative reals
associated with the addition. Another example is M/N where M is a commu-
tative monoid, and N is the submonoid of M consisting of invertible elements
in M . Generally, if an element of a Σ-monoid is invertible, then it is equal to
the zero element:

x = x+ 0 + 0 + · · · = x+ (−x) + x+ (−x) + x+ · · · = 0.

Example 3.3 A bounded complete poset D forms a Σ-monoid:

∑

i∈I

xi :=

{

∨

i∈I xi ({xi ∈ D | i ∈ I} is bounded)

undefined (otherwise).

3.1 The category of Σ-monoids

We define a categoryM of Σ-monoids: objects are Σ-monoids, and a morphism
f : X → Y is a map f : X → Y such that for each summable countable family
{xi}i∈I on X , the summation

∑

i∈I fxi is defined to be f(
∑

i∈I xi). In this
section, we show that M is a symmetric monoidal closed category. Due to
lack of space, proofs of propositions in this section are in [8].
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Definition 3.4 For a positive natural number n and Σ-monoids X1, · · · , Xn

and Y , we say that a map f : X1 × · · · ×Xn → Y is n-linear when

f(x1, · · · , xk−1,−, xk+1, · · · , xn) : Xk → Y

is an M-morphism for all k = 1, 2, · · · , n and x1 ∈ X1, · · · , xn ∈ Xn. We
write M(X1, · · · , Xn; Y ) for the set of n-linear morphisms of the form f :
X1 × · · · ×Xn → Y .

Proposition 3.5 A functor M(X, Y ;−) : M → Set is representable, i.e.,
there is an object X ⊗ Y such that M(X, Y ;−) ∼= M(X ⊗ Y,−).

We define I to be a Σ-monoid {0, 1} associated with a summation

∑

i∈I

xi :=



















0 ({i ∈ I | xi = 1} is empty)

1 ({i ∈ I | xi = 1} is a singleton)

undefined (otherwise).

For Σ-monoids X and Y , we define a Σ-monoid [X, Y ] := M(X, Y ) by

∑

i∈I

fi :=

{

λx.
∑

i∈I fix
(
∑

i∈I fix is defined for all x ∈ X
)

undefined (otherwise).
(1)

Proposition 3.6 (M, I,⊗, [−,−]) is a symmetric monoidal closed category.

3.2 A reflective full subcategory Mt

We define Mt to be the full subcategory of M consisting of total Σ-monoids.

Lemma 3.7 The inclusion functor U : Mt → M has a left adjoint functor.

Proof. For X ∈ M, let S be the set of total Σ-monoids whose underlying
sets are quotients of X∗. We show that S satisfies the solution set condition:
for each morphism f : X → Y whose codomain Y is in Mt, there exists a
morphism s : X → A and a morphism h : A → Y for some A ∈ S such that
f = h ◦ s. We define a map p : X∗ → Y by p{xi}i∈I :=

∑

i∈I fxi. Let A
be the quotient of X∗ by an equivalence relation on X∗ given by {xi}i∈I ≈

{x′j}j∈J
def

⇐⇒ p{xi}i∈I = p{x′j}j∈J . Since the image of p is closed under the
summation of Y , the total Σ-monoid structure of Y induces a total Σ-monoid
structure of A, and we obtain a monomorphism h : A→ Y . Since the image of
f is in the image of h, there exists a morphism s : X → A such that f = h◦ s.
Hence, S satisfies the solution set condition. Since Mt is small complete [8],
and U preserves all limits, U has a left adjoint functor by the adjoint functor
theorem [13]. ✷
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For a category C, a reflective full subcategory of C is a full subcategory of
C such that the inclusion functor has a left adjoint functor. For a symmetric
monoidal closed category (C, I,⊗, [−,−]) and its full subcategory B, we say
that B is an exponential ideal of C when for any X ∈ C and Y ∈ B, the
exponential [X, Y ] is a B-object.

Theorem 3.8 ([2]) Let B be a reflective full subcategory of a symmetric
monoidal closed category C. If B is an exponential ideal of C, then B has a sym-
metric monoidal closed structure, and the adjunction is symmetric monoidal.

By the definition (1) of the exponential [−,−] of M, it is easy to check
that Mt is an exponential ideal of M.

Corollary 3.9 Mt is a symmetric monoidal closed category, and the adjunc-
tion between M and Mt is symmetric monoidal with respect to the structures.

Let T be the symmetric monoidal monad on M induced by the symmetric
monoidal adjunction. We show several properties of the unit ηX : X → TX .

Definition 3.10 We say that an M-morphism f : X → Y reflects summa-
bility when for every countable family {xi}i∈I on X if

∑

i∈I fxi is summable
and is in the image of f , then {xi}i∈I is summable.

Lemma 3.11 The unit ηX : X → TX is monic and reflects summability.

