
GABORIAU’S THEOREM AFTER LÜCK, SAUER AND THOM

1. Background in homological algebra

Throughout this section, R is a unital ring and V is a left R-module.

Definition. A complex V consists of sequences of modules and morphisms

V : · · · −→ Vn+1
∂n+1−→ Vn

∂n−→ Vn−1 −→ · · ·
such that ∂n ◦ ∂n+1 = 0 for all n. The n-th homology module of V is defined to be
Hn(V) = ker ∂n/ ran ∂n+1. The complex V is exact if Hn(V) = 0 for all n.

A morphism ϕϕϕ : V → W consists of a sequence of morphisms ϕn : Vn → Wn

such that ϕn ◦ ∂n+1 = ∂′n+1 ◦ ϕn+1 for all n. Since ϕn(ran ∂n+1) ⊂ ran ∂′n+1 and
ϕn(ker ∂n+1) ⊂ ker ∂′n+1, the morphism ϕϕϕ induces morphisms ϕ∗,n : Hn(V) → Hn(W).

A morphism ϕϕϕ : V → W is null-homotopic if there is a sequence of morphisms
hn : Vn → Wn+1 such that ϕn = ∂′n+1 ◦ hn + hn−1 ◦ ∂n:

· · · // Vn+1

∂n+1 //

ϕn+1

²²wwooooooooooooo
Vn

∂n //

ϕn

²²

hn

wwooooooooooooo Vn−1
//

ϕn−1

²²

hn−1

wwooooooooooooo
· · ·

· · · // Wn+1

∂′n+1 // Wn

∂′n // Wn−1
// · · ·

Morphisms ϕϕϕ, ψψψ : V→W are homotopic if ϕϕϕ−ψψψ is null-homotopic.

Lemma 1. If ϕϕϕ and ψψψ are homotopic, then ϕ∗,n = ψ∗,n for all n.

Proof. If ϕϕϕ is null-homotopic, then ϕn(ker ∂n) = (∂′n+1 ◦ hn)(ker ∂n) ⊂ ran ∂′n+1 and
hence ϕ∗,n = 0. The general case follows from this. ¤

Theorem 2. Let complexes V, W and a morphism ϕ : V → W be given

V : · · · // Vn
∂n // Vn−1

// · · · // V0
// // V

ϕ

²²
W : · · · // Wn

∂′n // Wn−1
// · · · // W0

// // W

such that every Vn (n ≥ 0) is projective andW is exact. Then, there exists a morphism
ϕϕϕ : V→W which extends ϕ. Moreover, the extension ϕϕϕ is unique up to homotopy.

1
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Proof. (Existence.) We proceed by induction. Let ϕ−1 = ϕ and ϕ−2 = 0, and suppose
we have constructed ϕ−2, · · · , ϕn−1 satisfying ϕm−2 ◦ ∂m−1 = ∂′m−1 ◦ ϕm−1 for m ≤ n:

Vn
∂n //

²²Â
Â
Â

Vn−1

∂n−1 //

ϕn−1

²²

Vn−2

ϕn−2

²²
Wn

∂′n // Wn−1

∂′n−1 // Wn−2

Since ∂′n−1 ◦ ϕn−1 ◦ ∂n = ϕn−2 ◦ ∂n−1 ◦ ∂n = 0, one has ran ϕn−1 ◦ ∂n ⊂ ran ∂′n by
exactness. Since Vn is projective, there is a morphism ϕn : Vn → Wn which lifts
ϕn−1 ◦ ∂n through ∂′n, i.e., ∂′n ◦ ϕn = ϕn−1 ◦ ∂n.

(Uniqueness.) It suffices to show that any extension ϕϕϕ of ϕ = 0 is null-homotopic.
Let h−1 = 0 and h−2 = 0, and suppose we have constructed h−2, . . . , hn−1 satisfying
ϕm−1 = ∂′m ◦ hm−1 + hm−2 ◦ ∂m−1 for m ≤ n:

Vn
∂n //

ϕn

²²wwo o o o o o o Vn−1

∂n−1 //

ϕn−1

²²

hn−1

wwooooooooooooo
Vn−2

hn−2

wwnnnnnnnnnnnnn

Wn+1

∂′n+1 // Wn

∂′n // Wn−1

Since ∂′n ◦ ϕn = ϕn−1 ◦ ∂n = (∂′n ◦ hn−1 + hn−2 ◦ ∂n−1) ◦ ∂n = ∂′n ◦ hn−1 ◦ ∂n, one
has ran(ϕn − hn−1 ◦ ∂n) ⊂ ran ∂′n+1 by exactness. Since Vn is projective, there is a
morphism hn : Vn → Wn+1 such that ∂′n+1 ◦ hn = ϕn − hn−1 ◦ ∂n. ¤

Definition. For a module V , a projective resolution of V is an exact complex

V : · · · −→ Vn −→ · · · −→ V1
∂1−→ V0

∂0−→ V −→ 0

with all Vn (n ≥ 0) projective.

