
ORBIT EQUIVALENCE AND OPERATOR ALGEBRAS
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Abstract. This treatise is based on the lecture given by Narutaka Ozawa at

the University of Tokyo during the winter semester 2006-2007. It includes an

elementary theory of orbit equivalence via type II1 von Neumann algebras,
Lück’s dimension theory [6] and its application to L2 Betti numbers [5], con-

vergence of the semigroup associated to a derivation and a theorem of Popa

on embeddability of subalgebras.
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1. Introduction

1.1. Orbit equivalence.

Definition 1.1. Let Y be a topological space, BY the σ-algebra of the Borel sets of
Y . When Y is a separable complete metric space, (Y,BY ) (or, by abuse of language,
Y ) is said to be a standard Borel space (standard σ-algebra).

Remark 1.2. When X is a standard Borel space, X is either (at most) countable
or isomorphic to the closed interval [0, 1].

2000 Mathematics Subject Classification. 46L10;37A20.
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Definition 1.3. A standard Borel space with a Borel probability measure is said
to be a (standard) probability space. A point x of a probability space (X,µ) is said
to be an atom of (X,µ) when µ(x) > 0. A probability space (X,µ) is said to be
diffuse when it has no atom.

Example 1.4. (Examples of standard probability spaces)
(1) The infinite product (

∏
n∈N {0, 1} ,⊗nµn), where µn is a probability mea-

sure on {0, 1} for each n ∈ N is standard.
(2) When G is a separable compact group, the normalized Haar measure on G

makes G into a standard probability space.

When (X,µ) is a probability space, we obtain a (w∗-) separable von Neumann
algebra L∞X and a normal state (also denoted by µ) on it. To each isomorphism
φ : (X,µ) → (Y, ν) of probability spaces, we obtain an isomorphism φ∗ : L∞Y →
L∞X, f 7→ f ◦ φ satisfying µ ◦ φ∗ = ν.

Theorem 1.5. (von Neumann)
(1) When (X,µ) and (Y, ν) are diffuse probability spaces, there is an isomor-

phism (L∞(X,µ), µ) ' (L∞(Y, ν), ν).
(2) For each isomorphism σ : L∞Y → L∞X with µσ = ν, there exists a Borel

isomorphism φ : X → Y such that φ∗µ = ν and φ∗ = σ.

Proof. (Outline): (1) We may assume that Y =
∏

N {0, 1} , µ = ⊗N( 1
2 ,

1
2 ). Since X

is diffuse, we have a decompositionX = X0

∐
X1 by Borel sets with µ(X0) = 1

2 . We
can continue this procedure as X0 = X00

∐
X01, µ(X00) = 1

4 , so on. The partition
by X∗∗··· can be made fine enough because there is a separating family (Bn)n∈N in
BX , which will imply the desired isomorphism between L∞X and L∞Y compatible
with the normal states.

(2) Let λ denote the Lebesgue measure on the closed interveal [0, 1]. Since there
exists an isomorphism (L∞Y, ν) ' (L∞[0, 1], λ), we may assume that Y = [0, 1]
and ν = λ here. For each r ∈ Q ∩ [0, 1], put Er = σ(χ[0,r)). Define a mapping
φ : X → [0, 1] by φ(x) = inf {r : x ∈ Er}. The inverse image of [0, t) under φ is
equal to ∪r<tEr. The latter is obviously Borel, which means that φ is a Borel
map. By σ(χ[0,r)) = φ∗(χ[0,r)) for r ∈ Q ∩ [0, 1], we have σ = φ∗ and φ∗µ =
Lebesgue measure.

It remains to replace φ by a Borel isomorphism. Let (Bn)n∈N be a separating
family of X. For each n, there exists Fn ∈ BY such that φ∗χFn = χBn . Thus
N = ∪nBn4φ−1Fn is a null set. On X \N , the condition x ∈ Bn is equivalent to
φ(x) ∈ Fn. If x and y are distinct points of X \N , there exists an integer n such
that x ∈ Bn while y 6∈ Bn. Thus φ(x) 6= φ(y) and φ is injective on X \N . We may
assume that N and Y \ φ(X \N) are uncountable so that there is an isomorphism
of N to Y \ φ(X \N). �

Let Γ y (X,µ) be a measure preserving action by a discrete countable group.
(We may assume that it acts by Borel isomorphisms.) Let s be an element of Γ.
When f is a complex Borel function defined on X, put αs(f) : x 7→ f(s−1x). This
induces a µ-preserving ∗-automorphism on L∞X. This way we obtain an action
α : Γ y L∞(X,µ) preserving the state µ.