Proof. We define a total Σ-monoid X ′ by X ′ := X + {⊥} with a summation

∑

i∈I

yi :=



















inl
(
∑

i∈I xi
)





for each i ∈ I, yi is of the form inl(xi),

and {xi}i∈I is summable





inr(⊥) (otherwise)

where inl(−) is the left injection, and inr(−) is the right injection. We define
an M-morphism h : X → X ′ by hx := inl(x). Since an M-morphism is monic
if and only if its underlying map is injective, h is monic. Let k : TX → X ′ be
the unique morphism such that h = k ◦ ηX . Since h : X → X ′ is monic, the
unit ηX is also monic. For a countable family {xi}i∈I on X , if

∑

i∈I ηXxi is in
the image of ηX , then we have

∑

i∈I

hxi =
∑

i∈I

kηXxi = k

(

∑

i∈I

ηXxi

)

∈ image(k ◦ ηX) = image(h),

which means that {xi}i∈I is summable. Hence, ηX reflects summability. ✷

Although our construction of T is abstract, for some Σ-monoids X , we can
concretely describe TX via the universality of T .
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Example 3.12 For countable sets A and B, let Pfn(A,B) be the set of par-
tial maps from A to B. The set Pfn(A,B) forms a Σ-monoid by the union of
graph relations:

∑

i∈I

fi :=

{

⋃

i∈I fi
(
⋃

i∈I fi represents a partial map
)

undefined (otherwise).

Let Rel(A,B) be the set of relations between A and B, which forms a total Σ-
monoid by the union of graphs. There is an obvious inclusion h : Pfn(A,B) →
Rel(A,B) between Σ-monoids. For a total Σ-monoid X and an M-morphism
f : Pfn(A,B) → X , there is an M-morphism g : Rel(A,B) → X given
by g(R) :=

∑

(a,b)∈R f(δa,b) where δa,b := {(a, b)}. Since every partial map

in Pfn(A,B) is equal to a sum of partial maps of the form δa,b, we obtain
g ◦ h = f . Such g is unique since g must satisfy the following equation.

g(R) = g





∑

(a,b)∈R

δa,b



 =
∑

(a,b)∈R

g(δa,b) =
∑

(a,b)∈R

gh(δa,b) =
∑

(a,b)∈R

f(δa,b).

By the universality of T , we see that TPfn(A,B) is isomorphic to Rel(A,B).

Example 3.13 For a countable set A, we define sets A⋆ and A> by

A⋆ := {x : A→ N | dom(x) is finite}, A> := Set(A,N ∪ {∞})

where dom(x) := {a ∈ A | x(a) 6= 0}. The sets A⋆ and A> are Σ-monoids with
the pointwise summations. The Σ-monoid A> is total. As in Example 3.12,
we can show that TA⋆ is isomorphic to A>.

4 Unique decomposition categories

4.1 M-categories

With respect to the symmetric monoidal structure of M, we consider M-
enrichment [12]. By Proposition 3.5, we can say that an M-enriched category
(M-category) C is a category with a Σ-monoid structure on each hom-set
C(X, Y ) such that for any summable countable families {fi : X → Y }i∈I and
{gj : Y → Z}j∈J , the summation

∑

(i,j)∈I×J gj ◦ fi is defined to be (
∑

j∈J gj) ◦

(
∑

i∈I fi), i.e., the composition distributes over the summations if they exist.
We write 0X,Y : X → Y for the zero element in the Σ-monoid C(X, Y ) and
call 0X,Y a zero morphism. By the definition of M-categories, the composition
of a morphism with a zero morphism is a zero morphism.

ForM-categories C and D, anM-enriched functor (M-functor) F : C → D
is a functor from C to D such that for any X, Y ∈ C, the map F : C(X, Y ) →
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D(FX, FY ) is an M-morphism. We say that F : C → D reflects summability
when F : C(X, Y ) → D(FX, FY ) reflects summability for all X and Y in C.

By symmetric monoidal M-category, we mean an M-category with a sym-
metric monoidal structure on its underlying category. We do not assume that
the symmetric monoidal structure is compatible with the M-enrichment. For
symmetric monoidal M-category C and D, a symmetric monoidal M-functor
from C to D is an M-functor from C to D that is symmetric monoidal.

4.2 Strong unique decomposition categories

We recall the definition of unique decomposition categories in [4], and we give
a subclass of unique decomposition categories.

Definition 4.1 A unique decomposition category is a symmetric monoidalM-
category such that for all i ∈ I, there are morphisms called quasi projections
ρi :

⊗

i∈I Xi → Xi and quasi injections ιi : Xi →
⊗

i∈I Xi subject to the
following axioms:

ρi ◦ ιj =

{

idXi
(i = j)

0Xj ,Xi
(otherwise),

∑

i∈I

ιi ◦ ρi ≃ id⊗
i∈I Xi

.

