GABORIAU’S THEOREM AFTER LUCK, SAUER AND THOM

1. BACKGROUND IN HOMOLOGICAL ALGEBRA
Throughout this section, R is a unital ring and V' is a left R-module.

Definition. A complex V consists of sequences of modules and morphisms

V- AN n—i—ltrjn—-H)Vni)Vn—l—)"'
such that 9, o 9,,1 = 0 for all n. The n-th homology module of V is defined to be
H, (V) =ker0,/rand,4;. The complex V is ezact if H,(V) = 0 for all n.

A morphism ¢: V — W consists of a sequence of morphisms ¢,: V,, — W,
such that ¢, © Opy1 = 044 © Pp41 for all n. Since ¢, (rand,;1) C rand,,; and
¢n(ker 0,41) C ker 0, ,, the morphism ¢ induces morphisms ¢, ,,: H,(V) — H,(W).

A morphism ¢: V — W is null-homotopic if there is a sequence of morphisms
Byt Vi — Wi such that ¢, = 0,1 0 hy + hyp—1 0 Oy

8'rL«&»l 8n

T Vn+1 Vn anl
Pn+1 $n Pn—1
O ol
o n+1 W, Wh-1

Morphisms ¢, ¥: V — W are homotopic if ¢p — 1 is null-homotopic.
Lemma 1. If ¢ and ¥ are homotopic, then ., = ., for all n.

Proof. If ¢ is null-homotopic, then ¢, (kerd,) = (0,4, © hy)(ker d,) C rand,,, and
hence ¢, , = 0. The general case follows from this. 0

Theorem 2. Let complexes V, W and a morphism p: V — W be given

On

Vi Ve s =V
lw

on
W - “'HWnHWn—l W() W

such that every V,, (n > 0) is projective and W is exact. Then, there exists a morphism
@: V— W which extends p. Moreover, the extension ¢ is unique up to homotopy.
1
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Proof. (Existence.) We proceed by induction. Let ¢_; = ¢ and ¢_5 = 0, and suppose
we have constructed p_o, -, p,_1 satisfying ¢m,—20 0,1 =0, _1 0 @m_1 for m < n:

anfl

On
Vn - Vn—l - Vn—2

|
| Pn—1 l (PnZl
\ / 61/1

Wn — Wn—l ;; Wn—2
Since 0),_1 0 @p—1 00, = Yp_200,-100, = 0, one has rany,,_1 09, C rand, by
exactness. Since V,, is projective, there is a morphism ¢, : V,, — W, which lifts
©n_1 0 0y through 0, i.e.; 0, 0 @, = Pn_10 Oy.
(Uniqueness.) It suffices to show that any extension ¢ of ¢ = 0 is null-homotopic.
Let h.y = 0 and h_5 = 0, and suppose we have constructed h_s, ..., h,_ 1 satisfying
Om-1 =20 0hy_1+ hp_o00y_q for m <n:

8n anl
_ Vn anl an2
- - hnfl hn72
-7 Pn Pn—1
~
7o, o,
n+1 n Wn—l

Since ), 0w, = @100, = (0, 0hy 1+ hy 200, 1)00, = 0J,0h,_100,, one
has ran(¢, — hp—1 0 0,) C rand,,; by exactness. Since V,, is projective, there is a
morphism h,: V,, — W11 such that 0/, o h, = ¢, — hy_1 0 0. O

Definition. For a module V', a projective resolution of V' is an exact complex
V- RN VN /AN /ANCUNS VN
with all V,, (n > 0) projective.
Definition. For a right R-module M and a left R-module V', define
Tor?(M,V) = H,(M @z Vo),
where V is any projective resolution of V and M ®p V5 is the complex
M®&grVsg: > MgV, — -+ — M®Vi 2 Mg Vy — 0.
Note that M ®p V5 is given by omitting the term M @z V from M ®x V.

