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We provide characterizations of operator monotone and concave func-
tions in several operator variables using LMIs and the theory of matrix
convex sets. This completes the work of Agler-McCarthy-Young [2]
providing characterizations restricted for commutative tuples of oper-
ators, hence to the several real variable situation, the work of Helton-
McCullough-Vinnikov [6] characterizing free rational - thus already
analytic - several variable matrix convex functions and the work of
Pascoe-Tully-Doyle [15] characterizing free analytic matrix monotone
functions in several variables.

For a free operator concave function we define its hypograph as the
downward saturation of its graph with respect to the positive definite
order. Then operator concavity of a free function is characterized by
the matrix convexity of its hypograph. Given a closed matrix con-
vex hypograph as a subset of a Cartesian product of the linear space of
bounded linear operators, one can find its supporting linear functionals
and represent them as linear pencils of operators on the tensor product
of the linear space with its dual space. Then the linear pencil defines
a linear matrix inequality (LMI) such that its extremal solution coin-
cides with the value of the operator concave function. We establish an
explicit solution formula for the extremal solutions of this LMI using
the Schur complement. This LMI solution technique alone seems to
have further applications to the general theory, in particular analytic
rigidity, of matrix convex sets and LMIs.

The above approach leads to the extension of Loewner’s classical
representation theorem of operator concave and operator monotone
functions from 1934, into the non-commutative several variable situa-
tion. Our theorem states that a free function defined on a k-variable
free self-adjoint domain is operator monotone if and only if it has a
free analytic continuation to the upper operator poly-halfspace Πk :=
{X ∈ B(E)k : =Xi > 0, 1 ≤ i ≤ k} for any Hilbert space E, mapping
Πk to Π. This approach also provides a new proof to the one-variable
case of Loewner’s theorem.
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