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Generalities on von Neumann algebras

A von Neumann (vN) algebra is a *-algebra of operators acting on a

Hilbert space, M C B(H), that contains 1 = idy and satisfies any of the
following equivalent conditions:

1 M is closed in the weak operator (wo) topology.
2 M is closed in the strong operator (so) topology.
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following equivalent conditions:

1 M is closed in the weak operator (wo) topology.
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Examples.(a) If S = §* C B(H), then the commutant (or centralizer) of S
in B(H), S" :={y € B(H) | yx = xy,Vx € S}, satisfies 2 above, so it is a
vN algebra; (b) if p € P(M), then pMp C B(p(H)) is vN algebra.
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Generalities on von Neumann algebras

A von Neumann (vN) algebra is a *-algebra of operators acting on a
Hilbert space, M C B(H), that contains 1 = idy and satisfies any of the
following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If S = §* C B(H), then the commutant (or centralizer) of S
in B(H), S" :={y € B(H) | yx = xy,Vx € S}, satisfies 2 above, so it is a
vN algebra; (b) if p € P(M), then pMp C B(p(H)) is vN algebra.

e von Neumann’s Bicommutant Theorem shows that M C B(H)
satisfies the above conditions iff M = (M') = M".

e Kaplansky Density Theorem shows that if M C B(H) is a vN algebra
and My C M is a *-sublgebra that's wo-dense in M, then (I\/Io)lso = (M);.

e A vN algebra M is closed to polar decomposition and Borel functional
calculus. Also, if {x;}; C (My)1 is an increasing net, then sup; x; € M,

and if {p;}; C M are mutually orthogonal projections, then >, p; € M.
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e B(H) itself is a vN algebra.

e Let (X, ) be a standard Borel probability measure space (pmp). Then
the function algebra LX = L*°(X, u) with its essential sup-norm || ||co,
can be represented as a *-algebra of operators on the Hilbert space

[?X = L%(X, ), as follows: for each x € L®X, let A(x) € B(L?X) denote
the operator of (left) multiplication by x on L2X, i.e., A\(x)(§) = x&,

V&€ € 12X. Then x +— A(x) is clearly a *-algebra morphism with
IAC)NIB12x) = lIX]lo, Vx. Its image A C B(L2X) satisfies A" = A, in
other words A is a maximal abelian *-subalgebra (MASA) in B(L2X).

Indeed, if T € A’ then let £ = T(1) € L°X. Denote by A(€) : L2X — L1X
the operator of (left) multiplication by &, which by Cauchy-Schwartz is
bounded by ||¢]]2. But T : L2X — L2X C L'X is also bounded as an
operator into L1X, and A(&), T coincide on the || ||2-dense subspace
L>®X C L?X (Exercise!) Thus, A\(€) = T on all L2, forcing £ € L>®X
(Exercisel).

This shows that A is a vN algebra (by vN's bicommutant thm). e



A key example: the hyperfinite Il; factor

A vN algebra M is called a factor if its center, Z(M) := M’ N M, is trivial,
Z(M) =

e Let Ry be the algebraic infinite tensor product M(C)®, viewed as
inductive limit of the increasing sequence of algebras M (C) = M(C)®"
via the embeddings x — x ® Iy,. Endow Ry with the norm

Ix|| = |Ix||myn. if X € Man C Rg, which is clearly a well defined operator
norm, i.e., satisfies || x*x|| = ||x||2. One also endows Ry with the functional
7(x) = Tr(x)/2", for x € M, which is well defined, positive

(T(x*x) > 0,Vx) and satisfies 7(xy) = 7(yx),Vx,y € Ry, 7(1) =1, i.e., it
is a trace state. Define the Hilbert space L2(Ry) as the completion of Ry
with respect to the Hilbert-norm ||y||2 = 7(y*y)'/?, y € Ry, and denote
Ry the copy of Ry as a subspace of L?(Rp).

For each x € Ry define the operator A\(x) on L2(Ro) by A\(x)(¥) = Xy,

Yy € Ry. Note that Ry > x — A(x) € B(L? ) is a *-algebra morphism with
IAGAN = [Ix]l, ¥x. Moreover, (A(x)(1),1),2 = 7(x).

B(
1
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One similarly defines p(x) to be the operator of right multiplication by x
on L2(Ry), for which we have [A(y), p(x)] =0, ¥x,y € Ro.
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One similarly defines p(x) to be the operator of right multiplication by x
on L2(Ry), for which we have [A(y), p(x)] =0, ¥x,y € Ro.

One can easily see that the vN algebra R := A(Ro) " = A(Ro)  is a factor
(Exercise!). It can alternatively be defined by R = p(Ry)’ (Exercise!). This
is the hyperfinite Il; factor.

5/63
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One can easily see that the vN algebra R := A(Ro) " = A(Ro)  is a factor
(Exercise!). It can alternatively be defined by R = p(Ry)’ (Exercise!). This
is the hyperfinite Il; factor.

Yet another way to define R is as the completion of Ry in the topology of
convergence in the norm ||x||2 = 7(x*x)%/? of sequences that are bounded
in the operator norm (Exercise!). Notice that, in both definitions, 7
extends to a trace state on R. Note also that if one denotes by Dy C Ry
the natural “diagonal subalgebra” (...), then (Do, 7|p,) coincides with the
algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, 7p), is just (L*°([0,1]), [ du).
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convergence in the norm ||x||2 = 7(x*x)%/? of sequences that are bounded
in the operator norm (Exercise!). Notice that, in both definitions, 7
extends to a trace state on R. Note also that if one denotes by Dy C Ry
the natural “diagonal subalgebra” (...), then (Do, 7|p,) coincides with the
algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, 7p), is just (L*°([0,1]), [ du).

Note that (Rp, 7) (and thus R) is completely determined by the sequence
of partial isometries vi = e, v, = (M7 eb,)el,, n > 2, with p, = v,V
satisfying 7(p,) =27 " and p, ~ 1 — >, p; (Exercise!)
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Finite factors: some equivalent characterizations

Let M be a vN factor. The following are equivalent:

1° M is a finite vN algebra, i.e., if p € P(M) satisfies p ~ 1 = 1y, then
p =1 (any isometry in M is necessarily a unitary element).

2° M has a trace state 7 (i.e., a functional 7 : M — C that's positive,
T(x*x) > 0, with 7(1) = 1, and is tracial, 7(xy) = 7(yx),Vx,y € M).
3° M has a trace state 7 that's completely additive, i.e.,

T(Xipi) = Xit(pi), Y{pi}i € P(M) mutually orthogonal projections.
4° M has a trace state 7 that's normal, i.e., 7(sup; x;) = sup; 7(x;),
V{xi}i C (M4)1 increasing net.

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a
unique trace state 7, which is automatically normal and faithful,
and satisfies co{uxu™* | v € U(M)} N C1 = {7(x)1}, Vx € M.
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Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(ézl), for some /.
Moreover, if M = B(Ezl), then the following are eq.:

1° M has a trace.
2° || < 0.
3° M is finite, ie. ue M, t*u=1= uu* =1

Proof. Exercise.
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Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(¢2]), for some /.
Moreover, if M = B(Ezl), then the following are eq.:

1° M has a trace.
2° || < 0.
3° M is finite, ie. ue M, t*u=1= uu* =1

Proof. Exercise.

Lemma 2

If M is finite then:

(a) p,ge P(M),p~q=1-p~1—gq.
(b) pMp is finite Vp € P(M), i.e., g € P(M), g < p, g ~ p, then g = p.

Proof. Use the comparison theorem (Exercise).
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Lemma 3

If M vN factor with no atoms and p € P(M) is so that dim(pMp) = oo,
then 3Py, Py € P(M), Py ~ P1, Py + P1 = p.

Proof. Consider the family F = {(p?,p}),- | with p?,pj-l all mutually
orthogonal < p such that p? ~ p,-l, Vi}, with its natural order. Clearly
inductively ordered. If (p?, p});c/ is a maximal element, then
Po=3;p2 P1 =3, p} will do (for if not, then the comparison Thm.
gives a contradiction).
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Lemma 3

If M vN factor with no atoms and p € P(M) is so that dim(pMp) = oo,
then 3Py, Py € P(M), Py ~ P1, Py + P1 = p.

Proof. Consider the family F = {(p?,p}),- | with p?,pj-l all mutually
orthogonal < p such that p? ~ p,-l, Vi}, with its natural order. Clearly
inductively ordered. If (p?, p});c/ is a maximal element, then
Po=3;p2 P1 =3, p} will do (for if not, then the comparison Thm.
gives a contradiction).

Lemma 4

If M is a factor with no minimal projections, then 3{p,}, C P(M)
mutually orthogonal such that p, ~1—>"" , p;, Vn.

Proof. Apply L3 recursively.
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Lemma 5

If M is a finite factor and {pp}, C P(M) are as in L4, then:

(a) If p < pp, Vn, then p = 0. Equivalently, if p # 0, then 3n such that
pn < p. Moreover, if n is the first integer such that p, < p and p}, < p,
Pp ~ Pn, then p — pj, < pp.

(b) If {gn}n C P(M) increasing and g, < g € P(M) and q — qn < pn, Vn,
then g, ' q (with so-convergence).

(C) Zn Pn = L.

Proof. If p =~ pj, < p,, ¥n, then P =" pj, and Po = >, p,; satisfy
Py < P and Py ~ P, contradicting the finiteness of M. Rest is Exercise!
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Proof. If p =~ pj, < p,, ¥n, then P =" pj, and Po = >, p,; satisfy
Py < P and Py ~ P, contradicting the finiteness of M. Rest is Exercise!

Lemma 6

Let M be a finite factor without atoms. If p € P(M), #£ 0, then 3 a
unique infinite sequence 1 < n; < np < ... such that p decomposes as

P = _4>1 Pn, for some {p;, }x C P(M) with p, ~ py,, k.

Proof. Apply Part (a) of L5 recursively (Exercise!).
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.

dim satisfies the conditions:
(a) dim(p,) = 27"
(b) If p, g € P(M) then p ~ q iff dim(p) < textdim(q)

(c) dim is completely additive: if g; € P(M) are mutually orthogonal,
then dim():,-q;) = Z,-dim(q,-).

Proof: Exercisel.
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.

Lemma 7

dim satisfies the conditions:

(a) dim(pp) =27"

(b) If p, g € P(M) then p ~ q iff dim(p) < textdim(q)

(c) dim is completely additive: if g; € P(M) are mutually orthogonal,
then dim(X;q;) = X;dim(q;).