Definition. For a right R-module M and a left R-module V , define

TorR
n (M, V ) = Hn(M ⊗R V≥0),

where V is any projective resolution of V and M ⊗R V≥0 is the complex

M ⊗R V≥0 : · · · −→ M ⊗R Vn −→ · · · −→ M ⊗R V1
∂1−→ M ⊗R V0 −→ 0.

Note that M ⊗R V≥0 is given by omitting the term M ⊗R V from M ⊗R V.

Remark. Every module V has a projective (or even free) resolution, and the projec-
tive resolution is unique up to homotopy. It follows that the complex M ⊗RV≥0 used
to define TorR

• (M,V ) is also unique up to homotopy and hence TorR
• (M, V ) does not

depends on the choice of a projective resolution of V .
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We recall that the relative tensor product M ⊗R V is defined to be the Z-module
generated by {a⊗ ξ : a ∈ M, ξ ∈ V } and factored out by the relations a⊗ ξ + b⊗ ξ−
(a + b)⊗ ξ, a⊗ ξ + a⊗ η − a⊗ (ξ + η), and ar⊗ ξ − a⊗ rξ. If M is an S-R-module,
then M ⊗R V is naturally a left S-module. We note that the relative tensor product
operation ⊗R is associative and distributive w.r.t. a direct sum.

Examples. M ⊗R R = M and R⊗R V = V .

The module TorR
n (M, V ) can be non-zero because M ⊗R · needs not be a short

exact functor. Namely, V2 ½ V1 does not imply M ⊗R V2 ½ M ⊗R V1. (The symbol
½ is used for injection.) However the functor M ⊗R · is always right exact.

Lemma 3 (Right exactness). Let M be arbitrary. If V2
∂2→ V1

∂1→ V0 → 0 is exact,

then M ⊗R V2
id⊗∂2−→ M ⊗R V1

id⊗∂1−→ M ⊗R V0 → 0 is exact.

Proof. Exactness at M ⊗R V0 is clear. Since (id⊗∂1) ◦ (id⊗∂2) = id⊗(∂1 ◦ ∂2) = 0,

the morphism id⊗∂1 induces a morphism ∂̃1 : M ⊗R V1/ ran(id⊗∂2) ³ M ⊗R V0. It

is left to show that ∂̃1 is injective. For this, it suffices to construct the left inverse σ
of ∂̃1: For

∑
ai⊗ ξi ∈ M ⊗R V0, define σ(

∑
ai⊗ ξi) =

∑
ai⊗ ξ̃i + ran(id⊗∂2), where

ξ̃i ∈ V1 is any lift of ξi. Then, σ is a well-defined morphism with σ ◦ ∂̃1 = id. ¤

Definition. A right S-module N is flat if N ⊗S · is an exact functor.

Note that free modules and projective modules are flat.

Lemma 4. For a right S-module N , the following are equivalent.

(1) N is flat.
(2) ker(id⊗ϕ) = N ⊗S ker ϕ for any morphism ϕ : W → V .
(3) H•(N ⊗S V) = N ⊗S H•(V) for any complex V of S-modules.
(4) N ⊗S V ½ N ⊗S F for every f.g. modules V ⊂ F with F free.

In particular, if N is flat, then for any S-R-module M and any left R-module V ,

N ⊗S TorR
• (M,V ) = TorR

• (N ⊗S M, V ).

Proof. It is routine to check the equivalence of the conditions (1)–(3). (Use right
exactness.) We only prove the implication (4)⇒(1). We first observe that the f.g.
assumption on V and F can be dropped by continuity of a tensor product w.r.t.
inductive limits. Let ι : W1 ↪→ W2 be given. We will show N ⊗S W1 ½ N ⊗S W2.
Take a free S-module F and a surjection π : F ³ W2, and set V = ker π. Then, we
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have a commuting diagram

0 //

²²

ker(id⊗ι)

²²
N ⊗S V // N ⊗S π−1(W1) //

²²

N ⊗S W1
//

²²

0

0 // N ⊗S V //

²²

N ⊗S F // N ⊗S W2

0

which is exact everywhere. By Snake Lemma, one has ker(id⊗ι) = 0. ¤

For the later purpose, we need the following. A (full) subcategory D of modules is
a Serre subcategory if for every short exact sequence 0 → V2 → V1 → V0 → 0, one
has V1 ∈ D ⇔ V0, V2 ∈ D. A morphism ϕ : V → W is an isomorphism modulo D if
both ker ϕ and coker ϕ = V/ ran ϕ are in D.

Lemma 5. Let D be a Serre subcategory. Let V and W be complexes of modules
and ϕϕϕ : V → W be a morphism consisting of isomorphisms modulo D. Then all
ϕ∗,• : H•(V) → H•(W) are also isomorphisms modulo D.