Definition 1.6. Two actions Γ y (X,µ) and Γ y (Y, ν) are said to be conjugate
when there exists an probability space isomorphism φ : (X,µ) → (Y, ν) witch is a.e.
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Γ-equivariant. This is equivalent to the existence of a Γ-equivariant state preserving
isomorphism σ : L∞(Y, ν) → L∞(X,µ).

Definition 1.7. Let Γ y (X,µ) be an action by measure preserving Borel iso-
morphisms. The subset RΓy(X,µ) = {(sx, x) : s ∈ Γ} of X ×X is called the orbit
equivalence relation of the action.

Definition 1.8. Two actions Γ y (X,µ) and Λ y (Y, ν) are said to be orbit
equivalent when there exists a measure preserving Borel isomorphism φ : Y → X
satisfying Γφ(y) = φ(Λy) for a.e. y ∈ Y .

Definition 1.9. A partial Borel isomorphism on X is a triple (φ,A,B) consisting
of A,B ∈ BX and a Borel isomorphism φ of A onto B.

Definition 1.10. A measure preserving standard orbit equivalence is a subset R
of X ×X satisfying the following conditions:

(1) R is a Borel subset with respect to the product space structure.
(2) R is an equivalence relation on X.
(3) For each x ∈ X, the R-equivalence class of x is at most countable.
(4) Any partial Borel isomorphism φ whose graph is contained in R, φ preserves

measure.

Theorem 1.11. (Lusin) Let X,Y be standard spaces.

(1) When φ : X → Y is a countable-to-one Borel map, φ(X) is Borel. More-
over there exists a Borel partition X =

∐
Xn such that φ|Xn is a Borel

isomorphism onto φ(Xn).
(2) When R is a standard orbit equivalence, R = ∪nG (φn) where φn is a

partial Borel isomorphism for each n.

Lemma 1.12. Let A be a subset of a standard space X, φ a mapping of A into X.
φ and A are Borel if and only if the graph G (φ) = {(φx, x) : x ∈ A} of φ is Borel
in X ×X.

Proof. ⇐ is an immediate consequence of Theorem 1.11.
⇒: Let (Bn)n∈N be a separating family of X. The condition y 6= φ(x) is equiv-

alent to (y, x) ∈ ∪n({Bn)× φ−1(Bn). Thus G (φ) = {(∪({Bn)× φ−1(Bn)). �

1.2. Preliminaries on von Neumann algebras. Let H be a Hilbert space,
B(H) the involutive Banach algebra of the continuous endomorphisms of H, A
a ∗-subalgebra of B(H). (typically A generates a von Neumann algebra M of
our interest.) In the following A is often assumed to admit a cyclic tracial vector
ξτ ∈ H, i.e. ‖ξτ‖ = 1, Aξτ is dense in H, and that the vector state τ(a) = 〈aξτ , ξτ 〉
is tracial.

Remark 1.13. A state τ is tracial means that by definition the two sesquilinear
forms τ(ab∗) and τ(b∗a) in (a, b) are same. To check this property, by polarization
it is enough to show τ(aa∗) = τ(a∗a). Under the assumption above ξτ becomes a
separating vector for A′′. Indeed, aξτ = 0 implies τ(bc∗a) = 0 for b, c ∈ A, which
means τ(c∗ab) = 0 and in turn 〈aH,H〉 = 0.