Proof:- Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let ¢, : P(M) — [0, 1] be completely additive functions, ¢ # 0, and
e > 0. There exists p € P(M) with dim(p) = 27" for some n > 1, and
0 > 0, such that 6p(q) < ¥(q) < (1 +¢)0¢p(q), Yq € P(pMp).
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Proof. Denote F = {p | In with p ~ p,}. Note first we may assume ¢
faithful: take a maximal family of mutually orthogonal non-zero
projections {e;}; with ¢(ej) =0, Vi, then let f =1 — %", e; # 0 (because
©(1) # 0); it follows that ¢ is faithful on fMf, and by replacing with some
fo < fin F, we may also assume f € F. Thus, proving the lemma for M
is equivalent to proving it for fMf, which amounts to assuming ¢ faithful.
If 9 = 0, then take § = 0. If ¢ # 0, then by replacing ¢ by (1) "1y and
1 by (1)1, we may assume (1) = 9(1) = 1. Let us show this implies:

(1) 3g € F, s.t. Vgo € F, go < g, we have p(go) < 1(go). For if not then
(2) Vg € F,3go € F, g0 < g s.t. v(go) > ¥(go).

Take a maximal family of mut. orth. projections {g;}; C F, with

o(gi) > Y(gi) Vi If1 =58 #0, thentake g € F, g <1-> . g (cf.

L5) and apply (2) to get go < g, go € F with p(go) > (o),
contradicting the maximality. Thus,

1= sO(Z g) = Zw(gi) > Zi/}(gi) = %Z)(Z g)=v(1) =1,

a contradiction. Thus, (1) holds true.
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Define 6 = sup{¢' | ¢'(go) < ¥(g0), Vg0 < g, 80 € F}-

Clearly 1 < 60 < oo and f¢(go) < ¥(go), Vg0 < g,80 € F. Moreover, by
def. of 6, there exists go € F, go < g, s.t., 0p(go) > (1 +¢) " 9(go).

We now repeat the argument for ¢ and (1 + )¢ on goMgp, to prove that
(3) 3g’ € F, g’ < go, such that for all gj € F, g} < go, we have

1(g9) < O(1 + 2)¢(gp)-

Indeed, for if not, then

(4)Vg' € F. g’ < go, gy < g’ in F s.t. ¥(gg) > 0(1 +€)(gy).

But then we take a maximal family of mutually orthogonal g/ < go in F,
s.t. ¥(g!) > 60(1 +¢<)p(g!), and using L5 and (4) above we get

Y. & = go. This implies that ¢(go) > 6(1 + €)¢(go0) > (&), a
contradiction. Thus, (3) above holds true for some g’ < gp in F . Taking
p =g, we get that any g € F under p satisfies both 6¢(q) < 1(q) and
¥(q) < 6(1+¢)p(q). By complete additivity of ¢, and L6, we are done.
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We now apply L8 to ¢ = dim and ¢ a vector state on M C B(H), to get:

Ve > 0, 3p € P(M) with dim(p) = 2" for some n > 1, and a vector
(thus normal) state ¢ on pMp such that, Vg € P(pMp), we have
(1+¢)"wo(q) < dim(q) < (1 +¢)po(q)-

Proof: trivial by L8
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We now apply L8 to 1) = dim and ¢ a vector state on M C B(H), to get:

Lemma 9

Ve > 0, 3p € P(M) with dim(p) = 27" for some n > 1, and a vector
(thus normal) state ¢g on pMp such that, Vq € P(pMp), we have
(1+¢)"wo(q) < dim(q) < (1 +¢)po(q)-

Proof: trivial by L8

Lemma 10

With p, ¢g asin L9, let vi = p, v, ..., von € M such that v;v;* = p,
Yoivivi=1. Let p(x) := 2,2”1 wo(vixvi), x € M. Then ¢ is a normal
state on M satisfying p(x*x) < (1 + &)p(xx*), Vx € M.

Proof. Note first that @o(x*x) < (14 €)po(xx*), ¥x € pMp (Hint: do it
first for x partial isometry, then for x with x*x having finite spectrum). To
deduce the inequality for ¢ itself, note that 3 _; v/'v; = 1 implies that for
any x € M we have

x) =Y wo(vix* (D viv)xvi) Zcpo vix* v ) (vjxv;))
i J
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<1+ a)Zcpo((vjxv,-)(v,-x*vj*)) =...=(1+¢)p(xx").
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<1+ a)Zcpo((vjxv,-)(v,-x*vj*)) =...=(1+¢)p(xx").

Lemma 11
If isa state on M that satisfies p(x*x) < (1 + &)p(xx*), Vx € M, then
(1+e)e(p) < dim(p) < (1+¢)¢(p), ¥p € P(M).

Proof. By complete additivity, it is sufficient to prove it for p € F, for
which we have for vi, ..., von as in L10 ¢(p) = ¢(vi'vj) < (1 +)p(v;v)),
Vj, so that

2"p (1+¢) Zcp(vJ = (1+ ¢)2"dim(p)

and similarly 2"dim(p) =1 < (1 +€)2"¢(p).
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Proof of Thm A

Define 7 : M — C as follows. First, if x € (M) then we let

T(x) = 7(Xp27"ey) = £,27"dim(ep), where x = ¥,27 "¢, is the (unique)
dyadic decomposition of 0 < x < 1. Extend 7 to M, by homothety, then
further extend to My, by 7(x) = 7(xy) — 7(x_), where for x = x* € Mp,
X = x4 — x_ is the dec. of x into its positive and negative parts.

Finally, extend 7 to all M by 7(x) = 7(Rex) + i7(Imx).
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Proof of Thm A

Define 7 : M — C as follows. First, if x € (M) then we let

T(x) = 7(Xp27"ey) = £,27"dim(ep), where x = ¥,27 "¢, is the (unique)
dyadic decomposition of 0 < x < 1. Extend 7 to M, by homothety, then
further extend to My, by 7(x) = 7(xy) — 7(x_), where for x = x* € Mp,

X = x4 — x_ is the dec. of x into its positive and negative parts.

Finally, extend 7 to all M by 7(x) = 7(Rex) + i7(Imx).

By L11, Ve > 0, Jp normal state on M such that |7(p) — ¢(p)| <&,

Vp € P(M). By the way 7 was defined and the linearity of ¢, this implies
I7(x) — o(x)| < e, Vx € (My)1, and thus |7(x) — p(x)| < 4e, Vx € (M);.
This implies |7(x + y) — 7(x) — 7(y)| < 8¢, Vx,y € (M);. Since e >0
was arbitrary, this shows that 7 is a linear state on M.

By definition of 7, we also have 7(uxu*) = 7(x), Vx € M, u € U(M), so T
is a trace state. From the above argument, it also follows that 7 is a norm
limit of normal states, which implies 7 is normal as well.
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Finite v\ algebras

Theorem A’

Let M be a vN algebra that's countably decomposable (i.e., any family of
mutually orthogonal projections is countable). The following are
equivalent:

1° M is a finite vN algebra, i.e., if p € P(M) satisfies p ~ 1 = 1y, then
p =1 (any isometry in M is necessarily a unitary element).

2° M has a faithful normal (equivalently completely additive) trace state 7.
Moreover, if M is finite, then there exists a unique normal faithful central
trace, i.e., a linear positive map ctr : M — Z(M) that satisfies

ctr(1) =1, ctr(zixzp) = zictr(x)za, ctr(xy) = ctr(yx), x,y € M, z; € Z.

Any trace 7 on M is of the form 7 = g o ctr, for some state ¢y on Z.
Also, co{uxu*™ | u e UM)} N Z = {ctr(x)}, Vx € M.

Proof of 2° = 1°: If 7 is a faithful trace on M and u*u = 1 for some
ue M, then 7(1 —wu*)=1—-7(uu*) =1—7(v*u) =0, thus uu* = 1.
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LP-spaces from tracial algebras

e A *-operator algebra My C B(#) that's closed in operator norm is called
a C*-algebra. Can be described abstractly as a Banach algebra My with a
*_operation and the norm satisfying the axiom ||x*x|| = ||x||?, Vx € M.

e If My is a unital C*-algebra and 7 is a faithful trace state on Mp, then
for each p > 1, ||x||, = 7(|x|P)}/P, x € Mp, is a norm on Mp. We denote
LP Mg the completion of (Mo, || ||5). One has ||x||, < ||x|lq.

V1< p<qg< oo, thus LPMy D LIMy.

Note that L2Mp is a Hilbert space with scalar product (x, y), = 7(y*x).
The map My 3 x — A(x) € B(L?) defined by \(x)(§) = %y is a *-algebra
isometric representation of Mg into B(L?) with 7(x) = (\(x)1,1)..
Similarly, p(x)(¥) = yx defines an isometric representation of (Mp)°P on
L2M0. One has [)\(Xl),p(Xg)] =0, VX,' < Mo.

More generally, [1x|| = sup{||xylly | ¥l < 1}. Also,

llyllz = sup{|7(xy)| | x € (M)1}. In particular, T extends to L' M.

Exercise!
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Abstract characterizations of finite vN algebras

Let (M, 7) be a unital C*-algebra with a faithful trace state. The following
are equivalent:

1° The image of A : M — B(L2(M, 7)) is a vN algebra (i.e., is wo-closed).
2° A\(M) = p(M)’ (equivalently, p(M) = A(M)’).

3° (M); is complete in the norm ||x||2,-.

4° As Banach spaces, we have M = (L}(M, 7))*, where the duality is
given by (M, L1M) 3 (x, Y) — 7(xY).

Proof. One uses similar arguments as when we represented L*°([0,1]) as a
vN algebra and as in the construction of R (Exercise!).
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Il; factors: definition and basic properties

An oo-dim finite factor M (so M # M,,(C), Vn) is called a Il; factor.

e R is a factor, has a trace, and is co-dimensional, so it is a |l; factor.

e The construction of the trace on a non-atomic factor satisfying the
finiteness axiom in Thm A is based on splitting recursively 1 dyadically into
equivalent projections, with the underlying partial isometries generating
the hyperfinite Il; factor R. Thus, R embeds into any ll; factor.

e If AC M is a maximal abelian *-subalgebra (MASA) in a Il; factor M,
then A is diffuse (i.e., it has no atoms).

e The (unique) trace 7 on a ll; factor M is a dimension function on P(M),
i.e., 7(p) = 7(q) iff p ~ q, with 7(P(M)) = [0, 1] (continuous dimension).

e E:

e If B C Mis vN alg, the orth. projection eg : [°M — B
positive on M = M, so it takes M onto B, implementing a cond. expect.