Definition 4.2 A strong unique decomposition category C is a symmetric
monoidal M-category C such that

• The identity on the unit I is equal to 0I,I.

• idX ⊗ 0Y,Y + 0X,X ⊗ idY is defined to be idX⊗Y .

We say that C is total when every hom-object is a total Σ-monoid.

The class of strong unique decomposition categories forms a subclass of
unique decomposition categories: a strong unique decomposition category has
binary quasi projections and binary quasi injections given as follows:

ρX,Y := X ⊗ Y X ⊗ I X
idX⊗0Y,I

//
∼= // ρ′X,Y := X ⊗ Y I⊗ Y Y

0X,I⊗idY
//

∼= //

ιX,Y := X X ⊗ I X ⊗ Y
∼= //

idX⊗0I,Y
// ι′X,Y := Y I⊗ Y X ⊗ Y

∼= //
0I,X⊗idY

// .

We can similarly define quasi projections and quasi injections for general cases.
It is easy to check that a strong unique decomposition category with the above
morphisms forms a unique decomposition category.

Remark 4.3 As the main point of unique decomposition categories is their
unique decomposition of morphisms into matrices of morphisms via quasi pro-
jections and quasi injections (Proposition 4.0.6 in [4]), it would be better to
employ quasi projections and quasi injections as primal data for strong unique
decomposition categories. We choose the above definition of strong unique
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decomposition categories because of its compactness. At this point, we do
not know “equivalent” definition that employs quasi projections and quasi
injections as primal data, which would consist of a series of equalities that re-
quire quasi projections and quasi injections to be natural and compatible with
monoidal structural isomorphisms. In fact, the above quasi projections and
quasi injections satisfy naturality and compatibility with monoidal structural
isomorphisms; see Proposition 4.8 for the case of total unique decomposition
categories.

Example 4.4 All the examples of unique decomposition categories in [5] are
strong unique decomposition categories. For example, sets and partial injec-
tions, sets and partial maps, sets and relations are strong unique decomposi-
tion categories.

Example 4.5 The opposite category of a strong unique decomposition cate-
gory is a strong unique decomposition category.

Example 4.6 A category C with countable biproducts is a total strong unique
decomposition category, c.f. [4]. For a countable family {fi}i∈I on C(X, Y ),
we define its summation by

∑

i∈I

fi := X
δX //

⊕

i∈I X
⊕

i∈I fi //
⊕

i∈I Y
γX //Y

where δX and γX are the diagonal morphisms. Since the composition dis-
tributes over the summation, we obtain an M-enrichment of C. We take the
finite biproducts as a symmetric monoidal structure of C. By these data, C
forms a strong unique decomposition category. Concrete examples are: sets
and relations, sup-complete lattices and continuous maps, and Mt.

Example 4.7 Let F : C → D be a faithful functor from a symmetric monoidal
category C to a category D with countable biproducts. We say that F : C → D
is downward-closed when for every countable family {fi : X → Y }i∈I on C-
morphisms, if the summation

∑

i∈I Ffi : FX → FY is in the image of F ,
then for every subset J ⊂ I, the summation

∑

i∈J Ffi : FX → FY is also in
the image of F . If the faithful functor F : C → D is downward-closed, then C
forms a strong unique decomposition category: for a countable family {fi}i∈I
on C(X, Y ), we define

∑

i∈I fi to be f when
∑

i∈I Ffi is equal to Ff ; when
∑

i∈I Ffi is not in the image of F , we do not define
∑

i∈I fi.

Proposition 4.8 If a strong unique decomposition category is total, then it
has finite biproducts: the unit is a zero object, and X ⊗ Y with morphisms
(ρX,Y , ρ

′
X,Y , ιX,Y , ι

′
X,Y ) forms a biproduct of X and Y . Furthermore, the sym-

metric monoidal structure coincides with the symmetric monoidal structure
derived from the finite biproducts.

11
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Proof. In every strong unique decomposition category, the unit is a zero
object since the identity on the unit is a zero morphism. When the strong
unique decomposition category is total, (X ⊗ Y, ρX,Y , ρ

′
X,Y ) forms a product

of X and Y , and (X ⊗ Y, ιX,Y , ι
′
X,Y ) forms a coproduct of X and Y . For

f : X → Y and g : Z → W , the tupling 〈f ◦ ρX,Z , g ◦ ρ
′
X,Z〉 is ιY,W ◦ f ◦

ρX,Z + ι′Y,W ◦ g ◦ ρ′X,Z , which is equal to the cotupling [ιY,W ◦ f, ι′Y,W ◦ g].
Hence, (X ⊗ Y, ρX,Y , ρ

′
X,Y , ιX,Y , ι

′
X,Y ) forms a biproduct of X and Y . By the

universality of biproducts, we can check that coherence isomorphisms of the
symmetric monoidal structure of the strong unique decomposition category
coincide with the symmetric monoidal structure derived from the biproducts.✷

5 A representation theorem

For a strong unique decomposition category C, since T is a symmetric monoidal
functor (Corollary 3.9), we can define a new M-category T∗C by the action of
T : objects are objects of C, and T∗C(X, Y ) := T (C(X, Y )). Furthermore, the
unit ηX : X → TX induces an M-functor H : C → T∗C given by HX := X
and Hf := ηC(X,Y )(f) for f : X → Y .