Remark. Every module V has a projective (or even free) resolution, and the projec-
tive resolution is unique up to homotopy. It follows that the complex M ®r V> used
to define Torl*(M, V) is also unique up to homotopy and hence Torf(M, V) does not
depends on the choice of a projective resolution of V.
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We recall that the relative tensor product M ®gz V' is defined to be the Z-module
generated by {a® ¢ :a € M, £ € V} and factored out by the relations a ®{ +b® & —
(a+b) R a®é+a®@n—a® (E+n), and ar @ —a@ré. If M is an S-R-module,
then M ®pg V is naturally a left S-module. We note that the relative tensor product
operation ®p is associative and distributive w.r.t. a direct sum.

Examples. M @ R=M and RRrV =V.

The module Tor®(M, V) can be non-zero because M ®pz - needs not be a short
exact functor. Namely, V, »— Vi does not imply M ®g Vo — M ®@g V;. (The symbol
— is used for injection.) However the functor M ®p - is always right exact.

Lemma 3 (Right exactness). Let M be arbitrary. If V3 L Vi N Vo — 0 is exact,

then M @g Vy 2% M @5 Vi 2% M @5 Ve — 0 is ezact.

Proof. Exactness at M ®p Vj is clear. SincNe (id®0;) o (id ®9y) = id ®(0y 0 d) = 0,
the morphism id ®81~ induces a morphism 0y: M ®g Vi /ran(id ®9y) - M ®g V. It
is left to show that 0; is injective. For this, it suffices to construct the left inverse o

of d;: For Ya;®& € MgV, define o(da; &) => a; ® él + rangid ®0y), where
& € Vqis any lift of &;. Then, o is a well-defined morphism with ¢ o 9; = id. 0

Definition. A right S-module N is flat if N ®g - is an exact functor.
Note that free modules and projective modules are flat.

Lemma 4. For a right S-module N, the following are equivalent.

(1) N is flat.

(2) ker(id ®p) = N ®g ker ¢ for any morphism ¢: W — V.

(3) Hi(N @5 V) =N ®g Ho(V) for any complex V of S-modules.
(4) N®sV — N ®g F for every f.g. modules V- C F with F free.

In particular, if N is flat, then for any S-R-module M and any left R-module V,
N ®g Torf (M, V) = Tor}(N ®g M, V).

Proof. 1t is routine to check the equivalence of the conditions (1)-(3). (Use right
exactness.) We only prove the implication (4)=-(1). We first observe that the f.g.
assumption on V and F' can be dropped by continuity of a tensor product w.r.t.
inductive limits. Let ¢: W; — W5 be given. We will show N ®¢ Wi — N ®g Ws.
Take a free S-module F' and a surjection w: F' — W5, and set V = kerw. Then, we
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have a commuting diagram

0 —— ker(id ®¢)

| |

N®SV*>N®S7T71(W1)*>N®SW1HO

| |

0—N®sV N ®g F N ®g Wy
0
which is exact everywhere. By Snake Lemma, one has ker(id ®¢) = 0. O

For the later purpose, we need the following. A (full) subcategory D of modules is
a Serre subcategory if for every short exact sequence 0 — Vo — V) — Vj — 0, one
has V; € D < Vy, Vo € D. A morphism ¢: V — W is an isomorphism modulo D if
both ker ¢ and coker ¢ = V/ran ¢ are in D.

Lemma 5. Let D be a Serre subcategory. Let V and W be complexes of modules
and ¢:' V — W be a morphism consisting of isomorphisms modulo D. Then all
Vie: Ho(V) — Ho(W) are also isomorphisms modulo D.

Proof. Consider the following commuting exact diagram:

1?)