Notation. Let â denote aξτ . (Hence we have 〈â, b̂〉 = τ(ab∗).)
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Remark 1.14. We have a conjugate linear map J : H → H determined by â 7→ â∗.
Then we have JaJb̂ = b̂a∗ which implies JAJ ⊂ A′ and JA′′J ⊂ A′. On the other
hand, for any x ∈ A′ and a ∈ A

〈Jxξτ , aξτ 〉 = 〈Jaξτ , xξτ 〉 = 〈a∗ξτ , xξτ 〉 = 〈x∗ξτ , aξτ 〉.
Thus Jxξτ = x∗ξτ , thence ξτ is a cyclic tracial vector for A′. The J-operator for
(A′, ξτ ) is exactly equal to the original J . Doing the same argument as above, we
obtain JA′J ⊂ A′′.

Remark 1.15. The map A′′ → A′, a 7→ JaJ is a conjugate linear ∗-algebra isomor-
phism.

1.3. Crossed products. Let Γ y (X,µ) be a measure preserving action of a
discrete group on a standard probability space X. Recall that we have an action
Γ y L∞X induced by αs(f) = f(s−1−) for s ∈ Γ.

On the other hand, we get a unitary representation π : Γ y L2(X,µ) given by
the same formula πsf = αsf as the one on L∞X. Note that πsfπ∗s = αs(f) for
s ∈ Γ and f ∈ L∞X.

Definition 1.16. Let λ : Γ y B(`2Γ) denote the regular representation. The von
Neumann algebra L∞X o Γ on L2(X)⊗ `2Γ is generated by the operators π⊗λ(s)
for s ∈ Γ and f ⊗ 1 for f ∈ L∞X is called the crossed product of L∞X by α.

Let A denote {
∑

finite fs ⊗ 1 · π ⊗ λ(s)} ⊂ L∞XoΓ. By abuse of notation, in the
following f stands for f⊗1 and λ(s) for π⊗λ(s). Now ξτ = 1⊗δe ∈ L2X⊗`2Γ is a
cyclic tracial vector for A. Indeed, it is obviously cyclic, while τ(fλ(s)) = δe,sµ(f)
implies the tracial property:

τ(fλ(s)gλ(t)) = δst,efαs(g) = δts,eαt(f)g = τ(gλ(t)fλ(s)).

Note that the above expressions are nonzero only if s = t−1.
Let V denote the isometry L2(X) → L2(X) ⊗ `2Γ, f 7→ f ⊗ δe. Then the

contraction E : L∞X o Γ → B(L2(X)), a 7→ V ∗aV has image L∞X, i.e. E is a
conditional expectation (see Definition 2.6) of L∞X o Γ onto L∞X. Note that
τ = µ ◦ E.

1.4. von Neumann algebras of orbit equivalence. Let R be a standard orbit
equivalence on X. Hence it is a countable disjoint union

∐
n G (φn) of the graphs

of partial isometries. We may assume that φ0 = IdX . We will define a “Borel
probability measure” on R.

Observe that when f : R → C is a Borel function, X → C, x 7→
∑
y f(y, x) =∑

n f(φnx, x) is also Borel. Define a measure ν on R by putting∫
R

ξdν =
∫
X

∑
yRx

ξ(y, x)dµ(x)

for each Borel function ξ on R. Thus when B is a Borel subset of R, ν(B) =∫
|π−1
r (x) ∩B|dµ(x) for the second projection πr : R → X, (y, x) 7→ x.
We get a pseudogroup JRK whose underlying set is

{φ : partial Borel isomorphism, G (φ) ⊂ R} .
The composition φ ◦ ψ of φ and ψ is defined as the composition of the maps on
ψ−1 dom(φ). In particular, the identity maps of the Borel sets are the units of JRK,
and φ ∈ JRK implies φ−1 ∈ JRK.
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For each φ ∈ JRK, define a partial isometry vφ ∈ B(L2(R, ν)) by vφξ(y, x) =
ξ(φ−1y, x). Thus vφvψ = vφ◦ψ. On the other hand, the set

{
χG (φ) : φ ∈ JRK

}
is

total in L2(R, ν) and vφχGψ = χGφ◦ψ. Moreover, we have

〈vφχGψ, χG θ〉 =
∫

G (φψ) ∩ G (θ)dν = µ {x : φψx = θx} = 〈χGψ, vφ−1χG θ〉,

which implies v∗φ = vφ−1 .

Definition 1.17. The von Neumann algebra vNR on L2(R, ν) generated by {vφ : φ ∈ JRK}
is called the von Neumann algebra of R.