Proof. Consider the following commuting exact diagram:

0 // ker ∂n
� � //

ϕn

²²

Vn
∂n //

ϕn

²²

ran ∂n
//

ϕn−1

²²

0

0 // ker ∂′n
� � // Wn

∂′n // ran ∂′n // 0

Since ϕn is an isomorphism modulo D and ker ϕn−1 ∩ ran ∂n is in D, Snake Lemma
implies that other two column morphisms are also isomorphisms modulo D. Now,
applying Snake Lemma again to the following commuting diagram

0 // ran ∂n+1
� � //

ϕn

²²

ker ∂n
//

ϕn

²²

Hn(V) //

ϕ∗,n

²²

0

0 // ran ∂n+1
� � // ker ∂n

// Hn(W) // 0

one sees that ϕ∗,n is an isomorphism modulo D. ¤



GABORIAU’S THEOREM AFTER LÜCK, SAUER AND THOM 5

2. Dimension function (after Lück)

Let (M, τ) be a finite von Neumann algebra and recall that Proj(M) is a lattice
such that τ(p) + τ(q) = τ(p ∨ q) + τ(p ∧ q) for every p, q ∈ Proj(M). Throughout
this section, a module means a left M-module. Note that

Mor(M⊕m,M⊕n) = Mm,n(M) by the right multiplication.

Definition. A module V is finitely generated and projective (abbreviated as f.g.p.)
if V ∼= M⊕mP for some m ∈ N and some idempotent P ∈Mm(M).

Remark. In the original definition, a module V is projective if every surjection onto
it splits. We note that a concrete realization M⊕mP of V is not among the structures
of V . We can take P to be self-adjoint, because if we set P0 = l(P ), then P = SP0S

−1

for S = I + P0 − P . For the following, we generally assume that P is self-adjoint.

A ring R is said to be “semi-hereditary” if every f.g. R-submodule of a free R-
module is projective. Every von Neumann algebra has this property.

Lemma 6. (1) Every weakly closed submodule V of M⊕m is of the form M⊕mP .
(2) For every ϕ ∈ Mor(M⊕m,M⊕n), both ker ϕ and ran ϕ are f.g.p.
(3) Every f.g. submodule V of M⊕m is projective.

Proof. Ad(1): One observes that V = M⊕mP for the orthogonal projection P in
Mm(M) from L2M⊕m onto the L2-norm closure of V .

Ad(2): ker ϕ = M⊕mP by (1) and ran ϕ ∼= M⊕mP⊥ by Isomorphism Theorem.
Ad(3): If V is f.g., then V = ran ϕ for some ϕ ∈ Mor(M⊕n,M⊕m). ¤

Definition. For a f.g.p. module V ∼= M⊕mP , define dimM V = (Tr⊗ τ)(P ).

Remark. The M-dimension dimM V is well-defined: If M⊕mP ∼= M⊕nQ, then
(Tr ⊗ τ)(P ) = (Tr ⊗ τ)(Q). In particular, if W ∼= V (resp. W ⊂ V ) are f.g.p.
modules, then dimM W = dimM V (resp. dimM W ≤ dimM V ).

Definition. For every module V , we define the M-dimension of V by

dimM V = sup{dimM W : W ⊂ V f.g.p. submodule} ∈ [0,∞].

Note that the definitions are consistent for f.g.p. modules. The dimension function
is continuous in the following sense: if V =

⋃
Vi is a directed union of modules, then

one has dimM V = lim dimM Vi.
For V ⊂ M⊕m, we denote by V the weak closure of V . Although there is a way

defining V purely algebraically for arbitrary module V , we do not elaborate it.

Proposition 7. Let V ⊂M⊕m be a submodule with V = M⊕mP . Then, there exists
a net of projections Pi ∈Mm(M) such that M⊕mPi ⊂ V and Pi → P . In particular,
one has dimM V = dimM V .
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Proof. Let V ⊂ M⊕m be given. Let i = (W, ε) be a pair of f.g. submodule W ⊂ V
and ε > 0. We choose n ∈ N and T ∈ Mn,m(M) such that W = M⊕nT , and δ > 0
such that Pi = χ[δ,1](T

∗T ) ∈ Mm(M) satisfies τ(r(T ) − Pi) < ε. Since Pi = ST for
S = χ[δ,1](T

∗T )(T ∗T )−1T ∗ ∈ Mm,n(M), we have M⊕mPi ⊂ M⊕nT ⊂ V . It is not

hard to see Pi ↗ P . This implies that dimM V ≥ sup dimMM⊕mPi = dimM V . The
converse inequality is trivial. ¤

Theorem 8 (Lück). For every short exact sequence 0 → V2
ι→ V1

π→ V0 → 0, one
has dimM V1 = dimM V0 + dimM V2.

Proof. Let W ⊂ V0 be any f.g.p. submodule. Then, one has π−1(W ) ∼= W ⊕ ι(V2) by
the projectivity of W . Hence,

dimM V1 ≥ dimM π−1(W ) ≥ dimM W + dimM ι(V2).

Taking the supremum over all W ⊂ V0, one gets dimM V1 ≥ dimM V0 + dimM V2.
In particular, we have proved that dimM decreases under a surjection. To prove the
converse inequality, let W ⊂ V1 be any f.g.p. submodule. We realize W as M⊕mP .
Then, one has ι(V2) ∩W = M⊕mQ for some projection Q ∈ Mm(M) with Q ≤ P .