0 — ker 0,,¢ V., “rand,, —= 0
Wnl @nl Wnll
0 —ker 0/ ¢ W, o rand, —

Since ¢, is an isomorphism modulo D and ker ¢,,_; Nrand, is in D, Snake Lemma
implies that other two column morphisms are also isomorphisms modulo D. Now,
applying Snake Lemma again to the following commuting diagram

0 —randy 11— ker 9, — H,(V) —=0

o] @nl |

0 —=randy 41— ker 9, — H,(W) —=0

one sees that ¢, , is an isomorphism modulo D. O
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2. DIMENSION FUNCTION (AFTER LUCK)

Let (M, 7) be a finite von Neumann algebra and recall that Proj(M) is a lattice
such that 7(p) + 7(q) = 7(p V q) + 7(p A q) for every p,q € Proj(M). Throughout
this section, a module means a left M-module. Note that

Mor(M®™ M) = M, ,(M) by the right multiplication.

Definition. A module V' is finitely generated and projective (abbreviated as f.g.p.)
it V&2 M®"P for some m € N and some idempotent P € M,,,(M).

Remark. In the original definition, a module V' is projective if every surjection onto
it splits. We note that a concrete realization M®™P of V is not among the structures
of V. We can take P to be self-adjoint, because if we set Py = [(P), then P = SP,S™!
for S =1+ Fy — P. For the following, we generally assume that P is self-adjoint.

A ring R is said to be “semi-hereditary” if every f.g. R-submodule of a free R-
module is projective. Every von Neumann algebra has this property.

Lemma 6. (1) Every weakly closed submodule V' of M®™ is of the form M®™P.
(2) For every ¢ € Mor(M®™ M%) both ker ¢ and ran ¢ are f.g.p.
(3) Every f.g. submodule V' of M®™ is projective.

Proof. Ad(1): One observes that V.= M®™P for the orthogonal projection P in
M,,,(M) from L2M®™ onto the L?*norm closure of V.
Ad(2): kerp = M®™P by (1) and ran ¢ 2 M®™PL by Isomorphism Theorem.
Ad(3): If V is f.g., then V = ran ¢ for some ¢ € Mor(M®™, M®™). O

Definition. For a f.g.p. module V"= M%™P_ define dimy V' = (Tr & 7)(P).

Remark. The M-dimension dimy,V is well-defined: If M®"P = M%"Q, then
(Tr @ 7)(P) = (Tr ® 7)(Q). In particular, if W = V (resp. W C V) are f.g.p.
modules, then dimy, W = dimpy V' (resp. dimy W < dimp V).

Definition. For every module V', we define the M-dimension of V' by
dimpy V = sup{dimp W : W C V f.g.p. submodule} € [0, oo].

Note that the definitions are consistent for f.g.p. modules. The dimension function
is continuous in the following sense: if V' = [ JV; is a directed union of modules, then
one has dimy, V' = limdimy, V;.

For V.C M®™, we denote by V the weak closure of V. Although there is a way
defining V purely algebraically for arbitrary module V', we do not elaborate it.

Proposition 7. Let V. C M®™ be a submodule with V = M®™P. Then, there exists
a net of projections P; € I\\ﬂm(/\/l) such that M®™P; C V and P; — P. In particular,
one has dimpy V' = dimp, V.
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Proof. Let V-.C M®™ be given. Let i = (W, ¢) be a pair of f.g. submodule W C V
and € > 0. We choose n € N and T' € M, ,,,(M) such that W = M®*T', and 6 > 0
such that P; = x51)(T*T) € M,, (M) satisfies 7(r(T) — F;) < €. Since P, = ST for
S = xp(T*T)(T*T)'T* € M,, (M), we have M*"P, C M®"T C V. It is not
hard to see P, /* P. This implies that dima V > sup dimpy M®™P, = dima V. The
converse inequality is trivial. O

Theorem 8 (Liick). For every short exact sequence 0 — Vo — Vi 5 Vi — 0, one
has dimy V; = dimpy Vo + dimpy V.

Proof. Let W C Vj be any f.g.p. submodule. Then, one has 7= 1(W) = W @ «(V3) by
the projectivity of W. Hence,

dimy Vi > dimpa 7' (W) > dimpa W+ dimpg o(V5).