Proposition 5.1 T∗C is a total strong unique decomposition category, and H
is a faithful strong symmetric monoidal M-functor that reflects summability.

Proof. We give a symmetric monoidal structure on the underlying category.
For objects, we employ the symmetric monoidal structure of C. For f : X → Y
and g : Z →W in T∗C, we define f ⊗ g : X ⊗ Z → Y ⊗W to be

HιY,W ◦ f ◦HρX,Z +Hι′Y,W ◦ g ◦Hρ′X,Z .

Functoriality of ⊗ follows from M-enrichment of H . For example,

idX ⊗ idY = H(ιX,Y ◦ ρX,Y + ι′X,Y ◦ ρ′X,Y ) = H(idX⊗Y ) = idX⊗Y .

We can similarly check that ⊗ is compatible with the composition of C. By
M-enrichment of H again, we can check that ⊗ with HλX , HρX , HαX,Y,Z and
HσX,Y provide a symmetric monoidal structure on T∗C where λX : X⊗I → X ,
ρX : I⊗X → X , αX,Y,Z : X⊗(Y ⊗Z) → (X⊗Y )⊗Z and σX,Y : X⊗Y → Y ⊗Z
are the coherence isomorphisms of C. The identity on the unit is the zero
morphism. In fact, H idI = H0I,I = 0I,I. We also have

idX⊗0Y,Y +0X,X⊗idY = HιX,Y ◦HρX,Y +Hι
′
X,Y ◦Hρ

′
X,Y = idX⊗idY = idX⊗Y

in T∗C. Therefore, we see that T∗C is a strong unique decomposition category.
Since T constructs total Σ-monoids, T∗C is total. By the definition of symmet-
ric monoidal structure of T∗C, we see that H is strong symmetric monoidal.
The M-functor H is faithful and reflects summability by Lemma 3.11. ✷
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Since H : C → T∗C is faithful and reflects summability, H completely
characterizes the summation of C-morphisms:

∑

i∈I

fi is defined to be f ⇐⇒ Hf =
∑

i∈I

Hfi in T∗C(X, Y ).

We go a bit farther so as to give an embedding into a category that is more
familiar to us than total strong unique decomposition categories. For a total
strong unique decomposition category A, we define a category B(A) by:

• An object is a countable family on the set of A-objects.

• A morphism f : {Xi}i∈I → {Yj}j∈J is a family {fi,j : Xi → Yj}(i,j)∈I×J .

• The identity id{Xi}i∈I
on {Xi}i∈I and the composition g ◦ f are given by

(

id{Xi}i∈I

)

i,i′
:=

{

idXi
(i = i′)

0Xi,Xi′
(i 6= i′),

(g ◦ f)i,k :=
∑

j∈J

gj,k ◦ fi,j.

B(A) has countable biproducts: a biproducts
⊕

i∈I{Xij}j∈Ji of a countable
family {{Xij}j∈Ji}i∈I is {Xij}(i,j)∈∐i∈I Ji

whose i-th projection and i-th injec-
tion πi :

⊕

i∈I{Xij}j∈Ji ⇆ {Xij}j∈Ji : κi for i ∈ I are given as follows:

πi((i
′, j′), j) :=

{

idXij
((i, j) = (i′, j′))

0Xi′j′ ,Xij
(otherwise),

κi(j, (i
′, j′)) :=

{

idXij
((i, j) = (i′, j′))

0Xij ,Xi′j′
(otherwise).

The induced summation of a countable family {fk : {Xi}i∈I → {Yj}j∈J}k∈K
is pointwise: the (i, j)-th entry of

∑

k∈K fk is
∑

k∈K(fk)i,j. By Example 4.6,
B(A) is a total strong unique decomposition category. A similar construction
appears in [13] called matrix construction.

We define a fully faithful functor K : A → B(A) by KX := {X} and
Kf := {f} where we simply write {x} for a family indexed by a singleton {•}
such that {x}• = x.

Lemma 5.2 K is a fully faithful strong symmetric monoidal M-functor.