This implies that W/ι(V2) ∩W ∼= M⊕m(P −Q). It follows by Proposition 7 that

dimM W = dimM W/ι(V2) ∩W + dimM ι(V2) ∩W

≤ dimM W/(ι(V2) ∩W ) + dimM ι(V2) ∩W

≤ dimM V0 + dimM ι(V2),

where we have applied the first part to W/(ι(V2) ∩W ) ³ W/ι(V2) ∩W . ¤
We call V a torsion module if dimM V = 0. Torsion modules form a Serre subcat-

egory and every module V has the unique largest torsion submodule VT ⊂ V .

Corollary 9. For every f.g. module V , one has V ∼= VP ⊕VT , where VP is f.g.p. with
dimM VP = dimM V .

Proof. We prove that the f.g. module VP = V/VT is projective (and hence there is
a splitting VP ↪→ V ). Take a surjection ϕ : M⊕m ³ VP . Since ker ϕ/ ker ϕ is a
torsion submodule of M⊕m/ ker ϕ ∼= VP , it is zero. It follows that ker ϕ is closed and
VP

∼= M⊕m/ ker ϕ is projective. ¤
Although we do not use it explicitly, this corollary, in combination with continuity,

is useful to reduce the proof of dimensional equations to those for f.g.p. modules.

Definition. A morphism ϕ : V → W is a dimM-isomorphism if it is an isomorphism
modulo torsion modules, i.e., dimM ker ϕ = 0 = dimM coker ϕ.

Lemma 10. The morphism M ↪→ L2M is a dimM-isomorphism.
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Proof. Let ξ ∈ L2M be given. We view it as a closed square-integrable operator
affiliated with M. Then, for pn = χ[0,n](ξξ

∗) ∈ M, one has pn → 1 and pnξ ∈ M.
We note that pnξ ∈M means that pnξ = 0 in L2M/M. ¤

Remark. From this lemma, one observes that dimM agrees with the von Neumann
dimension function for normal Hilbert M-modules.

3. Definition of the `2-Betti numbers (after Lück)

Definition. For a discrete group Γ, we define the n-th `2-Betti number of Γ by

β(2)
n (Γ) = dimLΓ TorCΓ

n (LΓ,C),

where C is the trivial CΓ-module: f · z =
∑

s∈Γ f(s)z.

Exercise. Prove that β
(2)
n (Γ) = dimLΓ TorCΓ

n (`2Γ,C). (Hint: You have to show that
the functor `2Γ⊗LΓ · is exact and dimLΓ-preserving.)

Example. For d = 1, 2, . . ., one has

β(2)
n (Fd) =

{
d− 1 if n = 1

0 otherwise
.

Proof. Let g1, . . . , gd be the canonical generators of Fd. We consider the complex

V : 0 −→ (CFd)
⊕d ∂1−→ CFd

∂0−→ C −→ 0,

where ∂0(ξ) =
∑

s∈Fd
ξ(s) and ∂1((ξi)

d
i=1) =

∑d
i=1 ξi · gi − ξi. (We define (ξ · s)(t) =

ξ(ts).) We will show that the complex V is exact. We check ker ∂1 = 0. Let χj ∈ `∞Fd

be the characteristic function of the subset of reduced words starting at gj. It is not
hard to see that χj · g−1

i = χj + δi,jδe for every i, j. If (ξi)
d
i=1 ∈ ker ∂1, then for every

s ∈ Γ and j, one has

0 = 〈
d∑

i=1

ξi · gi − ξi, s · χj〉 =
d∑

i=1

〈ξi, s · (χj · g−1
i − χj)〉 = ξj(s)

and (ξi)
d
i=1 = 0. We next check ran ∂1 = ker ∂0. It is easy to see ∂0 ◦ ∂1 = 0. Let

χ∨i ∈ `∞Fd be the characteristic function of the subset of reduced words ending at g−1
i .

We observe that χi−s ·χ∨i is finitely supported for every s ∈ Fd. (Indeed, it suffices to
check this for g1, . . . , gd.) Moreover, since χ∨i · gi−χ∨i is the characteristic function of

the reduced words ending at other than g±1
i , one has

∑d
i=1 χ∨i ·gi−χ∨i = (d−1)1+δe.

Now, suppose ξ ∈ ker ∂0. Then, since

ξ = −(
∑

s6=e

ξ(s)δe) +
∑

s6=e

ξ(s)δs =
∑

s6=e

ξ(s)(δe − δs),
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ξi = ξ ∗ χ∨i ∈ CΓ by the above observation, and since ξ ∗ 1 = 0, one has

∂1((ξi)
d
i=1) =

d∑
i=1

ξi · gi − ξi =
d∑

i=1

ξ ∗ (χ∨i · gi − χ∨i ) = ξ.

We have proved that V is a projective resolution of C. Since

LFd ⊗CFd
V≥0 : 0 −→ (LFd)

⊕d ∂1−→ LFd −→ 0,

one has

TorCFd
n (LFd,C) =




LFd/ ran ∂1 if n = 0

ker ∂1 if n = 1
0 if n ≥ 2

.