Taking the supremum over all W C Vj, one gets dimy, V; > dimp Vo + dimpy Vs.
In particular, we have proved that dimy, decreases under a surjection. To prove the
converse inequality, let W C V; be any f.g.p. submodule. We realize W as M P,
Then, one has ((V2) N W = M®™Q for some projection @ € M,,(M) with @ < P.
This implies that W/.(Vo) N W =2 M®™(P — Q). It follows by Proposition 7 that

dimpay W = dimpy W/e(Va) N W + dimpg o (Vo) NV
< dimp W/(e(Va) N W) + dimpg (Vo) N W
< dimpg Vo + dimpy ¢(V2),

where we have applied the first part to W/(¢(Va) N W) — W/i(Vo) N W. O
We call V' a torsion module if dimy, V' = 0. Torsion modules form a Serre subcat-
egory and every module V' has the unique largest torsion submodule Vi C V.

Corollary 9. For every f.g. module V', one has V = Vp @& Vi, where Vp s f.g.p. with

Proof. We prove that the f.g. module Vp = V/Vr is projective (and hence there is
a splitting Vp < V). Take a surjection p: M®™ — Vp. Since ker p/ker ¢ is a
torsion submodule of M®™/ker p = Vp, it is zero. It follows that ker ¢ is closed and
Vp &2 M®™ [ ker ¢ is projective. O

Although we do not use it explicitly, this corollary, in combination with continuity,
is useful to reduce the proof of dimensional equations to those for f.g.p. modules.

Definition. A morphism p: V — W is a dim-isomorphism if it is an isomorphism
modulo torsion modules, i.e., dimaq ker ¢ = 0 = dim, coker .

Lemma 10. The morphism M — L?>M is a dim -isomorphism.
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Proof. Let £ € L?M be given. We view it as a closed square-integrable operator
affiliated with M. Then, for p, = x[0n(££*) € M, one has p, — 1 and p,§ € M.
We note that p,& € M means that p,&é =0 in LM /M. O

Remark. From this lemma, one observes that dimy, agrees with the von Neumann
dimension function for normal Hilbert M-modules.
3. DEFINITION OF THE {5-BETTI NUMBERS (AFTER LUCK)
Definition. For a discrete group I', we define the n-th £y-Betti number of I' by
BA(T) = dimgp TorS" (LT, C),

where C is the trivial CI'-module: f-z=3"__ f(s)z.

Exercise. Prove that 6(2)( I') = dimp Tor " (4,1, C). (Hint: You have to show that
the functor o' ®,r - is exact and dim p-preserving.)

Example. For d = 1,2, ..., one has

d—1 ifn=1
67(L2)<Fd>:{ . 1rn :

otherwise -
Proof. Let g1, ..., gq be the canonical generators of F;. We consider the complex
% 0 — (CF,)®* 2 %, CF, -2 C — 0,

where 0p(€) = ¥,cx, €(5) and Ay (€)L,) = Y, & - i — €. (We define (¢ - 5)(t) =
&(ts).) We will show that the complex V is exact. We check ker 9 = 0. Let x; € (o Fq
be the characteristic function of the subset of reduced words starting at g;. It is not
hard to see that x; - g; ' = x; + 0,0 for every 4,5. If (&)L, € ker 8y, then for every
s € I' and 7, one has

d

Zéz 9i— & 5 X;) = Z(&; (9 =) =6(9)

and (§)%, = 0. We next check rand; = kerdy. It is easy to see dy o 9; = 0. Let
X\ € lsFq be the characteristic function of the subset of reduced words ending at g;
We observe that x; —s-x, is finitely supported for every s € Fy. (Indeed, it suffices to
check this for g1, ..., g4.) Moreover, since Xz gi — X, is the characteristic function of
the reduced words ending at other than ¢!, one has Zl X gi—x) = (d—1)140.
Now, suppose £ € ker dy. Then, since

(Y €()8) + 3 Es)8, = S €(s)(6. — 6.)