Proof. Since summations on hom-sets of B(A) are pointwise, the functor
K preserves summations, i.e., K is an M-functor. K is fully faithful by the
definition. It remains to see that K is strong symmetric monoidal. Since
the symmetric monoidal structure of A is given by the finite biproducts
(Proposition 5.1 and Proposition 4.8), we show that K preserves finite biprod-
ucts. There are canonical morphisms ϕ := 〈KρX,Y , Kρ

′
X,Y 〉 : K(X ⊗ Y ) →

KX ⊕KY and ψ := [KιX,Y , Kι
′
X,Y ] : KX ⊕KY → K(X ⊗ Y ). By the uni-

versality of biproducts and M-enrichment of K, we see that ϕ ◦ψ = idKX⊕KY
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and ψ ◦ ϕ = K(ιX,Y ◦ ρX,Y ) +K(ι′X,Y ◦ ρ′X,Y ) = idK(X⊗Y ). It is easy to check
that KI is a zero object of B(A). ✷

Now, we obtain a representation theorem for strong unique decomposition
categories by composing two embeddings K and H .

Theorem 5.3 For every strong unique decomposition category C, there is a
category D with countable biproducts and a faithful strong symmetric monoidal
M-functor F : C → D that is downward-closed and reflects summability.

Proof. By Proposition 5.1 and Lemma 5.2, for every strong unique decom-
position category C, the category B(T∗C) has countable biproducts, and we
have a faithful strong symmetric monoidal M-functor KH : C → B(T∗C) that
reflects summability. Downward-closedness of KH follows from the axioms of
Σ-monoids and that KH reflects summability. ✷

The faithful functor KH characterizes the Σ-monoid structure on C(X, Y ):

∑

i∈I

fi is defined to be f ⇐⇒ KHf =
∑

i∈I

KHfi.

So as to prove the fundamental property of strong unique decomposition cat-
egories, we construct a trace operator following the argument in [16]. Let D
be a category with countable biproducts. For f : X ⊕ Z → Y ⊕ Z in D, we
define fXY : X → Y , fXZ : X → Z, fZY : Z → Y and fZZ : Z → Z by:

fXY := π0◦f ◦κ0, fXZ := π1◦f ◦κ0, fZY := π0◦f ◦κ1, fZZ := π1◦f ◦κ1.

By Theorem 3 in [16] and the argument in the paper, D has a uniform trace
operator given by

trZX,Y (f) := X
〈X,∞〉

//X ⊕
⊕

i∈NX
X⊕uf

//X ⊕ Z
f

//Y ⊕ Z
π0 // Y

where ∞ : X →
⊕

i∈NX is the diagonal morphism, and uf :
⊕

i∈NX → Z is
the unique morphism such that uf ◦ κi = f i

ZZ ◦ fXZ for each i ∈ N. By simple
calculation, we see that the obtained trace operator is equal to the standard
trace formula: trZX,Y (f) = fXY +

∑

i∈N fZY ◦ f i
ZZ ◦ fXZ .

Corollary 5.4 Every strong unique decomposition category C has a uniform
partial trace operator. If the summation ExZX,Y (f) := fXY +

∑

i∈N fZY ◦ f i
ZZ ◦

fXZ is defined for all X, Y, Z ∈ C and f : X ⊗ Z → Y ⊗ Z, then Ex is a
uniform trace operator of C.

Proof. By the above argument, B(T∗C) has a uniform trace operator given
by the standard trace formula. Since KH : C → B(T∗C) is strong monoidal
and reflects summability, Ex provides a uniform partial trace operator of C.

14
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If ExZX,Y (f) is defined for all X, Y, Z ∈ C and f : X ⊗ Z → Y ⊗ Z, then by
the definition of trace operators, Ex is a trace operator of C. ✷
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A Proofs

Proposition A.1 M and Mt are small complete, and the inclusion U :
Mt → M preserves small limits.

Proof. A Σ-monoid {0} with the unique total summation is a terminal object.
For Σ-monoids X and Y , we define a Σ-monoid X × Y by

∑

i∈I

(xi, yi) :=

{

(
∑

i∈I xi,
∑

i∈I yi) ({xi}i∈I and {yi}i∈I are summable)

undefined (otherwise).

The Σ-monoid X × Y with the standard projections forms a product of X
and Y . We can generalize this construction to small products. For parallel
morphisms f, g : X ⇒ Y in M, since E := {x ∈ X | fx = gx} is closed
under the summation of X , the set E inherits the Σ-monoid structure of X .
The obvious inclusion from E to X forms an equalizer of f and g. We can
restrict these limits to Mt. Hence, Mt is small complete, and the inclusion U
preserves small limits. ✷

Proposition A.2 (Proposition 3.5) A functor M(X, Y ;−) : M → Set is
representable.