Since λ(s)− λ(t) ∈ ran ∂1 and λ(t) → 0 weakly as t → ∞, one has λ(s) ∈ ran ∂1 for

every s ∈ Fd and hence ran ∂1 = LFd. It follows that β
(2)
0 (Fd) = 0 and β

(2)
1 (Fd) =

dimLFd
ker ∂1 = d− dimLFd

ran ∂1 = d− 1. ¤
Below, we sketch an argument showing that the above definition of `2-Betti numbers

is consistent with another(?). We denote by F(Γ, X) the set of functions from a set
Γ into X. Now Γ be a discrete group and consider `Γ as a right Γ-module. The is a
natural complex

0 −→ `2Γ
∂0−→ F(Γ, `2Γ)

∂1−→ F(Γ2, `2Γ) −→ · · · ,

where (∂0f)(s) = f − f · s and (∂1b)(s, t) = b(t)− b(st) + b(s) · t, etc. We then define
the `2-cohomology Hn(Γ, `2Γ) by Hn(Γ, `2Γ) = ker ∂n/ ran ∂n+1. Since ∂n commutes
with the LΓ-action on `2Γ, the `2-cohomology Hn(Γ, `2Γ) is naturally an LΓ-module.

We define β
(2)
n (Γ) = dimLΓ Hn(Γ, `2Γ). Let us calculate β

(2)
n (Γ) for n = 0, 1. Since

H0 ⊂ `2Γ is the subspace of constant functions, one has β
(2)
0 (Γ) = |Γ|−1. We note

that D(Γ) = ker ∂1 is the space of derivations and D0(Γ) = ran ∂0 is the space of

inner derivations. To see what β
(2)
1 (Γ) is, we assume that Γ is generated by a finite

subset {s1, . . . , sd}. Then, there is an LΓ-module map

D(Γ) 3 b 7−→ (b(si))
d
i=1 ∈

d⊕
i=1

`2Γ,

which is an isomorphism onto a closed subspace. We note that D0(Γ) is closed in⊕d
i=1 `2Γ iff Γ is finite or non-amenable, and that dimLΓ D0(Γ) = dimLΓ(ker ∂0)

⊥ =

1−|Γ|−1. Hence, one has dimLΓ D(Γ) = β
(2)
1 (Γ)+dimLΓ D0(Γ) = β

(2)
1 (Γ)−β

(2)
0 (Γ)+1.

We view ∂0 as a map from `2Γ into
⊕d

i=1 `2Γ and consider

∂∗0 :
d⊕

i=1

`2Γ 3 (ξi) 7−→
∑

i

ξi − ξi · s−1
i ∈ `2Γ.



GABORIAU’S THEOREM AFTER LÜCK, SAUER AND THOM 9

Lemma 11. One has (ker ∂∗0 ∩
⊕
CΓ)⊥ = D(Γ).

Proof. We note that the scalar product 〈 · , · 〉 is defined consistently on CΓ×F(Γ,C)
and on `2Γ × `2Γ. Moreover, F(Γ,C) is the algebraic dual of CΓ w.r.t. this scalar
product. Suppose that b ∈ D(Γ). It is not hard to show that b = f − f · s for some
f ∈ F(Γ,C). It follows that for every ξ ∈ ker ∂∗0 ∩

⊕
CΓ, one has

〈ξ, b〉 =
∑

〈ξi, b(si)〉 =
∑

i

〈ξi − ξi · s−1
i , f〉 = 0.

Conversely, if b ∈ `2Γ is such that b ⊥ (ker ∂∗0∩
⊕
CΓ), then the linear functional 〈 · , b〉

on
⊕
CΓ factors through ∂∗0 and there is f ∈ F(Γ,C) such that 〈ξ, b〉 = 〈∂∗0(ξ), f〉

for every ξ ∈ ⊕
CΓ. It follows that b(s) = f − f · s and b ∈ D(Γ). ¤

Since (ker ∂∗0)
⊥ = ran∂0 = D0(Γ), one has

D(Γ)/D0(Γ) ∼= (ker ∂∗0 ∩
⊕

CΓ)⊥ ª (ker ∂∗0)
⊥

= ker ∂∗0 ∩ (ker ∂∗0 ∩
⊕

CΓ)⊥ ∼= TorCΓ
1 (`2Γ,C).

The last isomorphism follows from the following observation:

V : · · · −→
d⊕

i=1

CΓ
∂∗0−→ CΓ −→ C

is a free resolution of the trivial left CΓ-module C and

`2Γ⊗CΓ V≥0 : · · · −→
d⊕

i=1

`2Γ
∂∗0−→ `2Γ −→ 0

with ran ∂∗1 = `2Γ⊗CΓ ker(∂∗0 |LCΓ) ⊂ CΓ⊗CΓ ker(∂∗0 |LCΓ) = ker(∂∗0 |LCΓ).

4. Rank metric (after Thom)

Definition. Let V be a left M-module. For ξ ∈ V , we define its rank norm by

[ξ] = inf{τ(p) : p ∈ Proj(A), pξ = ξ} ∈ [0, 1].