s#e s#e s#e
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& =& xx) € CT by the above observation, and since £ x 1 = 0, one has

d
6111 Zfz gi — 51 Zf*(Xz/gz—X;/)zf
i=1

We have proved that V is a prOJectlve resolution of C. Since

LFy®cs, Vao: 0 — (LF)® 25 LF, — 0,
one has
LF;/ran0; ifn=0
Tort" (LF,, C) = ker 0, ifn=1 .
0 ifn>2

Since A(s) — A(t) € ran 0, and A(t) — 0 weakly as t — oo, one has A(s) € ran 0, for
every s € [Fy and hence rand; = LF;. It follows that ﬁ(() (Fy;) = 0 and 6(2)( Fy) =
dimgp, ker 0y = d — dimgp,ran 0y = d — 1. [

Below, we sketch an argument showing that the above definition of /5-Betti numbers
is consistent with another(?). We denote by F(I', X) the set of functions from a set
I’ into X. Now I' be a discrete group and consider ¢ as a right I'-module. The is a
natural complex

0 — 61 20 F(T,6T) 25 F(T2 6T) — -

where (Opf)(s) = f — f-sand (01b)(s,t) = b(t) — b(st) + b(s) - t, etc. We then define
the ¢5-cohomology H, (T, (,I") by H, (F 0,1") = ker 0,/ ran 0,,41. Since 0, commutes
with the LI'-action on /") the ¢5-cohomology H, (T, (oI") is naturally an £I-module.

We define ﬁ,(f)(l“) = dimgr H, (T, ,I7). Let us calculate @@(F) for n = 0,1. Since
Hy C 6o is the subspace of constant functions, one has ﬁéz)(f‘) = |T'|~!. We note
that D(I') = ker 0, is the space of derivations and Dy(I') = rand, is the space of

inner derivations. To see what 69@) is, we assume that I' is generated by a finite
subset {s1,...,Sq4}. Then, there is an LI'-module map

d
D(T') 3 b— (b(s:))y € P 6T,

which is an isomorphism onto a closed subspace. We note that Dy(I") is closed in
@<, £,1 iff T is finite or non-amenable, and that dimzp Do(T) = dimp(ker 8p)*= =
1—|T|~*. Hence, one has dimzp D(T') = 2 (') +dimr Do(T') = 82(I) - 852(I) +1
We view Jy as a map from /I into @le 05" and consider

d
O P — > -6 st ebl.
=1 7
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Lemma 11. One has (ker 95 N @ CT)+ = D(I).

Proof. We note that the scalar product (-, -) is defined consistently on CI' x F(I", C)
and on I x 651", Moreover, F(I',C) is the algebraic dual of CI" w.r.t. this scalar
product. Suppose that b € D(T"). It is not hard to show that b = f — f - s for some
f e F(I,C). It follows that for every & € ker 95 N @ CTI', one has

€0y = (&b(s) =) (&G—& 57" f)=0.
Conversely, if b € ¢oI" is such that b L (ker 95NEP CT'), then the linear functional ( -,

b)
on @ CT factors through 95 and there is f € F(I',C) such that (£,b) = (95(&), f)
for every £ € @ CI. It follows that b(s) = f — f-sand b € D(T). O

Since (ker 9;)* = tandy = Dy(T'), one has
D(I')/Do(T) = (ker 05 N @D CI)* © (ker ;)"
=ker 95 N (ker 0y NEPHCI)" = Torf (LT, C).
The last isomorphism follows from the following observation:
d
v: . —@crEer—c
i=1

is a free resolution of the trivial left CI'-module C and

d
€2F®(CFV203 —>@€2F&>€2F—>0

with ran 0f = loI" ®cr ker(95|gcr) C CI' ®cr ker(J§|gcr) = ker(95|gcr).

4. RANK METRIC (AFTER THOM)
Definition. Let V be a left M-module. For £ € V', we define its rank norm by
[€] = inf{7(p) : p € Proj(A), p{ =&} € [0,1].
We record several basic properties of the rank norm.