Eg : M — B that satisfies 7 o Eg = 7. It is unique with this property.
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Finite amplifications of Il; factors

e If n > 2 then M,(M) = M,(C) ® M is a Il factor with trace state
T((xi)i) = 220 m(xi)/n, Y(x;)ij € Mn(M).

e If 0 # p € P(M), then pMp is a ll; factor with trace state 7(p) 17,
whose isomorphism class only depends on 7(p).

e Given any t >0, let n > t and p € P(M,(M)) be so that 7(p) = t/n.
We denote the isomorphism class of pM,(M)p by M* and call it the
amplification of M by t (Exercise: show that this doesn't depend on the
choice of n and p.)

e We have (M®)f = M*t, Vs, t > 0 (Exercise). One denotes
F(M)={t>0]| M* ~ M}. Clearly a multiplicative subgroup of R,
called the fundamental group of M. It is an isom. invariant of M.
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oo-amplifications, Il factors and semifinite vN alg

If M; € B(H;), i = 1,2, are vN algebras, then Mi@M, C B(H1®H2)
denotes the vN alg generated by alg tens product My @ M, C B(H1®H>).
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denotes the vN alg generated by alg tens product My @ My C B(H1®H>).
e If (M, ) is tracial (finite) vN algebra, then

M = MRB(#?S) C B(L2M®¢2S) is a vN algebra with the property

dpi 1 projections such that p; Mp; is finite, Vi. Such a vN algebra M is
called semifinite. It has a normal faithful semifinite trace 7 ® Tr.

e If M is a type Il; factor and |S| = oo, then M = M®RB(2S) is called a
Il factor. It can be viewed as the |S|-amplification of M.

e An important example: If B C M is a vN subalgebra and

eg : L2M — L°B as before, then: egxeg = Eg(x)eg, ¥x € A(M) = M,
the vN algebra (M, eg) generated by M and eg in B(L2M) is equal to the
wo-closure of the *-algebra sp{xegy | x,y € M}, and also equal to

p(B) N B(L?>M). It has a normal semifinite faithful trace uniquely
determined by Tr(xegy) = 7(xy). ((M, eg), Tr) is called the basic
construction algebra for B C M.
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vN representations and Hilbert M-modules

e If M is a vN algebra, then a *-rep 7 : M — B(H) is a vN rep (i.e., 7(M)
wo-closed) iff 7 is completely additive. We'll call such representations
normal representations and # a (left) Hilbert M-module. Two Hilbert
M-modules H, IC are equivalent if there exists a unitary U : H ~ K that
intertwines the two M-module structures (reps).
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M > x — xp’ € B(p'(H)) is a vN representation of M. Also, if
mi © M — B(H;) are vN representations of M, then

x = @jmi(x) € B(®iH;) is a vN rep. of M.
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e If M is a vN algebra, then a *-rep 7 : M — B(H) is a vN rep (i.e., 7(M)
wo-closed) iff 7 is completely additive. We'll call such representations
normal representations and # a (left) Hilbert M-module. Two Hilbert
M-modules H, IC are equivalent if there exists a unitary U : H ~ K that
intertwines the two M-module structures (reps).

e If M C B(H) is a vN algebra and p’ € M’, then

M > x — xp’ € B(p'(H)) is a vN representation of M. Also, if

mi © M — B(H;) are vN representations of M, then

x = @jmi(x) € B(®iH;) is a vN rep. of M.

e If (M, 7) is a tracial vN algebra, then a *-rep 7 : M — B(H) is a vN rep
iff 7r is continuous from (M); with the || ||>-topology to B(#) with the
so-topology.
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Classification of Hilbert modules of a ll; factor

e If M is tracial vN algebra then any cyclic Hilbert M-module is of the
form p(p)(L>M) = L2(Mp). Any Hilbert M-module # is of the form
@©;L2(Mp;), for some projections {p;}; C M.
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e If M is a Il; factor and K = @;L?(Mg;) is another Hilbert M-module for
some {q;}; C P(M), then yH ~p K iff 3, 7(pi) = >_; 7(q;). One
denotes dim(y#H) = >, 7(pi), called the dimension of the Hilbert
M-module H. Thus, Hilbert M-modules pyH are completely classified

(up to equivalence) by their dimension dim(p7{), which takes all values
[0, 00) U {infinite cardinals}.
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Classification of Hilbert modules of a ll; factor

e If M is tracial vN algebra then any cyclic Hilbert M-module is of the
form p(p)(L>M) = L2(Mp). Any Hilbert M-module # is of the form
@©;L2(Mp;), for some projections {p;}; C M.

e If M is a Il; factor and K = @;L?(Mg;) is another Hilbert M-module for
some {q;}; C P(M), then yH ~p K iff 3, 7(pi) = >_; 7(q;). One
denotes dim(y#H) = >, 7(pi), called the dimension of the Hilbert
M-module H. Thus, Hilbert M-modules pyH are completely classified
(up to equivalence) by their dimension dim(p7{), which takes all values
[0, 00) U {infinite cardinals}.

o If t = dim(yH) > 1 and p € M has trace 1/t then yH ~p L?(pM?).
o If t = dim(yH) < oo then dim(ppH) = 1/t. Also, M’ is naturally
isomorphic to (M*)°P, equivalently H has a natural Hilbert right
M*-module structure.
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Il; factors from groups and group actions

e Let I' be a discrete group, CT its (complex) group algebra and

CT > x = A\(x) € B(£2T) the left regular representation. The wo-closure
of A(CI') in B(H) is called the group von Neumann algebra of I,
denoted L(I), or just LI. Denoting uy = A(g) (the canonical unitaries),
the algebra LI can be identified with the set of £2-summable formal series
x = Zg Cg g With the property that x - £ € £2, V€ € (2T, It has a normal
faithful trace given by T(Zg Cglg) = Ce, implemented by the vector &,
and is thus tracial (finite).
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e Let I' be a discrete group, CT its (complex) group algebra and

CT > x = A\(x) € B(£2T) the left regular representation. The wo-closure
of A(CI') in B(H) is called the group von Neumann algebra of I,
denoted L(I), or just LI. Denoting uy = A(g) (the canonical unitaries),
the algebra LI can be identified with the set of £2-summable formal series
x = Zg Cg g With the property that x - £ € £2, V€ € (2T, It has a normal
faithful trace given by T(Zg Cglg) = Ce, implemented by the vector &,
and is thus tracial (finite).

e LT is a Il factor iff [ is infinite conjugacy class (ICC).

e Similarly, if [ ~? X is a pmp action, one associates to it the group
measure space vN algebra L>°(X) x I C B(L?(X) ® £°T), as weak closure
of the algebraic crossed product of L>°(X) by I'. Can be identified with
the algebra of £>-summable formal series 3°, agug, with a; € L>°(X), with
multiplication rule agugapup = agog(an)ugn. It is a lly factor if [ ~ X is
free ergodic, in which case A = L°>°(X) is maximal abelian in L(X) x I
and its normalizer generates L°°(X) x T, i.e. Ais a Cartan subalgebra.
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More Il; factors from operations

Using the above vN algebras as “building blocks”, one can obtain more Il;
factors by using operations. Besides amplifications, we have:
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More Il; factors from operations

Using the above vN algebras as “building blocks”, one can obtain more Il;
factors by using operations. Besides amplifications, we have:

e Tensor product. (M;)ie — ®;M;. It is Il factor iff all M; are finite
factors # C and |/| = oo, or |/| < oo and at least one M; is Il;.

e Free product: (My, Mp) — My % M. Also, if B C M; common vN
subalgebra, then My xg M, is the Free product with amalgamation over B.
In general it is Il factor....

e Crossed product: (B, T) vN algebra with a trace (e.g. B = L*°(X) or
B = R), I ~ B a trace preserving action — B x I

e Ultraproduct of finite factors N, M,, notably the case M M, ,(C) and
the ultrapower R“ of R (i.e., the case M, = R, Vn)
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R is the unique AFD Il; factor

e Exercise: Show that if (A, 7) is a diffuse (i.e., without atoms) countably
generated abelian vN algebra, with faithful completely additive state 7,
then (A, 7) ~ (L°°([0,1], 1), | dp). Hint: construct an increasing
“dyadic” partitions by projections in A (of trace 27") that “exhaust” it.
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R is the unique AFD Il; factor

e Exercise: Show that if (A, 7) is a diffuse (i.e., without atoms) countably
generated abelian vN algebra, with faithful completely additive state 7,
then (A, 7) ~ (L°°([0,1], 1), | dp). Hint: construct an increasing
“dyadic” partitions by projections in A (of trace 27") that “exhaust” it.

Definition of AFD vN algebras

A tracial vN algebra (M, 1) is approximately finite dimensional (AFD)
if VE C M finite, Ve > 0, 3B C M fin dim s.t. ||x — Eg(x)|2 < &, Vx € F.

Theorem: Murray-von Neumann 1943

If M is an AFD ll; factor that's countably generated (< || ||2-separable)
then M ~ R.

Proof. Exercise (Like in the abelian case above, construct increasing
“non-commutative dyadic” approximations My, (C) ,* M).

Corollary
Rt~ R Vt>0,ie, F(R)=Ry.
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Amenability for groups and vN algebras

Definitions

e A group I is amenable if it has an invariant mean, i.e., a state ¢ on
£2°(T') such that ¢(gf) = ¢(f), Vf € £°°T, g € T', where
¢f(h) = f(g~th), Vh.
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Amenability for groups and vN algebras

Definitions

e A group I is amenable if it has an invariant mean, i.e., a state ¢ on
£2°(T') such that ¢(gf) = ¢(f), Vf € £°°T, g € T', where

¢f(h) = f(g~th), Vh.

e A tracial vN algebra (M, 7) is amenable if it has a hypertrace
(invariant mean), i.e., a state ¢ on B(L2M) such that o(xT) = ¢(Tx),
Vxe M, T €B, and oM=T (Note: the 2nd condition is redundant if M
is a Il factor).

e LI is amenable iff [ is amenable

Proof. If ¢ is a state on B(¢?I') with LT in its centralizer (a hypertrace on
LT), then and D = (T is represented in B(¢?T') as diagonal operators,
then ¢ p is a state on D that satisfies p(ugfug) = p(f), Vf € D = £°T,
where ug = A\(g). But ugfuy =g f (Exercise), so ¢|p is an invariant mean.
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Conversely if [ is amenable and ¢ € (£>°I')* is an invariant mean, then

Y = [ 7(ug - uy)dp € B* is a state on B which has {up}, in its centralizer
and equals 7 when restricted to LI. For any x € (LI); and € > 0, let

xo € CI be so that ||x — xoll2 < e, ||x0|| <1 (Kaplansky). By
Cauchy-Schwartz, if T € (B)1, then we have: |¢((x — x0)T)| < ¢,

|Y(T(x —x0))| < e. Since (xoT) = 9(Txp) and € arbitrary, this shows
that ¢(Tx) = ¥(xT).
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Conversely if [ is amenable and ¢ € (£>°I')* is an invariant mean, then

Y = [ 7(ug - uy)dp € B* is a state on B which has {up}, in its centralizer
and equals 7 when restricted to LI. For any x € (LI); and € > 0, let

xo € CI be so that ||x — xoll2 < e, ||x0|| <1 (Kaplansky). By
Cauchy-Schwartz, if T € (B)1, then we have: |¢((x — x0)T)| < ¢,

|Y(T(x —x0))| < e. Since (xoT) = 9(Txp) and € arbitrary, this shows
that ¢(Tx) = ¥(xT).

e Let (M, 7) be tracial vN algebra. The following are equiv:
1° M is amenable.

2° M C B(H) has a hypertrace for any normal rep. of M.
3° There exists a normal rep M C B(H) with a hypertrace.

Corollary
1° (M, 7) amenable and B C M a vN subablegbra, then (B, 7) amenable.

2° Assume (M, T) is tracial vN algebra, B C M amenable vN subalgebra
and 7w : I — U(M) a representation of an amenable group I such that
m(g)(B) = B, Vg, and BV 7(') = M. Then (M, 7) is amenable.