Proof. M(X, Y ;−) preserves small limits. We define S to be the set of Σ-
monoids whose underlying sets are quotients of subsets of (X×Y )∗. We show
that S satisfies the solution set condition: for any 2-linear map f : X × Y →
W , there exist a 2-linear map s : X × Y → A and a morphism h : A→W for
some A ∈ S such that f = h ◦ s. We define a subset Z ⊂ (X × Y )∗ by

Z :=
{

{zi}i∈I ∈ (X × Y )∗
∣

∣ {fzi}i∈I is summable
}

,

and we define a map p from Z to W by p{zi}i∈I :=
∑

i∈I fzi. Let A be the

quotient of Z by an equivalence relation {zi}i∈I ≈ {z′j}j∈J
def

⇐⇒ p{zi}i∈I =
p{z′j}j∈J on Z. Since the image of p is closed under the summation of W , the
Σ-monoid structure of W induces a Σ-monoid structure of A, and we obtain
a Σ-morphism h : A → W given by h[{zi}i∈I ] :=

∑

i∈I fzi where [{zi}i∈I ] is
the equivalence class of {zi}i∈I . The morphism h is monic, and a countable
family {ai}i∈I on A is summable if and only if a countable family {hai}i∈I is
summable. Since the image of f : X × Y → W is in the image of h, there is
a map s : X × Y → A such that f = h ◦ s. Since f is 2-linear, s is 2-linear.
Therefore, S satisfies the solution set condition. Since M is small complete,
M(X, Y ;−) is representable by the adjoint functor theorem. ✷

Lemma A.3 For Σ-monoids X and Y , the set of M-morphisms [X, Y ] :=
M(X, Y ) with a summation on [X, Y ] given by (1) is a Σ-monoid.

16



Hoshino

Proof. By the definition (1),
∑

i∈{n} fi is defined to be fn. Let {Ij}j∈J be a
countable partition of a countable set I. Then

∑

i∈I

fi ≃ λx.
∑

j∈J

∑

i∈Ij

fix ≃ λx.
∑

j∈J









∑

i∈Ij

fi



x



 ≃
∑

j∈J





∑

i∈Ij

fi



 .

If {xj}j∈J is a summable countable family on X , then

(

∑

i∈I

fi

)(

∑

j∈J

xj

)

=
∑

i∈I

fi

(

∑

j∈J

xj

)

=
∑

i∈I

∑

j∈J

fixj =
∑

j∈J

∑

i∈I

fixj =
∑

j∈J

(

∑

i∈I

fi

)

xj .

✷

Lemma A.4 We have the following bijections natural in X1, · · · , Xn:

M(X ; Y ) ∼= M(I ;[X, Y ])

M(X1, · · · , Xn, X ; Y ) ∼= M(X1, · · · , Xn ;[X, Y ])

M(X1, · · · , Xn ; Y ) ∼= M(Xσ1, · · · , Xσn ;Y )

where σ is a permutation on {1, 2, · · · , n}.

Proof. The first and the second bijection is given by currying and uncurrying.
The third bijection is easy to check. ✷

By Proposition A.2, there exists a universal 2-linear map p : X × Y →
X ⊗ Y : for any 2-linear map f : X × Y → Z, there exists a unique morphism
h : X ⊗ Y → Z such that h ◦ p = f . Generally, by Lemma A.4, we can
inductively show that for every bracketing of X1⊗· · ·⊗Xn and X1×· · ·×Xn,
there exists a universal n-linear map pn : X1 × · · · × Xn → X1 ⊗ · · · ⊗ Xn:
for any n-linear map f : X1 × · · · ×Xn → Z there exists a unique morphism
h : X1 ⊗ · · · ⊗Xn → Z such that h ◦ pn = f .

We define a symmetric monoidal structure on M. We extend ⊗ to a
bifunctor as in the diagram (1), and we define coherence morphisms to be the
unique morphisms in the following diagrams (2), (3), (4) and (5).

X ⊗ Y
f⊗g

//X ′ ⊗ Y ′

(1)

X × Y

p

OO

f×g
//X ′ × Y ′

p

OO X ⊗ I
(2)

λ //X

X × I

p

OO

l

;;
①①①①①①①①①

I⊗X
(3)

ρ
//X

I×X

p

OO

r

;;
①①①①①①①①①
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X ⊗ (Y ⊗ Z) α //

(4)

(X ⊗ Y )⊗ Z

X × (Y × Z)

p3

OO

∼=
// (X × Y )× Z

p3

OO
X ⊗ Y σ //Y ⊗X

(5)

X × Y

p

OO

∼=
//Y ×X

p

OO

where

l(x, y) :=







x (y = 1)

0 (y = 0),
r(x, y) :=







y (x = 1)

0 (x = 0).

Proposition A.5 (Proposition 3.6) (M, I,⊗, [−,−]) with the above mor-
phisms λ, ρ, α, and σ forms a symmetric monoidal closed category.