Lemma 12. For a left M-module V', the following are true.
(1) Triangle inequality: [+ n] < [&] + [n] for every {,m e V.
(2) [x€] < min{[x], [£]} for every x € M and £ € V.
(3) Ve = (€€ V - [¢] = 0).
(4) A submodule W C 'V is dense in rank norm if and only if dimpy V/W = 0.
(5) Every ¢ € Mor(V, W) is a rank contraction: [¢(§)] < [].
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(6) For every p € Mor(V,W), n € ranp and € > 0, there exists £ € ¢~ 1(n) such
that [n] < [€] +¢.

Proof. The triangle inequality follows from the fact that 7(p V q) < 7(p) + 7(q).
The second assertion follows from the fact that p§ = £ implies xp€ = & and [z{] <
T(l(zp)) < 7(p). For the third assertion, we observe that [¢] = 0 iff ME is a torsion
submodule. Indeed, the “if” part is rather easy and the “only if” part follows by
considering the morphism p: M > x — x& € V. Since ker ¢ is a left ideal with
dimpa kerp = 1, i.e., L = M, Proposition 7 implies that there is a net p; € L of
projections such that p; — 1. This means [{] = 0. The rest are trivial. O

We recall that the completion of a metric space (X,d) is the metric space of all
equivalence classes of Cauchy sequences in X. Here, two Cauchy sequences (z,)5°,
and (y,)5%, are equivalent if d((z,), (yn)) := lim, d(z,, y,) = 0.

Definition. The rank completion of a left M-module V' is the completion C(V') of
V w.r.t. the rank metric d, where d(&,n) = [ — ] for £, € V. We observe that

C (V) = { Cauchy sequences in V }/{ Null sequences }
and that C(V) is naturally a left M-module (thanks to Lemma 12).

The rank metric is actually a pseudo-metric. More precisely, it is a metric on
V/Vp. The constant “embedding” ¢: V. — C(V) is a dim-isomorphism and it
induces a canonical inclusion V/Vy — C(V'). Moreover, C'(V') is the unique torsion-
free complete M-module containing V/Vp as a dense submodule. Indeed, one has:

Lemma 13. Let VW be M-modules with W torsion-free and complete. Then, every
¢ € Mor(V, W) extends to ¢ € Mor(C(V),W), i.e., poc = .

Proposition 14. The rank completion c is an exact functor.

Proof. Let a short exact sequence 0 — V5, R Vi N Vo — 0 be given.

Exactness at C'(V4). Let £ € C(V) and choose a representing Cauchy sequence
(€2)n in Vg such that d(&,,&npr) < 27D, We will construct 7,7, ... such that
O01(ny) = &, and d(nn, Mpy1) < 27™. Suppose 1y, ..., 0, have been chosen. Lift &, 1 —
£n € Vo to Cuyr € Vi with [Gupt] < [Engr — &a] +27D . Set 41 = 7 + (g1 and we
are done. Now the sequence (7,,), is Cauchy in V; and hence converges to an element
n in C'(V7) such that oy (n) = €.

Exactness at C(Vj). It is clear that C(0;) o C(02) = 0 by continuity. Let
¢ € kerC(0,) be given and choose (§,), in V; such that &, — &. Since 0,(§,) —
C(01)(&) = 0, the sequence (01(&,)), is null. Hence, one can lift (0;(&,)), to a null
sequence (1), in V1. It follows that (&, —mn,), is a Cauchy sequence in ker 9; = ran 0,.
Therefore,

£E= nhrrolo £ = nlingo(gn — 1) € ran 0y = ran C(0s),
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where we used the result of the previous paragraph for the last equality.
Exactness at C(V3). Since 0, is an isometry, C'(0z) is an isometry as well. Since
C(V3) does not have a non-zero torsion element, C'(Jy) is injective. O

5. GABORIAU’S THEOREM (AFTER SAUER AND THOM)

Proposition 15. Let M C N be finite von Neumann algebras with oy = Tar|m-
Then, N is a flat M-module and dimpy, V = dimy N @ V' for any M-module V.