We record several basic properties of the rank norm.

Lemma 12. For a left M-module V , the following are true.

(1) Triangle inequality: [ξ + η] ≤ [ξ] + [η] for every ξ, η ∈ V .
(2) [xξ] ≤ min{[x], [ξ]} for every x ∈M and ξ ∈ V .
(3) VT = {ξ ∈ V : [ξ] = 0}.
(4) A submodule W ⊂ V is dense in rank norm if and only if dimM V/W = 0.
(5) Every ϕ ∈ Mor(V,W ) is a rank contraction: [ϕ(ξ)] ≤ [ξ].
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(6) For every ϕ ∈ Mor(V, W ), η ∈ ran ϕ and ε > 0, there exists ξ ∈ ϕ−1(η) such
that [η] ≤ [ξ] + ε.

Proof. The triangle inequality follows from the fact that τ(p ∨ q) ≤ τ(p) + τ(q).
The second assertion follows from the fact that pξ = ξ implies xpξ = ξ and [xξ] ≤
τ(l(xp)) ≤ τ(p). For the third assertion, we observe that [ξ] = 0 iff Mξ is a torsion
submodule. Indeed, the “if” part is rather easy and the “only if” part follows by
considering the morphism ϕ : M 3 x 7→ xξ ∈ V . Since ker ϕ is a left ideal with
dimM ker ϕ = 1, i.e., L = M, Proposition 7 implies that there is a net pi ∈ L of
projections such that pi → 1. This means [ξ] = 0. The rest are trivial. ¤

We recall that the completion of a metric space (X, d) is the metric space of all
equivalence classes of Cauchy sequences in X. Here, two Cauchy sequences (xn)∞n=1

and (yn)∞n=1 are equivalent if d((xn), (yn)) := limn d(xn, yn) = 0.

Definition. The rank completion of a left M-module V is the completion C(V ) of
V w.r.t. the rank metric d, where d(ξ, η) = [ξ − η] for ξ, η ∈ V . We observe that

C(V ) = {Cauchy sequences in V }/{Null sequences }
and that C(V ) is naturally a left M-module (thanks to Lemma 12).

The rank metric is actually a pseudo-metric. More precisely, it is a metric on
V/VT . The constant “embedding” c : V → C(V ) is a dimM-isomorphism and it
induces a canonical inclusion V/VT ↪→ C(V ). Moreover, C(V ) is the unique torsion-
free complete M-module containing V/VT as a dense submodule. Indeed, one has:

Lemma 13. Let V, W be M-modules with W torsion-free and complete. Then, every
ϕ ∈ Mor(V,W ) extends to ϕ̃ ∈ Mor(C(V ),W ), i.e., ϕ̃ ◦ c = ϕ.

Proposition 14. The rank completion c is an exact functor.

Proof. Let a short exact sequence 0 −→ V2
∂2−→ V1

∂1−→ V0 −→ 0 be given.
Exactness at C(V0). Let ξ ∈ C(V0) and choose a representing Cauchy sequence

(ξn)n in V0 such that d(ξn, ξn+1) < 2−(n+1). We will construct η1, η2, . . . such that
∂1(ηn) = ξn and d(ηn, ηn+1) < 2−n. Suppose η1, . . . , ηn have been chosen. Lift ξn+1 −
ξn ∈ V0 to ζn+1 ∈ V1 with [ζn+1] ≤ [ξn+1 − ξn] + 2−(n+1). Set ηn+1 = ηn + ζn+1 and we
are done. Now the sequence (ηn)n is Cauchy in V1 and hence converges to an element
η in C(V1) such that ∂1(η) = ξ.

Exactness at C(V1). It is clear that C(∂1) ◦ C(∂2) = 0 by continuity. Let
ξ ∈ ker C(∂1) be given and choose (ξn)n in V1 such that ξn → ξ. Since ∂1(ξn) →
C(∂1)(ξ) = 0, the sequence (∂1(ξn))n is null. Hence, one can lift (∂1(ξn))n to a null
sequence (ηn)n in V1. It follows that (ξn−ηn)n is a Cauchy sequence in ker ∂1 = ran ∂2.
Therefore,

ξ = lim
n→∞

ξn = lim
n→∞

(ξn − ηn) ∈ ran ∂2 = ran C(∂2),
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where we used the result of the previous paragraph for the last equality.
Exactness at C(V2). Since ∂2 is an isometry, C(∂2) is an isometry as well. Since

C(V2) does not have a non-zero torsion element, C(∂2) is injective. ¤

5. Gaboriau’s theorem (after Sauer and Thom)

Proposition 15. Let M ⊂ N be finite von Neumann algebras with τM = τN |M.
Then, N is a flat M-module and dimM V = dimN N ⊗M V for any M-module V .