Proof. By the universality of ⊗, we obtain a symmetric monoidal category
(M, I,⊗). By Lemma A.4, we see that [−,−] forms a closed structure. ✷

B An example of a unique decomposition category

We give an example of a unique decomposition category that do not satisfy
Proposition 1.1. Existence of such an example means that we need some as-
sumptions on unique decomposition categories so as to prove Proposition 1.1.

Let G be a group. We define a category Rel(G) by: objects are sets, and
a morphism f : X → Y is a map f : X × Y → 2G. For f : X → Y and
g : Y → Z in Rel(G), the composition g ◦ f : X → Z is given by

(g ◦ f)(x, z) := {ba | ∃y ∈ Y. a ∈ f(x, y) ∧ b ∈ g(y, z)},

and we define the identity idX : X → X by

idX(x, x
′) :=

{

{e} (x = x′)

∅ (x 6= x′).

Rel(G) has a symmetric monoidal structure: the monoidal product X ⊗ Y is
the set theoretic coproduct X + Y , and f ⊗ g : X ⊗ Z → Y ⊗W is given by

f ⊗ g(u, v) =











f(x, y) (u = inl(x), v = inl(y))

g(z, w) (u = inr(z), v = inr(w))

∅ (otherwise).

We define a total Σ-monoid structure onRel(G)(X, Y ) by the pointwise union:
(
∑

i∈I fi
)

(x, y) :=
⋃

i∈I fi(x, y). We fix an element g ∈ G and define quasi
projections ρi :

⊗

i∈I Xi → Xi and quasi injections ιi : Xi →
⊗

i∈I Xi by

ρi(w, x) :=

{

{g−1} (w = inji(x))

∅ (otherwise),
ιi(x, w) :=

{

{g} (w = inji(x))

∅ (otherwise),
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where inji is the i-th injection of Xi into
⊗

i∈I Xi.

Proposition B.1 Rel(G) is a unique decomposition category.

Proposition B.2 The execution formula defined with respect to the above
quasi projections and quasi injections is not a trace operator.

Proof. We suppose that the group G has an element a such that gag−1 6= a.
For example, the symmetric group Sn has such a and g. Let fa : {∗} ⊗ ∅ →
{∗} ⊗ ∅ be a Rel(G)-morphism given by (∗, ∗) 7→ {a}. By the definition of

the execution formula,
(

Ex∅{∗},{∗}(fa)
)

(∗, ∗) is equal to {gag−1}. However, if

Ex is a trace operator, then
(

Ex∅{∗},{∗}(fa)
)

(∗, ∗) must be equal to {a}. ✷

Remark B.3 The point in the above argument is naturality of quasi projec-
tions and quasi injections.

C Universality of the embedding KH : C → B(T∗C)

Several reviewers pointed universality of our embedding KH : C → B(T∗C).
In fact, KH has a universal property. In the following, we discuss universality
of K and H separately. Universality of KH follows from universality of the
two functors.

Definition C.1 Let C andD beM-categories. For strong symmetric monoidal
M-functors F,G : C → D, a monoidal M-natural transformation α : F → G
is an M-natural transformation α : F → G that is monoidal natural with
respect to the structures of the underlying symmetric monoidal functors F
and G.

We introduce 2-categories B, U and T:

U :=











unique decomposition categories

strong symmetric monoidal M-functors

monoidal M-natural transformations











,

T :=











total unique decomposition categories

strong symmetric monoidal M-functors

monoidal M-natural transformations











,

B :=











categories with countable biproducts

countable biproducts preserving functors

natural transformations











.
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As we observed in Example 4.6, all objects in B are objects in T. With
respect to these structures of unique decomposition categories, we have an
inclusion functor I : T → U. We write J for the inclusion functor from B

to T.

C.1 Universality of H : C → T∗C

We show that the inclusion functor I : T → U has a 2-left adjoint functor,
and the unit of the 2-adjunction is H : C → T∗C. So as to prove the statement,
we define a functor

(−) : U(C,D) → T(T∗C,D)

for C ∈ U and D ∈ T.

First, for F ∈ U(C,D), we define an M-functor F : T∗C → D as follows:

• For X ∈ T∗C, we define FX to be FX .

• We define F : T∗C(X, Y ) → D(FX, FY ) to be

F : T∗C(X, Y )
TF
−→ T∗D(FX, FY )

∼=
−→ D(FX, FY ).

It is easy to check that F ◦H = F . Let mX,Y : FX ⊗ FY → F (X ⊗ Y ) and
n : I → F I be the coherence isomorphisms for the monoidal functor F . To
show that F with m and n forms a symmetric monoidal functor, it is enough
to show that naturality of m. As we defined in the proof of Proposition 5.1,
for f ∈ T∗C(X,X

′) and g ∈ T∗C(Y, Y
′), the monoidal product f ⊗ g is

H(ιX′,Y ′) ◦ f ◦H(ρX,Y ) +H(ι′X′,Y ′) ◦ g ◦H(ρ′X,Y ).