Proof. We use Lemma 4 to prove flatness. Let V' C M®™ be a f.g. submodule. It
follows that there is T' € M, ,,(M) such that V' = M®"T. Let P be the left support
of T and observe that V = M®"T 5 T +— &P € M®"P is an isomorphism. Since
MP"P is a direct summand of M®" one has the following kosher identifications

N @V 2N @ (MOP) 2 NP 2 N € N 2 N © 0 MO,

It follows from Lemma 4 that N is flat.

Since the dimension function is continuous w.r.t. inductive limits, it suffices to
check the identity dimy V = dimy N @ V for a f.g. V. Since M®"P — V implies
NP s N ®@p V, one has dimy V' < dimy N ®p V. To prove the converse
inequality, take a surjection m: M®"* — V. Then, id®@n: N — N @,V is also a
surjection such that ker(id @7) = N @ ker 7 by flatness. It follows that

dimy N @p V =n — dimy ker(id @7) < n — dimy ker 7 = dimp V
by the previous inequality. O

Let I' ~ (X, u) be an essentially-free probability-measure-preserving action. Let
A=L%X,u), M=LTand N = AxT. Let Ry C N (resp. R C N) be the
C-algebra generated by A and I' (resp. by A and the full group [I']). Then,

ACRyCRCN

and A is a left R-module: ap- f = ap.(f) for a, f € A and ¢ € [I']. Now, Gaboriau’s
theorem that 652)@‘) is an invariant of [I'] follows from the following equalities:

BT = dim TorS" (M, C)
= dimy N @ Tors (M, C) by Proposition 15
= dimy Tor{" (N @pu M, C)  since N is flat over M
= dimy Torf (N, A) ()
= dimy Torf (W, A) (@)

The proof of (#) is rather routine: Since N is also a right Ry-module and Ry is a free
left CI'-module (Consider the conditional expectation onto A), one has

Tor, (N, V) = TorJ°(N, Ry @cr V)
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for any CI'-module V. Indeed, if V is a projective resolution of V', then Ry ®cr V is
a projective resolution of Ry @cr V with N ®pg, (Ro @cr V) 2 N Qcr V. We then
observe that Ry ®cr C = A as an Ry-module. The proof of (©) is more involved, but
reduces to the fact that Ry C R is dense in an appropriate sense.

We write [(]4 (resp. []y) for the rank norm w.r.t. A (resp. N) and note that
€l < [€]a- In particular, one has [x]4 = inf{7(p) : p € Proj(A), px = z} for
x € N. For x € N, we define

|[z]].4 = sup{ [zp].a/[p]a : p € Proj(A)} € [0, o0].

We record several basic properties of this norm.

Lemma 16. (1) |[ax])|a = |[x]|4 for every a € C\ {0} and x € N.
(2) |[v]|la =1 for every non-zero pseudo-normalizer v of A in N

(3) Il + L < lizlla + 114 and |izy]la < [[2] allg]la for every 2,y € N

(4) ||z]|a < oo for every x € R.

(5) For every x € R, there is a sequence (), in Ry such that [x, —x]4 — 0 and
sup |[xn]|4 < 0.

(6) If V is an Ro-module, then [x&]a < |[z]|a[€]a for every x € Ry and £ € V.
The same thing holds for R.

Lemma 17. Let V' be a left Ry-module. Then, the rank completion C'(V) w.r.t. A
s naturally a left R-module. Moreover, C' is a natural functor from the category of
Ro-modules into the category of complete R-modules.

Proof. By the previous lemma, one knows that C (V') is naturally an Ry-module. Let
x € Rand § € C(V) be given. Choose a sequence (z,,), in Ry such that [z —x,]4 — 0.
Then, (z,£), is a Cauchy sequence in C'(V) and has a limit ¢ in C(V). We note
that the limit is independent of the choice of (z,),. Moreover, if |[x,]|4 is bounded
and [y — yJa — 0, then [,y — xy]a — 0. This shows (zy)& = z(y§). O

Lemma 18. Let V be a left Ry-module. Then the constant embedding
id®c: N®R0 \% —>N®RO C(V)
1s a dimpr-isomorphism. The same thing holds for R.