Proof. We use Lemma 4 to prove flatness. Let V ⊂ M⊕m be a f.g. submodule. It
follows that there is T ∈Mn,m(M) such that V = M⊕nT . Let P be the left support
of T and observe that V = M⊕nT 3 ξT 7→ ξP ∈ M⊕nP is an isomorphism. Since
M⊕nP is a direct summand of M⊕n, one has the following kosher identifications

N ⊗M V ∼= N ⊗M (M⊕nP ) ∼= N⊕nP ∼= N⊕nT ⊂ N⊕m ∼= N ⊗MM⊕m.

It follows from Lemma 4 that N is flat.
Since the dimension function is continuous w.r.t. inductive limits, it suffices to

check the identity dimM V = dimN N ⊗M V for a f.g. V . Since M⊕mP ↪→ V implies
N⊕mP ↪→ N ⊗M V , one has dimM V ≤ dimN N ⊗M V . To prove the converse
inequality, take a surjection π : M⊕n ³ V . Then, id⊗π : N⊕n ³ N ⊗M V is also a
surjection such that ker(id⊗π) = N ⊗M ker π by flatness. It follows that

dimN N ⊗M V = n− dimN ker(id⊗π) ≤ n− dimM ker π = dimM V

by the previous inequality. ¤
Let Γ y (X, µ) be an essentially-free probability-measure-preserving action. Let

A = L∞(X,µ), M = LΓ and N = A o Γ. Let R0 ⊂ N (resp. R ⊂ N ) be the
C-algebra generated by A and Γ (resp. by A and the full group [Γ]). Then,

A ⊂ R0 ⊂ R ⊂ N
and A is a left R-module: aϕ · f = aϕ∗(f) for a, f ∈ A and ϕ ∈ [Γ]. Now, Gaboriau’s

theorem that β
(2)
• (Γ) is an invariant of [Γ] follows from the following equalities:

β(2)
• (Γ) = dimM TorCΓ

• (M,C)

= dimN N ⊗M TorCΓ
• (M,C) by Proposition 15

= dimN TorCΓ
• (N ⊗MM,C) since N is flat over M

= dimN TorR0
• (N ,A) (♠)

= dimN TorR
• (N ,A) (♥)

The proof of (♠) is rather routine: Since N is also a right R0-module and R0 is a free
left CΓ-module (Consider the conditional expectation onto A), one has

TorCΓ
• (N , V ) = TorR0

• (N , R0 ⊗CΓ V )
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for any CΓ-module V . Indeed, if V is a projective resolution of V , then R0 ⊗CΓ V is
a projective resolution of R0 ⊗CΓ V with N ⊗R0 (R0 ⊗CΓ V) ∼= N ⊗CΓ V. We then
observe that R0⊗CΓC ∼= A as an R0-module. The proof of (♥) is more involved, but
reduces to the fact that R0 ⊂ R is dense in an appropriate sense.

We write [ξ]A (resp. [ξ]N ) for the rank norm w.r.t. A (resp. N ) and note that
[ξ]N ≤ [ξ]A. In particular, one has [x]A = inf{ τ(p) : p ∈ Proj(A), px = x} for
x ∈ N . For x ∈ N , we define

|[x]|A = sup{ [xp]A/[p]A : p ∈ Proj(A)} ∈ [0,∞].

We record several basic properties of this norm.

Lemma 16. (1) |[αx]|A = |[x]|A for every α ∈ C \ {0} and x ∈ N .
(2) |[v]|A = 1 for every non-zero pseudo-normalizer v of A in N .
(3) |[x + y]|A ≤ |[x]|A + |[y]|A and |[xy]|A ≤ |[x]|A|[y]|A for every x, y ∈ N .
(4) |[x]|A < ∞ for every x ∈ R.
(5) For every x ∈ R, there is a sequence (xn)n in R0 such that [xn− x]A → 0 and

sup |[xn]|A < ∞.
(6) If V is an R0-module, then [xξ]A ≤ |[x]|A[ξ]A for every x ∈ R0 and ξ ∈ V .

The same thing holds for R.

Lemma 17. Let V be a left R0-module. Then, the rank completion C(V ) w.r.t. A
is naturally a left R-module. Moreover, C is a natural functor from the category of
R0-modules into the category of complete R-modules.

Proof. By the previous lemma, one knows that C(V ) is naturally an R0-module. Let
x ∈ R and ξ ∈ C(V ) be given. Choose a sequence (xn)n in R0 such that [x−xn]A → 0.
Then, (xnξ)n is a Cauchy sequence in C(V ) and has a limit xξ in C(V ). We note
that the limit is independent of the choice of (xn)n. Moreover, if |[xn]|A is bounded
and [ym − y]A → 0, then [xnym − xy]A → 0. This shows (xy)ξ = x(yξ). ¤

Lemma 18. Let V be a left R0-module. Then the constant embedding

id⊗c : N ⊗R0 V → N ⊗R0 C(V )

is a dimN -isomorphism. The same thing holds for R.

Proof. Suppose that
∑n

i=1 xi ⊗ ξi ∈ ker(id⊗c) and ε > 0 be given. Then, one has

n∑
i=1

xi ⊗ ξi =
∑

j

bjrj ⊗ ηj − bj ⊗ rjηj in N ⊗C C(V ).