ξτ = χG (IdX) is a cyclic tracial vector for vNR: in fact,

τ(vφψ) = µ({x : φ ◦ ψ(x) = x})
= µ({y : ψφy = y}) (y = φ−1x)

= τ(vψφ).

Note that L∞X is contained “in the diagonal” of vNR, subject to the relation
vφf = (f◦φ−1)vφ. We have a conditional expectation E : vNR → L∞X, a 7→ V ∗aV
implemented by the “diagonal inclusion” isometry V : L2X → L2R. We have
E(vφ) = χ{x:φx=x}.

2. Elementary theory of orbit equivalence

2.1. Essentially free action of countable discrete groups. Suppose we are
given a measure preserving action Γ y (X,µ) by a discrete group on a standard
probability space. As in the last section we get two inclusions of von Neumann
algebras:

(1) L∞X ⊂ L∞X o Γ in B(L2X ⊗ `2Γ).
(2) L∞X ⊂ vN(RΓy(X,µ)) in B(L2R).

In general these are different, e.g. when the action is trivial.

Definition 2.1. An action Γ y (X,µ) is said to be essentially free when the fixed
point set of s has measure 0 for any s ∈ G \ {e}.

Theorem 2.2. When the action Γ y (X,µ) is essentially free, the above two
inclusions of von Neumann algebras are equal.

Remark 2.3. Jv̂φ = ˆvφ−1 implies Jξ(x, y) = ξ(y, x).

Proof of the theorem. Identification of the representation Hilbert spaces is given by
U : L2X⊗`2Γ → L2R, g⊗δt 7→ g·χG (t). When we have an equality fχG (s) = gχG (t)

of nonzero vectors in L2R, smust be equal to t by the essential freeness assumption.
Now,

U∗vsU(g ⊗ δt) = U∗αs(g)vsχG (t) = U∗αs(g)χG (st) = αs(g)⊗ δst.

This shows U∗vsU = π ⊗ λ(s). On the other hand, U∗fU = f ⊗ 1 is trivial. Thus,
via U , L2X o Γ is identified to L2R. �
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Definition 2.4. Let M be a finite von Neumann algebra, A a von Neumann
subalgebra (in the following A is often assumed to be commutative). The sub-
set NA = {u ∈ UM : uAu∗ = A} of UM is called the normalizer of A. Likewise
N pA = {v ∈M : partial isometry, v∗v, vv∗ ∈ A, vAv∗ = Avv∗} is called the partial
normalizer of A.

Lemma 2.5. For any v ∈ N pA, there exist u ∈ NA and e ∈ Proj(A) such that
v = ue. For any φ ∈ JRK, there exists a Borel isomorphism φ̃ whose graph is
contained in R and φ̃|domφ = φ.

Proof. We prove the second assertion as the demonstration of the first one is an
algebraic translation of it. Put E = domφ and F = ranφ. When µ(E4F ) = 0,
there is nothing to do. When µ(E4F ) 6= 0, ∃k > 0 such that φk(E \ F ) ∩ (F \ E)
is non-null. If not, φk(E \ F ) ⊂ F ∩ {(F \ E) = F ∩ E ⊂ E up to a null set and
φk+1 can be defined a.e. on E \ F . Thus we would get a sequence (φk(E \ F ))k∈N
of subsets with nonzero measure. For any pair m < n, φm(E \ F ) ∩ φn(E \ F ) is
equal to φm(φn−m(E \ F ) ∩ (E \ F )) which is null. This contradicts to µ(X) = 1.

Now, given such k, put φ1 = φ
∐

(φ−k|φk(E\F )∩(F\E)). Then we can use the
maximality argument (Zorn’s lemma) to obtain a globally defined Borel isomor-
phism. �

2.2. Inclusion of von Neumann algebras.

Definition 2.6. Let M ⊂ N be an inclusion of von Neumann algebras. A unital
completely positive map E : N → M is said to be a conditional expectation when
it satisfies E(axb) = aE(x)b for a, b ∈M and x ∈ N .

Fact. When N is finite with a faithful tracial state τ , there exists a unique con-
ditional expectation E that preserves τ . Then we obtain an orthogonal projection
eM : L2N →Mξτ ' L2M extending E.