28/63



Concrete examples of amenable 1l; factors

e We have already shown that if [ amenable then LI amenable. Some
concrete examples of amenable group are: finite groups; more generally
locally finite groups (e.g., Soc); Z", n > 1, in fact all abelian groups;

H 1Ty with H, g amenable; more generallyif 1l = H—>T — Ty —1is
exact, then I amenable iff H, [y are amenable.

e If in addition I is ICC, then LT is an amenable Il; factor. Of the above
amenable groups, S is ICC Also, H g are ICC whenever |H| > 2 and
ITo| = 00, so groups like (Z/mZ) 1 Z" with m > 2,n > 1 are all ICC
amenable.
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Concrete examples of amenable 1l; factors

(continuation)

o Let Uy C U(R) be the subgroup of all unitaries in Ry = Mp(C)®> that
have only +1 and 0 as entries. Then Uy is locally finite so it is amenable
and it clearly generates R.

Thus R is an amenable Il; factor, and any vN subalgebra B C M is
amenable, in particular any Il; subfactor of R is an amenable Il; factor.

e By last Corollary, any abelian vN algebra is amenable (because it is
generated by an abelian group of unitaries). Also, any group measure
space vN algebra L>°X x [ with ' an amenable group (e.g., like in the
above examples), is an amenable vN algebra. Thus, if I ~ X is free
ergodic with [ amenable then L°°X x [ is an amenable Il; factor.
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Fdlner condition for groups

Fdloner’s 1955 characterization of amenability for groups

A group I is amenable iff it satisfies the condition: VF C I finite, € > 0,
JK C T finite such that |FK \ K| < ¢|K].
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Fdlner condition for groups

Fdloner’s 1955 characterization of amenability for groups

A group I is amenable iff it satisfies the condition: VF C I finite, € > 0,
JK C T finite such that |FK \ K| < ¢|K].

Proof. < If F; /T, K; C T are finite s.t. ’F,’K,' \ K,’ < |F,"71 then
f > Lim;|K;| ! >_gek; f(g) is clearly an invariant mean for ' (Exercise!).
= Step 1: Day’s trick. 3 € (11T 1)1 s.t. || —g |1 < ¢/|F|, Vg € F.

Consider the Banach space (¢!T')/Fl and its convex subspace
C={(¢ —g¥)ger | ¥ € (2)1}. It is sufficient to show that 0 is in norm
closure of C. If 0 € C, then 3f& € £*°T such that

Re) (1h—g 1, f8) > c >0,V € (11 )
geF

But the set of ¢ as above is o((¢°°)*, £>°) dense in the state space of £*°,
so the above holds true for all states on £°°, in particular for the invariant
mean ¢, which gives 0 > ¢, a contradiction.
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Step 2: Namioka's trick. If b € (¢*T),); satisfies > ger lgb —blli <&,
then 3t > 0 such that e = e;(b) (spectral projection of b, or “level set”,
corresponding to [t, 00)) satisfies } . [lge — e[ < gfle[[1-

Note first that Vyi,y> € Ry we have [° [e:(y1) — e:(y2)|dt = |y1 — yal-
Thus, if by, by € €1F+, then fooo ]et(bl) — et(bz)’dt = ’bl — b2’ (pointwise,
as functions). Hence, [~ |le:(b1) — ex(b2)]|,dt = ||b1 — bo|,. Applying
this to by =4 b, bo = b, we get:

3 /0 " lgee(b) — ee(®)lidt = 3 lgb— bll, < ellbll, =< /0 " el dt

geF geF

Thus, there must exist t > 0 such that e = e;(b) satisfies
2 ger lge —elln <cllef|s.
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then 3t > 0 such that e = e;(b) (spectral projection of b, or “level set”,
corresponding to [t, 00)) satisfies } . [lge — e[ < gfle[[1-

Note first that Vyi,y> € Ry we have [° [e:(y1) — e:(y2)|dt = |y1 — yal-
Thus, if by, by € €1F+, then fooo ]et(bl) — et(bz)’dt = ’bl — b2’ (pointwise,
as functions). Hence, [~ |le:(b1) — ex(b2)]|,dt = ||b1 — bo|,. Applying
this to by =4 b, bo = b, we get:

3 / lsec(b) — ex(b),dt = 3" llgb— bl < <[|b]], = ¢ / lec(b)l,dt
geF 0 geF 0

Thus, there must exist t > 0 such that e = e;(b) satisfies
2 ger lge —elln <cllef|s.

Step 3: End of proof of Fglner's Thm. But then the set K C I with
Xk = e is finite and satisfies [FK'\ K| <>, ¢ [gK \ K| < ¢K].
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Fdlner condition for |l; factors

Connes’ 1976 Fglner-type characterization of amenable Il; factors

Let M C B(L>M) be a ll; factor. Then M is amenable iff for any
F C U(M) finite and € > 0, there exists a finite rank projection
e € B(L?M) such that ||ueu* — eljo. 7+ < ¢llel|2, 7+, Vu € F, where
[ X|l2,7+ = Tr(X*X)/? is the Hilbert-Schmidt norm on B(L?>M).
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e € B(L?M) such that ||ueu* — eljo. 7+ < ¢llel|2, 7+, Vu € F, where
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= Step 1: Day-type trick. 3b € (L}(B);)1 such that ||ubu* — b||1. 7+ < €,
Yu € F, where B = B(L2M), || X||1.7- = Tr(|X]).

Proof of this part is same as proof of Step 1 of Fglner's condition for
amenable groups, using the fact that L1(B, Tr)* = B(L’M) = B.
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[ X|l2,7+ = Tr(X*X)/? is the Hilbert-Schmidt norm on B(L?>M).

= Step 1: Day-type trick. 3b € (L}(B);)1 such that ||ubu* — b||1. 7+ < €,
Yu € F, where B = B(L2M), || X||1.7- = Tr(|X]).

Proof of this part is same as proof of Step 1 of Fglner's condition for
amenable groups, using the fact that L1(B, Tr)* = B(L’M) = B.

Switching to || ||2, 7--estimate. With b as above, one has
|ubY?u* — b1/2||5 7, < 261/2 = 261/2||bY/?||5 7, Yu € F. This is due to
the Powers-Stgmer inequality, showing that if by, by € L1(B, Tr), then

16y = BY213 1, < |lb1 — ball, 7 < (1632 = by 1o, 7l| B2 + B2, 75
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Step 2: “Connes’ joint distribution trick” and “Namioka-type trick”.
If a € L2(B, Tr) satisfies Tr(a®) = 1 and > geF |luau™ — aHiTr < e?

then 3t > 0 such that > ¢ [|ue(a)u” — e:(a) 2. < 5’2Het(a)H§7Tr.

This is because if aj,ay € B(L?M) are finite rank positive operators then
there exists a (discrete) measure m on X = R4 x R such that for any
Borel functs f1, > on R, one has [, fi(t 1‘2( Ydm(t,s) = Tr(fi(a1)f(a2)).
(this is Applying this to a3 = a, ap = wau®*, one then gets:

Z/w@u—mm

geF

o0
2 2
—wa—%nawm—aéwxmn

geF

But then there must exist t > 0 such that e = e;(a) satisfies
2
Yger lluew —e|3 7, <7

<« Exercise!

e||%,7?
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Connes Thm: R is the unique amenable Il; factor

C's 1976 Fundamental Thm: Any separable amenable Il; factor is AFD
and is thus isomorphic to the hyperfinite factor R.

From C's Fglner-type condition to local AFD. Let 1 € F C U(M) finite
and € > 0. By the C’s Fglner condition, Ip = py, for some finite dim

Ho C L>M s.t. |lupu* — pll2,7+ < €||pll2, 7+, Yu € F. By density of M in
L>M, may assume Ho C M. Let {nj}; be an orthonormal basis of Hy, i.e.,
T(ninj) = 6ij, >2; Cnj = Ho.
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Connes Thm: R is the unique amenable Il; factor

C's 1976 Fundamental Thm: Any separable amenable Il; factor is AFD
and is thus isomorphic to the hyperfinite factor R.

From C's Fglner-type condition to local AFD. Let 1 € F C U(M) finite
and € > 0. By the C’s Fglner condition, Ip = py, for some finite dim

Ho C L>M s.t. |lupu* — pll2,7+ < €||pll2, 7+, Yu € F. By density of M in
L>M, may assume Ho C M. Let {nj}; be an orthonormal basis of Hy, i.e.,
T(ninj) = 6ij, >2; Cnj = Ho.

Local quantization (LQ) lemma

VF' C M finite, § > 0, 3g € P(M) s.t. ||gxg — 7(x)q|l2 < d||ql|2, Vx € F'.

We apply the LQ lemma to F' := {nfun; | u € F,i,j}. Note that, as

6 — 0, the elements n,-qn;-k behave like matrix units e, i.e., ejey ~ djcej.
Thus, the space HqH* = Z,-JCn,-qnf behaves as the algebra

Bo = ¥;,jCejj, with 1g, = ¥ej; ~ XL ;m;qn; satisfying |[usu™ — s||> < €][s]|2
and ||sus — Eg,(sus)|2 < €|ls||2, Yu € F.
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Since any y € M is a combination of 4 unitaries in M, we have shown that
the amenable |l; factor M satisfies the following local AFD property:

VF C M finite, € > 0, 3By C M non-zero fin dim *-subalgebra such that if
s = 1, then [|Eg,(sys) — sys|l2 < &[s]l2, [|[s, y]ll2 < €llsl2, Vy € F.
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Since any y € M is a combination of 4 unitaries in M, we have shown that
the amenable |l; factor M satisfies the following local AFD property:

VF C M finite, € > 0, 3By C M non-zero fin dim *-subalgebra such that if
s = 1, then [|Eg,(sys) — sys|l2 < &[s]l2, [|[s, y]ll2 < €llsl2, Vy € F.

From local AFD to global AFD. One uses a maximality argument to get
from this local AFD, a “global AFD". Let F be the set of families of
subalgebras (B;); of M, with B; finite dimensional, s; = 15 mutually
orthogonal, such that if B = &;B; C M, s = 1g, then ||[s, y]||2 < €]|s]|2,
|Eg(sys) — sys||l2 < l|s||2, Vy € F. Clearly F with its natural order given
by inclusion is inductively ordered. Let (B;); be a maximal family. Denote
p=1—1g and assume p # 0. Clearly pMp is amenable, so by local AFD
dBy C pMp fin dim *-subalgebra s.t. sp = 1p, satisfies ||[so, X]||2 < €]|s0]|2,
I|Eg,(soxso) — soxsol|l2 < €l|soll2, Vx € pFp. By Pythagora, one gets that if
Bi=B® By, s1 = ]'Bl then HEBl(slysl) — 51)/51”2 < E||51”2,

I[s1, ¥]ll2 < €llsi]l2, Yy € F. So (B;)i U{B1} contradicts the maximality
of (B;)i. Thus, ) .s; = 1. But then for a large finite subfamily (B;)icy,,
we have that B =}, B; ® C(1 — Ls;) is fin. dim. and satisfies

lEg(y) — yll2 <&, Vy € F. Thus, M follows AFD.
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Some comments

e Connes' proof of “M amenable = M ~ R" in Annals of Math 1976,
which is different from the above, first shows that any amenable M
embeds into R“ and “splits off R”. That original proof became a major
source of inspiration in the effort to classify nuclear C*-algebras (Elliott,
Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).
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embeds into R“ and “splits off R”. That original proof became a major
source of inspiration in the effort to classify nuclear C*-algebras (Elliott,
Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

e Connes approximate embedding (CAE) conjecture, stated in his Ann
Math 1976 paper, predicts that in fact any (separable) Il; factor M
embeds into R“, equivalently into MN,M,,(C). For group algebras

M = L(T') this amounts to “simulating” ' by unitary groups U(n):
VFCT, m>1e>0,3nand {vg}gcr C U(n) such that for any word w
of length < m in the free group with generators in F, one has

[tr(w({vg}g) — 1| < e if w(F)=eand [tr(w({vg}g))| < e if w(F) #e.