Choose pj ∈ Proj(A) such that p⊥j ηj ∈ V and n
∑

(1 + |[rj]|A)τ(pj) < ε. It follows
that there is p ∈ Proj(A) such that ppj = pj, prjpj = rjpj and τ(p) < ε/n. Since



GABORIAU’S THEOREM AFTER LÜCK, SAUER AND THOM 13

∑
j bjrj ⊗ p⊥j ηj − bj ⊗ rjp

⊥
j ηj is zero in N ⊗R0 V , subtracting it from the both sides

of the above equation, we may assume that

n∑
i=1

xi ⊗ ξi =
∑

j

bjrj ⊗ pjηj − bj ⊗ rjpjηj in N ⊗C C(V ).

It follows that
∑

xi⊗ ξi =
∑

xi⊗ pξi in N ⊗C C(V ), and a fortiori in N ⊗C V since
N ⊗C V ⊂ N ⊗C C(V ) (recall any module over a field is free). Hence, one has

n∑
i=1

xi ⊗ ξi =
n∑

i=1

xi ⊗ pξi =
n∑

i=1

xip⊗ ξi in N ⊗R0 V .

This implies that [
∑n

i=1 xi ⊗ ξi]N ≤ ∑
[xip]N < ε. Since ε > 0 was arbitrary, one

sees that ker(id⊗c) is a torsion submodule. That ran(id⊗c) is dense in N ⊗R0 C(V )
follows from the fact that [x⊗ ξ]N ≤ [ξ]A for every x ∈ N and ξ ∈ C(V ). ¤

We omit the proof of the next lemma, which is similar to that of the previous one.

Lemma 19. Let V be a left R-module, then the surjection

N ⊗R0 V ³ N ⊗R V

is a dimN -isomorphism.

We are now in position to complete the proof of Gaboriau’s theorem.

Proof of (♥). Let V (resp. W) be a projective resolution of A as an R0-module (resp.
as an R-module). Then, by Theorem 2 (and Proposition 14), the identity morphism
idA : A → A (resp. the constant embedding c : A → C(A)) extends to a morphism
ϕϕϕ : V→W (resp. a morphism ψψψ : W→ C(V)):

V : · · · // Vn
//

ϕn

²²

· · · // V0
// //

ϕ0

²²

A
idA

W : · · · // Wn
//

ψn

²²

· · · // W0
// //

ψ0

²²

A
c

²²
C(V) : · · · // C(Vn) //

ϕ̃n

²²

· · · // C(V0) // //

ϕ̃0

²²

C(A)

idC(A)

C(W) : · · · // C(Wn) // · · · // C(W0) // // C(A)
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By the uniqueness part of Theorem 2, the compositions ψψψ◦ϕϕϕ and ϕ̃ϕϕ◦ψψψ are homotopic
to the morphisms of the constant embeddings. Taking tensor products, one has

N ⊗R0 V≥0 : · · · // N ⊗R0 Vn
//

id⊗ϕn

²²

· · ·

N ⊗R W≥0 : · · · // N ⊗R Wn
//

id⊗ψn

²²

· · ·

N ⊗R C(V)≥0 : · · · // N ⊗R C(Vn) //

id⊗ϕ̃n

²²

· · ·

N ⊗R C(W)≥0 : · · · // N ⊗R C(Wn) // · · ·
The morphism from N ⊗R0 V≥0 to N ⊗R C(V)≥0 and the morphism from N ⊗RW≥0

to N ⊗R C(W)≥0 are homotopic to the morphisms of constant embeddings. Since
constant embeddings are dimN -isomorphisms by Lemmas 18 and 19, the induced
morphisms on the homology modules are all dimN -isomorphisms by Lemma 5. It
follows that ϕ∗,• : TorR0

• (N ,A) → TorR
• (N ,A) are all dimN -isomorphisms. ¤

Let p ∈ N be a projection and V be an N -module. It is not hard to check that
pN⊗NV ∼= pV and dimpNp pN⊗NV = τ(p)−1 dimN V , where one uses the normalized
trace τ(p)−1τ( · ) for pN p. If p ∈ Proj(A) is a projection such that

∑
i vipv

∗
i = 1 for

some pseudo-normalizers v1, . . . , vn, then N ⊗R V ∼= N p⊗pRp pV for every R-module
V . whose central support in N is 1. It follows that

dimN TorR
• (N ,A) = τ(p) dimpNp pN ⊗N TorR

• (N ,A)

= τ(p) dimpNp TorpRp
• (pN p, pA).

With little more analysis, one can show the above equation for every p ∈ Proj(A)
with full central support.

References

[1] W. Lück, L2-invariants: theory and applications to geometry and K-theory. A Series of Modern
Surveys in Mathematics 44. Springer-Verlag, Berlin, 2002.

[2] R. Sauer, L2-Betti numbers of discrete measured groupoids. Internat. J. Algebra Comput. 15
(2005), 1169–1188.

[3] A. Thom, L2-invariants and rank metric. Preprint. arXiv:math/0607263.

E-mail address: narutaka@ms.u-tokyo.ac.jp