Since F is M-enriched and F ◦H = F , we have

m−1
X′,Y ′ ◦ F (f ⊗ g) ◦mX,Y = m−1

X′,Y ′ ◦ FHιX′,Y ′ ◦ Ff ◦ FHρX,Y ◦mX,Y

+m−1
X′,Y ′ ◦ FHι′X′,Y ′ ◦ Fg ◦ FHρ′X,Y ◦mX,Y

= m−1
X′,Y ′ ◦ FιX′,Y ′ ◦ Ff ◦ FρX,Y ◦mX,Y

+m−1
X′,Y ′ ◦ Fι

′
X′,Y ′ ◦ Fg ◦ Fρ′X,Y ◦mX,Y

= ιFX′,FY ′ ◦ Ff ◦ ρFX,FY + ι′FX′,FY ′ ◦ Fg ◦ ρ′FX,FY

= Ff ⊗ Fg.

Hence, m is natural.

Next, for α : F → G in U(C,D), we define αX : FX → GX to be
αX : FX → GX . Since the outer rectangle below commutes, the inner
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rectangle also commutes by the universality of H . Therefore, α is natural.

D(FX, FY )
(αY )∗

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

C(X, Y ) H //

F
11

G

--

T∗C(X, Y )

F

77♥♥♥♥♥♥♥♥♥♥♥♥

G

((P
PP

PP
PP

PP
PP

P
D(FX,GY )

D(GX,GY )
(αX)∗

66♠♠♠♠♠♠♠♠♠♠♠♠

Furthermore, α is monoidal since α is monoidal. Now, we obtain a functor
(−) : U(C,D) → T(T∗C,D).

Theorem C.2 The inclusion functor I : T → U is a 2-right adjoint functor,
whose unit is H : C → T∗C.

Proof. By the universality of T , we see that (−) is the inverse of (−) ◦H on
1-cells. On 2-cells, it is easy to check that (−) is the inverse of (−) ◦H since
both functors does almost nothing on data. ✷

C.2 Universality of K : A → B(A)

Theorem C.3 The inclusion functor J : B → T has a left biadjoint, whose
unit is K : A → B(A).

Proof. For A ∈ T and D ∈ B, we show that

(−) ◦K : B(B(A),D) → T(A,D)

is essentially surjective and fully faithful. Given F : A → D in T, we define
F ′ : B(A) → D in B by

• F ′{Xi}i∈I :=
⊕

i∈I FXi

• F ′f : F ′{Xi}i∈I → F ′{Yj}j∈J is a unique morphism such that

πj ◦ F
′f ◦ ιi = fij

for i ∈ I and j ∈ J . Recall that f : {Xi}i∈I → {Yj}j∈J is a family of
morphisms of the form {fij}i∈I,j∈J .

By the definition of F ′, we have F ′K ∼= F , i.e., (−)◦K is essentially surjective.

Next, we show faithfulness on 2-cells. For α : F → G : B(C) → D, since
F and G preserve biproducts, we have the following commutative diagram:

FXi

αXi //

ιi

��

Fιi

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
GXi

Gιi

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

δij
//GXj

⊕

i∈I FXi ∼=
//F{Xi}i∈I α

//G{Xi}i∈I ∼=
//

Gπj

77♣♣♣♣♣♣♣♣♣♣♣♣
⊕

j∈I GXi

πj

OO
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where δij is equal to 0 when i 6= j and is equal to id when i = j. Therefore,
α is completely determined by α ∗K.

It remains to show fullness. Let α : F ◦K → G ◦K be a 2-cell in T. We
define α′ : F → G to be

α′
{Xi}i∈I

:= F{Xi}i∈I
⊕

i∈I FXi

⊕

i∈I GXi G{Xi}i∈I
∼= //

⊕
i∈I αXi //

∼= // .

Since the outer rectangle below commutes for all i and j, the inner rectangle
commutes.

FXi

F ιi
��

αXi //

Ffij

!!

GXi

Gιi
��

Gfij

}}

F{Xi}i∈I

Ff

��

α′

X //G{Xi}i∈I

Gf

��

F{Yj}j∈J

Fπj

��

α′

Y //G{Yj}j∈J

Gπj

��

FYj αYj

//GYj

Hence α′ is natural, and we obtain a 2-cell α′ : F → G. It is easy to see that
α = α′ ∗H . ✷

Corollary C.4 The inclusion J ◦ I : B → U has a left biadjoint, whose
unit is KH : C → B(T∗C).
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