37/63



Some comments

e Connes' proof of “M amenable = M ~ R" in Annals of Math 1976,
which is different from the above, first shows that any amenable M
embeds into R“ and “splits off R”. That original proof became a major
source of inspiration in the effort to classify nuclear C*-algebras (Elliott,
Kirchberg, H. Lin, more recently Tikuisis-White-Winter, Schafhouser).

e Connes approximate embedding (CAE) conjecture, stated in his Ann
Math 1976 paper, predicts that in fact any (separable) Il; factor M
embeds into R“, equivalently into MN,M,,(C). For group algebras

M = L(T') this amounts to “simulating” ' by unitary groups U(n):
VFCT, m>1e>0,3nand {vg}gcr C U(n) such that for any word w
of length < m in the free group with generators in F, one has
[tr(w({vg}g) — 1| < e if w(F)=eand [tr(w({vg}g))| < e if w(F) #e.

e An alternative characterization of R by K. Jung from 2007 shows that all
embeddings of M in R“ are unitary conjugate iff M ~ R. A related open
problem asks whether (M’ N M“) N M¥ = M implies M ~ R.
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Some consequences to C’s Fund Thm

e Connes theorem implies that for any countable ICC amenable group ' we
have LT ~ R. Also, any group measure space ll; factor L°X x [ arising
from a pmp action of countable amenable group T, is isomorphic to R.

38/63



Some consequences to C’s Fund Thm

e Connes theorem implies that for any countable ICC amenable group ' we
have LT ~ R. Also, any group measure space ll; factor L°X x [ arising
from a pmp action of countable amenable group T, is isomorphic to R.

e More generally, if a ll; factor M arises as a crossed product B x I of a
separable amenable tracial vN algebra (B, 7) by a countable amenable
group I, then M ~ R. In particular, if [ ~ R, with [ amenable and the
action outer, then R x [ ~ R.
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Some consequences to C’s Fund Thm

e Connes theorem implies that for any countable ICC amenable group ' we
have LT ~ R. Also, any group measure space ll; factor L°X x [ arising
from a pmp action of countable amenable group T, is isomorphic to R.

e More generally, if a ll; factor M arises as a crossed product B x I of a
separable amenable tracial vN algebra (B, 7) by a countable amenable
group I, then M ~ R. In particular, if [ ~ R, with [ amenable and the
action outer, then R x [ ~ R.

e Since any vN subalgebra of R is amenable, it follows that any Il;
subfactor of R is isomorphic to R. In fact, one can easily deduce:

Classification of all vN subalgebras of R

If B C Ris a vN subalgebra, then B ~ ®,>1M,(A,) ® R®Aq, where
Am, m > 0 are abelian vN algebras.
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Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

e (Dixmier 1954) If M is a Il; factor and B C M is a vN subalgebra, then
Num(B) = {u € U(M) | uBu* = B} is the normalizer of B in M. B is
regular (resp. singular) in M if Ny(B)”" = M (resp. Nu(B) = U(B)).
A regular MASA A C M called a Cartan subalgebra of M (Vershik,
Feldman-Moore 1970s).
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e (Dixmier 1954) If M is a Il; factor and B C M is a vN subalgebra, then
Num(B) = {u € U(M) | uBu* = B} is the normalizer of B in M. B is
regular (resp. singular) in M if Ny(B)”" = M (resp. Nu(B) = U(B)).
A regular MASA A C M called a Cartan subalgebra of M (Vershik,
Feldman-Moore 1970s).

e It is immediate to see that D C R is a Cartan subalgebra. Also, if

I ~ X is a free ergodic pmp action, then A= L*X C L®°X x[ =M is
clearly a Cartan subalgebra. For instance, if ' arbitrary countable group
and I ~ (X, ) = (Xo, io)" is the Bernoulli action.
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Uniqueness of Cartan subalgebras of R

Regular and Cartan subalgebras: definition and examples

e (Dixmier 1954) If M is a Il; factor and B C M is a vN subalgebra, then
Num(B) = {u € U(M) | uBu* = B} is the normalizer of B in M. B is
regular (resp. singular) in M if Ny(B)”" = M (resp. Nu(B) = U(B)).
A regular MASA A C M called a Cartan subalgebra of M (Vershik,
Feldman-Moore 1970s).

e It is immediate to see that D C R is a Cartan subalgebra. Also, if

I ~ X is a free ergodic pmp action, then A= L*X C L®°X x[ =M is
clearly a Cartan subalgebra. For instance, if ' arbitrary countable group
and I ~ (X, 1) = (Xo, pt0)" is the Bernoulli action.

e If B C M is a regular vN subalgebra and M C& (M, eg) its basic
construction, then its canonical normal faithful semifinite trace Tr (defined
by Tr(xegy) = 7(xy),Vx,y € M) is semifinite on B’ N (M, eg).
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Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If M is a separable amenable |l; factor and A C M is Cartan, then
(AC M)~ (D C R). In particular, any two free ergodic pmp actions of
countable amenable groups ' ~ X, A ~ Y are orbit equivalent.

Proof. Note first that given any regular inclusion B C M, the trace Tr is
semifinite on M := B’ N (M, eg) (Exercise!). Also, if u € Np(B) then
Ad(u)(M) =M, Tro Ad(u) = Tr.
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Connes-Feldman-Weiss and Ornstein-Weiss Theorems 1980-1981

If M is a separable amenable |l; factor and A C M is Cartan, then
(AC M)~ (D C R). In particular, any two free ergodic pmp actions of
countable amenable groups ' ~ X, A ~ Y are orbit equivalent.

Proof. Note first that given any regular inclusion B C M, the trace Tr is
semifinite on M := B’ N (M, eg) (Exercise!). Also, if u € Ny(B) then
Ad(u)(M) =M, Tro Ad(u) = Tr.

Faginer-type condition. If M is amenable and B C M is regular, then

VF C Nu(B) finite, e > 0, 3p € P(M) with Tr(p) < oo such that
|upu™ = pll2, 7w < €llpll2, 7+, Vu € F.

Note first that the hypertrace for M C B(L?M) restricted to M gives a
state ¢ on M such that p(uxu*) = p(x), Yu € Ny(B) and x € M. By
using exactly as before Day's trick, one gets b € L1(M, Tr)y, Tr(b) =1
such that |lubu* — b||1. 77 < &, Yu € F. Using C's Joint Distribution trick
and Namioka-type trick, one gets the desired p as e ..)(b) for some t > 0.

40/63



From the Fglner-type condition to local AFD for A C M Cartan. Any
“finite” p € M is of the form } . vjeav for some finite set v; of partial
isometries normalizing A (Exercise!). By "“local quantization” 3q € P(A)
such that one approximately have qv/uviq € Cq, Vi,j, Vu € F. This
means By = Z i Cv;qv; is fin. dim. with diagonal Dy = Cv;qv; C A s.t.
so = 1g, satlsfles [s, ulll2 < €l|s|l2, ||Eg,(sus) — sus||2 < ¢||s||2, Yu € F.
From local AFD to global AFD. Using a maximality argument, one shows
that the local AFD implies: VF C M finite, e > 0, dB; C M fin dim vN
subalgebra, generated by matrix units {e }ij.k such that ek € A and ej
normalize A. This shows that AC M is AFD which |mmed|ately implies
(AC M)~ (D C R) (Exercise!)
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To see the last part of the CFW-OW theorems, about orbit equivalence of
amenable group actions, we need some remarks/definitions.

Two remarks, by I.M. Singer 1955, Feldman-Moore 1977

(1) Let T ~ X, A~ Y be free ergodic pmp actions of countable groups.
Then (L¥X C L®X X)) >~ (L®Y x LY xN)iff T ~ X, A~ Y are
orbit equivalent (OE), i.e., 3A : X ~ Y such that A(l't) = A(A(t)),
Vaet € X.

Thus, since any two free ergodic pmp actions ' ~ X, A ~ Y of countable
amenable groups give rise to Cartan inclusions into R, the uniqueness of
the Cartan in R shows that these two actions are OE. This is
Ornstein-Weiss 1980 Thm.
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(2) Let I ~ (X, i) be an ergodic pmp action of a countable group and R
the corresponding orbit equivalence relation on X: t ~sif [t =Ts.

One associates to it a ll; factor L(R) with a Cartan subalgebra A = L*X,
by taking the algebra of formal finite sums X43a,A(¢), where a4 € A, ¢ are
local isomorphisms of X with graph in R, endowed with its structure of
multiplicative pseudo-group, endowed with the trace 7(av,) = [ ai(¢)du,
where i(¢) is the characteristic function of the set Xy C X on which ¢ is
the identity.
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(2) Let I ~ (X, i) be an ergodic pmp action of a countable group and R
the corresponding orbit equivalence relation on X: t ~sif [t =Ts.

One associates to it a ll; factor L(R) with a Cartan subalgebra A = L*X,
by taking the algebra of formal finite sums X43a,A(¢), where a4 € A, ¢ are
local isomorphisms of X with graph in R, endowed with its structure of
multiplicative pseudo-group, endowed with the trace 7(av,) = [ ai(¢)du,
where i(¢) is the characteristic function of the set Xy C X on which ¢ is
the identity.

Moreover, if v: R x R — A is a 2-cocycle for R, then one can form the
v-twisted version L(R,v) of this algebra, where A(¢)A(v)) = vgyA(0).
Given any Cartan inclusion A C M, with M a countably generated Il;
factor, there exists (R, v) such that (A C M) ~ (L*°X C L(R,v)). Also,
for Cartan inclusions we have (A; C M) ~ (A2 C My) iff

(Rl, Vl) ~ (RQ, Vg)
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(2) Let I ~ (X, i) be an ergodic pmp action of a countable group and R
the corresponding orbit equivalence relation on X: t ~sif [t =Ts.

One associates to it a ll; factor L(R) with a Cartan subalgebra A = L*X,
by taking the algebra of formal finite sums X43a,A(¢), where a4 € A, ¢ are
local isomorphisms of X with graph in R, endowed with its structure of
multiplicative pseudo-group, endowed with the trace 7(av,) = [ ai(¢)du,
where i(¢) is the characteristic function of the set Xy C X on which ¢ is
the identity.