Proof. Suppose that >  x; ® & € ker(id ®c) and € > 0 be given. Then, one has
Zl’i ® éz - ij?"j ® TIj - bj ® Tj?]j iIl N@@ C(V)
i=1 j

Choose p; € Proj(A) such that pyn; € V and n) (1 + |[r;]]4)7(p;) < e. It follows
that there is p € Proj(A) such that pp; = p;, prjp; = rjp; and 7(p) < /n. Since



GABORIAU’S THEOREM AFTER LUCK, SAUER AND THOM 13
Zj bjr; ® pjnj —b; ® rjp]*nj is zero in N ®p, V, subtracting it from the both sides
of the above equation, we may assume that

Z T, ® fz = Z bjrj ®pj77j — bj & Tip;N; in N R O(V)
i=1 J

It follows that > x; @ & =Y ;@ p& in N @¢ C(V), and a fortiori in N ®¢ V since
N @cV CN ®c C(V) (recall any module over a field is free). Hence, one has

Ziﬂi@@' :Z$i®pfizzflﬁip®& in N ®g, V.
i=1 i=1 i=1

This implies that [, z; @ &l < Y o[ziply < €. Since € > 0 was arbitrary, one
sees that ker(id ®c) is a torsion submodule. That ran(id ®c) is dense in N ®g, C(V)
follows from the fact that [z ® ] < [€]4 for every z € N and & € C(V). O

We omit the proof of the next lemma, which is similar to that of the previous one.
Lemma 19. Let V be a left R-module, then the surjection
N ®pgr, V> N®rV
15 a dimps-tsomorphism.
We are now in position to complete the proof of Gaboriau’s theorem.

Proof of (V). Let V (resp. W) be a projective resolution of A as an Ry-module (resp.
as an R-module). Then, by Theorem 2 (and Proposition 14), the identity morphism
ids: A — A (resp. the constant embedding ¢: A — C(A)) extends to a morphism
¢: V— W (resp. a morphism ¢: W — C(V)):

V- e v, e Vo A
©n %0 ida
\\Y% Wi, Wo A
¥n %o J{C
c(v) —C(Va) C(Vo) —= C(A)
&n o ide ()
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By the uniqueness part of Theorem 2, the compositions ¥ o and @ ot are homotopic
to the morphisms of the constant embeddings. Taking tensor products, one has

N ®pr, Vo : N Qpy Vg —— -
id ®pn

N @pr W : N@gW, — -
id ®n

N ®@rC(V)s0: i > N@r C(V,) —---
id ®pn

N @r C(W)so : > N@rC(W,) —> -

The morphism from N ®g, Vs to N @ C (V) and the morphism from N @z W
to N ®@p C(W)so are homotopic to the morphisms of constant embeddings. Since
constant embeddings are dim~-isomorphisms by Lemmas 18 and 19, the induced
morphisms on the homology modules are all dimys-isomorphisms by Lemma 5. It
follows that ¢, .: Torl®(N, A) — Torl (N, A) are all dim-isomorphisms. O

Let p € N be a projection and V' be an N-module. It is not hard to check that
pN @AV = pV and dim,p, pPN @V = 7(p) ' dimy V, where one uses the normalized
trace 7(p)~'7(-) for pN'p. If p € Proj(A) is a projection such that >, v;pv; = 1 for
some pseudo-normalizers vy, ..., v,, then N @g V = Np®,g, pV for every R-module
V. whose central support in N is 1. It follows that

dimy Torf (N, A) = 7(p) dimppr, pN @ Torf (N, A)
= 7(p) dimppr, Tor?®P (pN'p, pA).
With little more analysis, one can show the above equation for every p € Proj(.A)
with full central support.
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