Moreover, if v: R x R — A is a 2-cocycle for R, then one can form the
v-twisted version L(R,v) of this algebra, where A(¢)A(v)) = vgyA(0).
Given any Cartan inclusion A C M, with M a countably generated Il;
factor, there exists (R, v) such that (A C M) ~ (L*°X C L(R,v)). Also,
for Cartan inclusions we have (A; C M) ~ (A2 C My) iff

(Rl, Vl) ~ (RQ, Vg)

e Thus, by the uniqueness of the Cartan in R, we have that any two
ergodic pmp actions of any two amenable group on non-atomic prob
spaces are OE, and that any 2-cocycle v for such actions is co-boundary.
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Next problem: classifying all regular inclusions B C R

e The CFW theorem shows that there exists just one Cartan subalgebra

A C R, up to conjugacy by an automorphism of R. One would of course
like to classify ALL regular inclusions B C R. A natural

“homogeneity /irreducibility” condition to impose is that BN R = Z(B).
Besides the case B = A abelian, a first case of interest is when B = N is a
subfactor. By Connes Thm, such N is necessarily isomorphic to R and the
irreducibility condition amounts to N'N R = C.

e It is an easy exercise to show that if N C M is a regular irreducible
inclusion of Il factors, then I'y-p = Ny (N)/U(N) is a discrete group,
which is countable if M is separable and it is amenable if M ~ R (all this
will follow in a short while, from a more ample discussion).
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The case N C R is a regular subfactor

Ocneanu’s Theorem 1985

Irreducible regular inclusions N C R are completely classified (up to
conjugacy by an automorphism of R) by the normalizing group,

Cncr = Nr(N)/U(N).

More precisely, if Ng C R is another irreducible regular subfactor then
there exists an automorphism 6 of R s.t. §(No) = N iff I'nycr =~ Tncr.

Since any inclusion N C M = N x I arising from a free action I ~ N is
irreducible and regular with ['y-p =T, the above is equivalent to saying
that any irreducible regular inclusion of factors (N C R) is isomorphic to
(NC NxT), where T =Tycg and T ~ N = R = M,(C)®" is the
Bernoulli action.
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Arbitrary cocycle actions

e A cocycle action of a group I' on a tracial vN algebra (B, 7) is a map

o : [ — Aut(B, 7) which is multiplicative modulo inner automorphisms of
By
OgOh = Ad(Vg’h)Ugh,Vg7 hel,

with the unitary elements v, 5 € U(B) satisfying the cocycle relation

Vg,thh’k = O-g(vh,k)vg,hk)Vg) h7 k S r.

The cocycle action is free if o, properly outer Vg # e (6 € Aut(B, 1) is
properly outer if b € B with 8(x)b = bx, Vx € B, implies b = 0; thus, if
B = N is a ll; factor then this amounts to 6 being outer).

e (o,v) is a “genuine” action, if v = 1.
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Some examples

e Connes-Jones cocycles (1984): Let [ = (S) infinite group and

7 :Fs — T — 1 with kernel ker(m) ~ Fo,. This gives rise to

N = L(ker(r)) C L(Fs) = M irreducible and regular, with M = N x, ,y
for some free cocycle action (o, v) of ' on N = L(F).
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Some examples

e Connes-Jones cocycles (1984): Let [ = (S) infinite group and

7 :Fs — T — 1 with kernel ker(m) ~ Fo,. This gives rise to

N = L(ker(r)) C L(Fs) = M irreducible and regular, with M = N x, ,y
for some free cocycle action (o, v) of ' on N = L(F).

e Amplified cocycles: Given any action ' ~? N and p € P(N), one has
p ~ og(p) via some partial isometry wg € N. Then Ad(wg) o O'g| Np 1S @
cocyle action of I on N* = pNp, where t = 7(p). Denoted (cf, v?), in
which vg , := wgog(wh)wy,, Vg, h

47/63



Crossed product vN algebras from cocycle actions

e Any cocycle action I ~(7Y) (B, T) gives rise to a crossed product
inclusion B C M = B x(,,) I, in a similar way we defined the usual
crossed product for actions, where multiplication is given by

UglUp = Vg plgh and ugb = og(b)ug. Clearly B is regular in M.
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Crossed product vN algebras from cocycle actions

e Any cocycle action I ~(7Y) (B, T) gives rise to a crossed product
inclusion B C M = B x(,,) I, in a similar way we defined the usual
crossed product for actions, where multiplication is given by

UglUp = Vg plgh and ugb = og(b)ug. Clearly B is regular in M.

e One can easily show that the cocycle action is free iff B'N M = Z(B).
In particular, if B = N is a Il factor, then (o, v) is free iff N'N M = C1,
i.e., Nis irreducible in M = N xT.
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Crossed product vN algebras from cocycle actions

e Any cocycle action I ~(7Y) (B, T) gives rise to a crossed product
inclusion B C M = B x(,,) I, in a similar way we defined the usual
crossed product for actions, where multiplication is given by

UglUp = Vg plgh and ugb = og(b)ug. Clearly B is regular in M.

e One can easily show that the cocycle action is free iff B'N M = Z(B).
In particular, if B = N is a Il factor, then (o, v) is free iff N'N M = C1,
i.e., Nis irreducible in M = N xT.

e Conversely, if N C M is irreducible and regular and one denotes
[ = Nu(N)/U(N), then choosing Ug € N for each g € T and letting

Og = Ad(Ug), Vg.h = UgUhU;h
shows that M = N x, .y I (this is a remark by Jones, Sutherland 1980).
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Equivalence of cocyle actions

e Two cocycle actions (o}, v;) of ['; on (Bj, 1), i = 1,2, are cocycle
conjugate if 30 : (B1, 1) ~ (B2, 1), v: 1~ T2 and w, € U(B>) such
that :

Hal(g)e_l =Ado 02( ( )),Vg,

0(vi(g, h)) = wgoa(g)(wn)va(v(g), v(h))wgy, Vg, h.

e Two free cocycle actions [ ~L9v1) on the II; factors N;, i = 1,2, are
cocycle conjugate iff their associated crossed product inclusions are
isomorphic, (N1 C Ny xT1) ~ (Na C Np x Ip).
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Untwisting cocycle actions

e The cocycle action (o, v) of I on (BT) untwists (or is co-boundary) if
Jwg €U(B) s.t. vg.n = wgog(wh)wy,, Vg, h. Thus, (o, v) untwists iff it is
cocycle conjugate to a genuine action.

Note this is a bit stronger than J’g = Ad(wg) o 05 being a “genuine”

action. It is equivalent to: Jw, € U(B) s.t. Uy = wglUg € B x(, ) T
satisfy UgUj, = Uy, Vg, h.
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Untwisting cocycle actions

e The cocycle action (o, v) of I on (BT) untwists (or is co-boundary) if
Jwg €U(B) s.t. vg.n = wgog(wh)wy,, Vg, h. Thus, (o, v) untwists iff it is
cocycle conjugate to a genuine action.

Note this is a bit stronger than J’g = Ad(wg) o 05 being a “genuine”
action. It is equivalent to: Jw, € U(B) s.t. Uy = wglUg € B x(, ) T
satisfy UgUj, = Uy, Vg, h.

Example

e Clearly any cocycle action of ' = F,, € untwists.
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Original formulation of Ocneanu’s theorem

e O’s original Thm is that any two free cocycle actions of a countable
amenable group I on R are cocycle conjugate.

This result was already known in the case I' = Z, Z/nZ (Connes 1975)
and in the case I finite (Jones 1980). In case I finite, Jones proved that
any two free [-actions on R are in fact conjugate and that any 1-cocycle
of a finite group action on any ll; factor is co-boundary.

From the above discussion, we see that O’s result implies that any cocycle
action of a countable amenable group untwists.

If I' is amenable, the crossed product R x(,,,) [ is amenable, so by C's
Thm it is isomorphic to R. Thus, by the above remarks, the uniqueness
(up to cocycle conjugacy) of free cocycle -actions on R translates into
the uniqueness (up to conjugacy by automorphisms of R) of irreducible
regular subfactors N C R with T'ycg =T. In particular, O's result shows
that any such irreducible regular inclusion N C R is a “true” (untwisted)
crossed product construction, coming from a “genuine” l-action.

Sketch of proof of O's Thm (two approaches)....
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Classifing regular inclusions B C R: remaining cases

e Let M be a Il factor and B C M regular with

B'NM = Z(B) = L>=(X, u). These assumptions imply B is
“homogeneous”, i.e., either B = M,(C)®L>*X, for some n > 1, or

B = fx Bidp(t), where By are 1l factors, V,et € X. If in addition M = R,
in this latter case we have B; ~ R and B ~ R®L*X. The normalizer
Nu(B) defines an amenable discrete measured groupoid G = Gy
together with a free cocycle action (o, v) = (agcm, vecm) of G on B.
The iso class of the inclusion B C M is completely encoded in the cocycle
conjugacy class of G ~(®Y) B,
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e Let M be a Il factor and B C M regular with

B'NM = Z(B) = L>=(X, u). These assumptions imply B is
“homogeneous”, i.e., either B = M,(C)®L>*X, for some n > 1, or

B = fx Bidp(t), where By are 1l factors, V,et € X. If in addition M = R,
in this latter case we have B; ~ R and B ~ R®L*X. The normalizer
Nu(B) defines an amenable discrete measured groupoid G = Gy
together with a free cocycle action (o, v) = (agcm, vecm) of G on B.
The iso class of the inclusion B C M is completely encoded in the cocycle
conjugacy class of G ~(®Y) B,

e In the case B C M = R, the discrete groupoid G accounts for an
amenable ergodic countable equivalence relation “along” the space
G(® = X of units of G, with amenable countable isotropy groups I'; at
each t € X acting outerly on B; ~ R.
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e When B is abelian, then B ~ L°°X and G is just a countable amenable
equiv rel R on X, with « intrinsic to R. The CFW Thm says that there is
just one amenable countable equiv. rel. and it has vanishing coh v. This
also implies that, for each n > 1, there is just one regular inclusion B C R
with B'N R = Z(B) and B of type I,.

53/63



e When B is abelian, then B ~ L°°X and G is just a countable amenable
equiv rel R on X, with « intrinsic to R. The CFW Thm says that there is
just one amenable countable equiv. rel. and it has vanishing coh v. This
also implies that, for each n > 1, there is just one regular inclusion B C R
with B'N R = Z(B) and B of type I,.

e If B is a factor, then B ~ R and the groupoid Ggr is the group

I = Ng(B)/U(B), which follows countable amenable, and («, v) is the
free cocycle action of I on B implemented by Ng(B). O's Thm then
shows that G uniquely determines B C R. This clearly takes care of the
case Z(B) atomic as well.
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Solving the case B C R with B ~ RRL>*X

e So we are left with the case B C R where B = RQL>®X, with X diffuse,
i.e., to the problem of classifying G ~(®Y) B = R®L>®X up to cocycle
conjugacy, for all amenable groupoids G with G(® = X. When v =1 (i.e.,
for “genuine” actions of G) this was solved as follows:
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Sutherland-Takesaki Theorem 1985

Any two actions o, ap of the same amenable groupoid G on RRL>®X are
cocycle conjugate. Equivalently, any two regular inclusions of the form

B C R with B'N R = Z(B), with same Ggg and with vgcg =1, are
conjugate by an automorphism of R.
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e So we are left with the case B C R where B = RQL>®X, with X diffuse,
i.e., to the problem of classifying G ~(®Y) B = R®L>®X up to cocycle
conjugacy, for all amenable groupoids G with G(® = X. When v =1 (i.e.,
for “genuine” actions of G) this was solved as follows:

Sutherland-Takesaki Theorem 1985

Any two actions o, ap of the same amenable groupoid G on RRL>®X are
cocycle conjugate. Equivalently, any two regular inclusions of the form

B C R with B'N R = Z(B), with same Ggg and with vgcg =1, are
conjugate by an automorphism of R.

By the above result, it follows that we are left with proving that any
2-cocycle v for a cocycle action G ~(®Y) REL>®X of an amenable
groupoid G is co-boundary. As it turns out, this is a rather difficult
problem.
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Untwisting cocycles on arbitrary |l; factors

Theorem (P 2018)

Given any countable amenable group I, any free cocycle -action
I ~(@v) N on an arbitrary Il; factor N untwisis.
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Untwisting cocycles on arbitrary |l; factors

Theorem (P 2018)

Given any countable amenable group I, any free cocycle -action
I ~(@v) N on an arbitrary Il; factor N untwisis.

Same actually holds true for I =1 %k 2 %k .... €, with [, countable
amenable and K C ', common finite subgroup, Vn.

We prove this by building an embedding R < N that's «(I)-equivariant,
modulo an inner perturbation (o, v') of («, v), and which is “large” in N,
in the sense that R* NN x I = C. This last condition forces v’ to take
values in R. By O's vanishing oh Thm, (oz"R, v/ can be perturbed to an
actual action o, with the untwisting of the cocycle v/ in R,

Vg h = Wgag(wp)wy,. But this means we have untwisted (a, v) as a
cocycle action on N as well.
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An amenable/non-amenable dichotomy

While the “universal vanishing cohomology” property for a group I holds
true for I = F,, and more generally free products of amenable groups, the
existence of [-equivariant embeddings of the hyperfinite factor
characterizes amenability of I':

Theorem (P 2018)

(1) Any cocycle action o of a countable amenable group ' on an arbitrary
[l factor N admits an inner perturbation ¢’ that normalizes a hyperfinite
subfactor R C N satisfying R" NN x, I = C.
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An amenable/non-amenable dichotomy

While the “universal vanishing cohomology” property for a group I holds
true for I = F,, and more generally free products of amenable groups, the
existence of [-equivariant embeddings of the hyperfinite factor
characterizes amenability of I':

Theorem (P 2018)

(1) Any cocycle action o of a countable amenable group ' on an arbitrary
[I; factor N admits an inner perturbation o’ that normalizes a hyperfinite
subfactor R C N satisfying R" NN x, I = C.

(2) Conversely, if ' is non-amenable, then there exist free actions
'~ N = L(Fy) such that no inner perturbation of o can normalize a
diffuse amenable subalgebra B C N.

PROOF of (1) uses subfactor techniques, constructing R as an inductive
limit of relative commutants of a sequence of subfactors of finite index,
coming from a “generalized tunnel” associated with a “diagonal subfactor”
(N C M,). Part (2) uses deformation-rigidity (Ozawa-Popa 2007).
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Untwisting cocycle actions of amenable groupoids

Theorem: P-Shlyakhtenko-Vaes 2018

Let G be a discrete measured groupoid with X = G(©) and (B;);ex a
measurable field of Il; factors with separable predual. Assume that G is
amenable and that (a, v) is a free cocycle action of G on (Bt)tex. Then
the cocycle v is a co-boundary: there exists a measurable field of unitaries
G2gr— wg €(Br)e st v(g, h) = ag(wy)wiwgn, V(g, h) € G2,

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular B C R with BN R = Z(B)

Two regular vN subalgebras B C R satisfying B'N R = Z(B) are
conjugate by an automorphism of R iff they are of the same type and have
isomorphic associated discrete measured groupoids Ggcr.
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Untwisting cocycle actions of amenable groupoids

Theorem: P-Shlyakhtenko-Vaes 2018

Let G be a discrete measured groupoid with X = G(©) and (B;);ex a
measurable field of Il; factors with separable predual. Assume that G is
amenable and that (a, v) is a free cocycle action of G on (Bt)tex. Then
the cocycle v is a co-boundary: there exists a measurable field of unitaries
G2gr— wg €(Br)e st v(g, h) = ag(wy)wiwgn, V(g, h) € G2,

Before discussing the proof, we mention that we have finally proved:

Complete classification of regular B C R with BN R = Z(B)

Two regular vN subalgebras B C R satisfying B'N R = Z(B) are
conjugate by an automorphism of R iff they are of the same type and have
isomorphic associated discrete measured groupoids Ggcr.

Any such B contains a Cartan subalgebra of R and if A;, Ay C B are
Cartan in R, there exists an automorphism 6 of R satisfying 6(B) = B and
0(A1) = As.
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About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh
for cocycle actions of amenable groups on Il; factors (P 2018), the CFW
vanishing of the con along G(®) = X, which we apply to the isotropy
groups ¢, t € X of the amenable groupoid G. To extend to the entire G,
we have to make equivariant choices of 2-cocycle vanishing, for the I'¢,
where the equivariance is w.r.t. to the isomorphisms ', — s given by
conjugation with an element g € G with s(g) = s and t(g) = t (source
and target of g).
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About the proof

The proof of the vanishing 2-cohomology Thm uses the vanishing 2-coh
for cocycle actions of amenable groups on Il; factors (P 2018), the CFW
vanishing of the con along G(®) = X, which we apply to the isotropy
groups ¢, t € X of the amenable groupoid G. To extend to the entire G,
we have to make equivariant choices of 2-cocycle vanishing, for the I'¢,
where the equivariance is w.r.t. to the isomorphisms ', — s given by
conjugation with an element g € G with s(g) = s and t(g) = t (source
and target of g).

The proof of this latter part depends on two key points. The first one is a
technical result showing that such an equivariant choice exists, provided
that the 2-cocycle vanishing for 'y, can be done in an “approximately
unique way". The fact that a 2-cocycle untwists in an “approximately
unique way" amounts to the fact that 1-cocycles for actions are
“approximately co-boundary”. The second key point is to prove such
approximate vanishing of 1-cocycles for arbitrary amenable groups, a result
we discuss next because of its independent interest.
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Approximate vanishing 1-cohomology

e A 1-cocycle for an action ' ~7 N is a mapw : I — U(N) s.t.

Wgog(Wh) = Wgn, Vg, h. The cocycle w is co-boundary if 3u € U(N) such
that wy = o (u)u*, Vg; it is approximate co-boundary if Ju, € U(N) such
that ||wg — og(un)uj|l2 — 0, Vg, equivalently w is co-boundary as a
1-cocycle for [ A7 N¥,
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Approximate vanishing 1-cohomology

e A 1-cocycle for an action ' ~7 N is a mapw : I — U(N) s.t.

Wg0g(Wh) = Wgn, Vg, h. The cocycle w is co-boundary if Ju € U(N) such
that wy = o (u)u*, Vg; it is approximate co-boundary if Ju, € U(N) such
that [[wgy — og(un)ujll2 — 0, Vg, equivalently w is co-boundary as a
1-cocycle for [ A7 N¥,

Theorem (P-Shlyakhtenko-Vaes 2018)

Let ' be a countable group. The following conditions are equivalent.

(i) T is amenable.

(ii) For any free action ' 7 N the fixed point algebra of ¢ on N“ is a
subfactor with trivial relative commutant in N“.

(iif) Any free action of I on any II; factor is non strongly ergodic.

(iv) Any 1l-cocycle w for any I ~7 N is approximate co-boundary.

59/63



About the proof of approx vanishing 1-coh

e Jones showed in 1980 that any 1-cocycle for a free action o of a finite
group I on a Il factor is co-boundary. The proof only uses that the fixed
point algebra of any such action is an irreducible subfactor: let 5 be the
action of [ on N = M(N) = N ® M,(C) given by 6, = 0, @ id. If
{ej|1<i,j<2} CMy C N is a matrix unit, then Wy = e11 + wgex is a
1-cocycle for &. If @ C N denotes the fixed point algebra of the action

&’g = Ad(W;)G, then e11, e € Q. The existence of a unitary element

u € N satisfying w, = uog(u*), Vg, is equivalent to e;; ~ ex in Q. Since
Q is a ll; factor and e;1, ex2 have equal trace 1/2 in Q so indeed e;; ~ ex
in @, thus w is co-boundary.
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About the proof of approx vanishing 1-coh

e Jones showed in 1980 that any 1-cocycle for a free action o of a finite
group I on a Il factor is co-boundary. The proof only uses that the fixed
point algebra of any such action is an irreducible subfactor: let 5 be the
action of [ on N = M(N) = N ® M,(C) given by 6, = 0, @ id. If
{ej|1<i,j<2} CMy C N is a matrix unit, then Wy = e11 + wgex is a
1-cocycle for &. If @ C N denotes the fixed point algebra of the action

&’g = Ad(W;)G, then e11, e € Q. The existence of a unitary element

u € N satisfying w, = uog(u*), Vg, is equivalent to e;; ~ ex in Q. Since
Q is a ll; factor and e;1, ex2 have equal trace 1/2 in Q so indeed e;; ~ ex
in @, thus w is co-boundary.

e Note that the above proof only uses that the fixed point algebra is a Il
factor. This shows that (if) = (iv). To show that (i) = (ii) we use the
foll Lemma:

If T ~ N is a free action of a countable group on a ll; factor and X C N¥
separable, then Ju € U(N¥) s.t. X, {og(uNu™)}zer are all mutually free

independent.
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Sketch of proof of (/) = (ii) in the Theorem

e With the notations in the previous lemma, let Q@ = Vo (uNu*) ~ N*T.
Note that Q is free independent to N and 0“(Q) = Q, with p = e
implementing on Q ~ N*T the free Bernoulli M-action. Let a = a* € N be
a semi-circular element and denote by a, its identical copies in the

(N)g ~ N components of N*I', g € . Thus, p acts on the set {az}, by
left translation, ph(ag) = ang. Let K, C T be a sequence of Folner sets
and denote b, = |K,,|_1/2 deKn ag. Then b, is also a semicircular
element and one has

|pn(bn) — bnll3 = |hFaAF,|/|Ka| — 0,Vh € T.
Thus, the element b = (b,), € (N*")“ is semicircular with p,(b) = b,
Vh € I', showing that p is not strongly ergodic.

This shows that there exist finite partitions {g;}; C P(Q) of arbitrary
small mesh and which are almost o“-invariant. So given any x € X', we
have that || 3", gixqi — 7(x)1||2 small, because Q is free independent to
x € X. This readily implies (N*)7*' N N* = C.
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FromT ~n? Rto I ~0Y) RV R,

1° R, = R’ N R¥ satisfies R, N R¥ = R.

2°¥0 € Aut(R), IUs € Nga(R) such that Ad(Up) g = 0. If
Uy € Nrw(R) is another unitary satisfying Ad(Up)|g = 6, then
Uy = vUp = UpV' for some v,v' € U(R,).

3° If 0, Up as in 2°, then Ad(Up) g, implements 6, € Out(R,,) and

0, = Ad(Up)|rvr, € Out(RV Ry), with § € Aut(R) outer iff 6, outer
and iff §,, outer.

4° Any free action ' ~7 R gives rise to a free cocycle action G, of I on
RV R, by 6.,(g) = Ad(U,(g))|rvR, & € T, with corresponding 2-cocycle
v T x T = U(R,).
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Vanishing cohomology for 5, and the CE conjecture

Theorem

I 7 R free action of [ on R. The II; factor M = R %, I has the CAE
property (i.e., is embeddable into R*) iff the U/(R,,)-valued 2-cocycle v
vanishes, i.e., iff there exist unitary elements {Ug | g € T} C Nge(R) that
implement o on R and satisfy Uy Up = Ugp, Vg, h e T.

A related problem

We have seen that one has a group isomorphism
Out(R) 3 6 — Ad(Up) € Out(R V Ry)

which is also onto if on the right side we restrict to autom that leave R
invariant. Lifting this map to a grp morphism into to NVgw(R) when
restricted to a countable subgroup I C Out(R) implementing a genuine
action, is equiv. to CE conjecture for R x . But even if CE holds true for
these factors, it seems quite clear that such lifting is not possible for the

entire [ = Out(R). However, we do not have a proof for this. /63



A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

VF' C M finite, § > 0, 3g € P(M) s.t. |lgxqg — 7(x)qll2 < d||q||2, Vx € F'.
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A closer look at the two technical lemmas

In the proofs of C's Fund Thm, the CFW Thm, O's Thm, we used:

local quantization (LQ) lemma

VF' C M finite, 6 > 0, 3g € P(M) s.t. ||gxq — 7(x)q|l2 < d]|qll2, Vx € F'.

Also, in the proof of the approximate vanishing 1-cohomology, we used:

free independence lemma

If T ~ N is a free action of a countable group on a separable Il; factor
and X C N“ separable subspace, then Ju € U(N“) s.t.
X, {0g (uNu™)}ger are all mutually free independent.

This result is in fact a consequence of the following more general:

Theorem (free independence in irreducible subfactors)
If N C M is an irreducible inclusion of Il; factors, then VB C M¥
separable vN algebra, 3A C N“ abelian diffuse such that AV B ~ Ax B.

Indeed, taking M = N x I we have N'N'M = C. Then apply the Thm to
get A C N“ free independent to the vN algebra B = (X U M)". 64/63



Ergodic embeddings of L*°(]0,1]) and R into factors

The technical results above are in fact related,: the LQ lemma plays a key
role in the proof of “free independence embeddings of L>°([0,1])", while
the free independence embeddings allow sharp quantitative versions of LQ
lemma. To deduce them, we'll go through several steps:
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(2) “Ergodicity” (irreducibility) of an inclusion of separable Il; factors
N C M entails existence of “ergodic (D C R)-direction” inside N:
dR C N with D'NM = D and R"N M = C1. Proof: sketch on blackboard

(3) Strong form of LQ lemma: if N C M irreducible, then YF C M finite,
e >0, dg € P(N) s.t. ||gxg — 7(x)qll2 < €llqll2, Vx € F. Proof sketch on
blackboard.
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Ergodic embeddings of L*°(]0,1]) and R into factors

The technical results above are in fact related,: the LQ lemma plays a key
role in the proof of “free independence embeddings of L>°([0,1])", while
the free independence embeddings allow sharp quantitative versions of LQ
lemma. To deduce them, we'll go through several steps:

(1) Constructing ergodic embeddings of R into Il; factors: VM separable
[1; factor, 3R € M with R’ N M = C1. Proof: sketch on the blackboard.

(2) “Ergodicity” (irreducibility) of an inclusion of separable Il; factors
N C M entails existence of “ergodic (D C R)-direction” inside N:
dR C N with D'NM = D and R"N M = C1. Proof: sketch on blackboard

(3) Strong form of LQ lemma: if N C M irreducible, then YF C M finite,
e >0, dg € P(N) s.t. ||gxg — 7(x)qll2 < €llqll2, Vx € F. Proof sketch on
blackboard.

(4) blackboard comments on the proof of “approximately free
independent” embeddings of L>°([0, 1]) and the incremental patching
method.
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Free random embeddings of L*°(]0,1]) and R

The incremental patching method allows proving the following general

Theorem (approx. free independence with amalgamation)

Let M, be a sequence of finite factors with dim M,, — oo and denote by
M the ultraproduct II; factor I1,M,, over a free ultrafilter w on N. Let
Q C M be a vN subalgebra satisfying one of the following:

(a) Q =Ny, Qp, for some vN alg. Q, C M, with Q, Ay, Q,N M,, Vn;
(b) Q = B’ N'M, for some separable amenable vN alg. B C M.

Then given any separable subspace X C M & (Q' N M), there exists a
diffuse abelian vN alg. A C Q such that A is free independent to X,
relative to Q' N'M, i.e. Eqam(xoM?_jaix;)) =0, for all n > 1,

xo,xk EXU{l}, x;€X,1<i<k—-1,a€A6Cl,1<i<n

e The above result led us to the discovery in 1990-1994 of the
reconstruction method in subfactor theory, and the axiomatisation of the
standard invariant of a subfactor.
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Applications

e Existence of ergodic embeddings of AFD factors into arbitrary vN factors
is crucial for establishing Stone-Weierstrass type theorems for inclusions of
C*-algebras (Kadison, Sakai, Glimm, J. Anderson, Bunce, etc). A complete
solution to the "factor state” such result’ was given using (1) above.

e Existence of ergodic embeddings of R into Il; factors M were used to
prove that H?>(M, M) = 0 (Kadison-Ringrose Hochshild-type 2nd coh) for
a large class of 1l; factors M (Schmidt-Sinclair 95).

e Embeddings of L>°([0,1]) and R into a Il; factor M that are asympt. free
to M where key to establishing a variety of vanishing cohomology results:

(a) All derivations from a vN algebra M that take values in IC(#) (more
generally, all “smooth derivations”) are inner, i.e., H'(M,K) = 0 (Popa
1984, Popa-Radulescu 1986, Galatan-Popa 2014).

(b) Vanishing of the Connes-Shlyakhtenko-Thom 1st L2 cohomology,
HY(M, Aff((M@MP®P)) = 0 (Popa-Vaes 2016).

(c) Approx. vanishing of 1-cohomology for any action of an amenable
groups on any ll; factor (Popa-Shlyakhtenko-Vaes 2018). 67/63



Coarse, mixing, and strongly malnormal embeddings

Coarse subalgebras and coarse pairs

A vN subalgebra B C M is coarse if the vN algebra generated by left-right
multiplication by elements in B on L2(M © B) is BRB°. The vN
subalgebras B, @ C M form a coarse pair if the vN algebra generated by
left multiplication by B and right multiplication by @ on L?M is B®Q°P.

Mixing subalgebras

A vN subalgebra B C M is mixing if lim,c(g) ||Eg(xuy)|]2 = 0,
Vx,y € M & B, where the limit is over u € U(B) tending wo to 0.

Strongly malnormal subalgebras

A vN subalgebra B C M is strongly malnormal if its weak intertwining
space wZy(B, B) is equal to B, i.e., if x € M satisfies
dim(L2(AoxB)g) < oo, then x € B.

Proposition

One has the implications “coarse = mixing = strongly malnormal”. &,



Coarse embeddings of R and L>°([0, 1])

Theorem (P 2018-19)

Any separable II; factor M contains a hyperfinite factor R C M that's
coarse in M (and thus also mixing and strongly malnormal in M).
Moreover, given any irreducible subfactor P € M, any vN alg. Q C M
satisfying P Ay Q and any € > 0, the coarse subfactor R C M can be
constructed so that to be contained in P, make a coarse pair with @ and
satisfy R 1. Q.

Proof comments on blackboard.
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Coarse embeddings of R and L>°([0, 1])

Theorem (P 2018-19)

Any separable II; factor M contains a hyperfinite factor R C M that's
coarse in M (and thus also mixing and strongly malnormal in M).
Moreover, given any irreducible subfactor P € M, any vN alg. Q C M
satisfying P £p; @ and any € > 0, the coarse subfactor R C M can be
constructed so that to be contained in P, make a coarse pair with @ and
satisfy R 1. Q.

Proof comments on blackboard.

Corollary

Any separable II; factor M has a coarse MASA A C M, which in addition
is strongly malnormal and mixing, with infinite multiplicity (Pukansky

invariant equal to co0). Moreover, given any irreducible subfactor P C M,
any vN alg. @ C M such that P £5, @ and any € > 0, the coarse MASA
A C M can be constructed inside P, coarse to @, and satisfying A L. Q.
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Coarseness and strong malnormality in LF,

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann

subalgebra B of L(F:) is coarse, and thus also mixing and strongly
malnormal, V1 < t < oo.
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Coarseness and strong malnormality in LF,

Coarseness conjecture

Any maximal amenable (equivalently maximal AFD) von Neumann
subalgebra B of L(F:) is coarse, and thus also mixing and strongly
malnormal, V1 < t < oo.

e Note that if B C M is strongly malnormal, then any weak intertwiner of
B in M is contained in B, in particular if u € U(M) is so that uBu* N B is
diffuse, then u € B. It also implies that if By C M amenable and By N B
diffuse, then By C B. Thus, the above coarseness conjecture implies the
Peterson-Thom conjecture, which predicts that any By C LF,, amenable
diffuse is contained in a unique maximal amenable subalgebra of LF,,.
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More on R-embeddings

e Connes Approximate Embedding (CAE) conjecture asks whether any
countably generated tracial vN algebra has an “approximate embeding”
into R, i.e., M embeds into R“, equivalently into M,M,(C). (Can any
tracial vN algebra be “simulated” by matrix algebras?).
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More on R-embeddings

e Connes Approximate Embedding (CAE) conjecture asks whether any
countably generated tracial vN algebra has an “approximate embeding”
into R, i.e., M embeds into R“, equivalently into M,M,(C). (Can any
tracial vN algebra be “simulated” by matrix algebras?).

e Connes Bicentralizer problem asks whether given any (separable) type
[1l; factor M there exists an irreducible embedding R <— M that's the
range of a normal conditional expectation. Equivalently, whether M
necessarily has a normal faithful state ¢ such that its centralizer M, has
trivial relative commutant in M.

Ergodic embeddings of R (work in progress: to be checked)

Any vN factor M that's not of type | and has separable predual, contains
an ergodic copy of R, i.e., a hyperfinite subfactor R C M with trivial
relative commutant, R’ N M = C1.
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