Remark 2.7. (Martingale) If we are given N1 ⊂ N2 ⊂ · · · ⊂ M with N = ∨iNi
or M ⊃ N1 ⊃ N2 ⊃ · · · with N = ∩iNi, together with conditional expectations
En : M → Nn and E : M → N , en → e in the strong operator topology implies
‖E(x)− En(x)‖2 → 0.

For example, let A ⊂ M be a finite dimensional commutative subalgebra, ei
(1 ≤ i ≤ n) the minimal projections of A. Then EA′∩M (x) =

∑n
i=1 eixei. If we

have a sequence A1 ⊂ A2 ⊂ · · · ⊂M of finite dimensional commutative subalgebras
and A = ∨Ai, we have EA′n∩M → EA′∩M . The latter is equal to EA if and only if
A is a maximal abelian subalgebra.

Definition 2.8. A von Neumann subalgebra A ⊂M is said to be a Cartan subal-
gebra of M when it is a maximal abelian subalgebra in M and N (A)′′ = M . (Then
we also have M = N p(A)′′.)

Theorem 2.9. L∞X ⊂ vNR is a Cartan subalgebra.

Proof. Since the generators vφ are in NA, it is enough to show that L∞X is max-
imal abelian in vNR. Recall that R =

∐
G (φn) with φ0 = IdX . Then let a be an
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element of the relative commutant of L∞X. â can be written as
∑
n fnχG (φn). By

assumption fa = af for any f ∈ L∞X. Thus,

f̂a =
∑

ffnχG (φn), âf = Jf̄Jâ =
∑

f ◦ φ−1
n · fnχG (φn).

Hence ffn = f ◦ φnfn for any n and any f , which implies fn = 0 except for
n = 0. �

Definition 2.10. R is said to be ergodic when any R-invariant Borel subset of X
is of measure either 0 or 1. An action Γ y (X,µ) is said to be ergodic when RΓyX

is ergodic.

Corollary 2.11. vNR is a factor if and only if R is ergodic.

Proof. The Cartan subalgebra L∞X contains the center of vNR. The central pro-
jections are the characteristic functions of the R-invariant Borel subsets. �

Let v ∈ N pL∞, E,F ∈ BX the Borel sets (up to null sets) respectively repre-
senting the projections v∗v and vv∗ in A. The map L∞E → L∞F , f 7→ vfv∗e
is a ∗-isomorphism. Thus there exists a Borel isomorphism φv : E → F such that
vfv∗ = f ◦ φ−1

v . (v = σvφv
for some σ ∈ UL∞F .)

Theorem 2.12. In the notation as above, vξv∗ = ξ(φ−1
v (y), x) ν-a.e. for any

v ∈ N pL∞ and any ξ ∈ L∞R. In particular, φv ∈ JRK up to a null set. Moreover,
we have L∞ ∨ JL∞J = L∞R.

Proof. Put A = L∞X. First, fJgJ ∈ L∞ for f, g ∈ A: indeed, fJgJ is the
multiplication by the function f(y)g(x) on R.

vfJgJv∗ = vfv∗JgJ = f ◦ φ−1
v JgJ (JMJ = M ′).

Hence vξv∗(y, x) = v(φ−1
v y, x) for ξ ∈ A ∨ JAJ . It remains to show χG (IdX) ∈

A ∨ JAJ . Because, if this is satisfied, we will have χG (φv) = vχG (Id)v
∗ ∈ L∞R.

Take an increasing sequence A1 ⊂ A2 ⊂ · · · of finite dimensional algebras with
A = ∨Ak. The conditional expectation En : vNR → An is equal to

∑
k e

(n)
k Je

(n)
k J

(as an operator on L2R) for the minimal projections (e(n)
k )k of An. Now, (En)n

converges to the conditional expectation EA onto A which is equal to the multipli-
cation by χG (IdX) in the strong operator topology. Hence χG (Id) ∈ A ∨ JAJ . �

Remark 2.13. (2-cocycle [4]) Suppose we are given a map σφ,ψ : ran(φψ) → T for
each pair φ, ψ ∈ JRK, satisfying σφ,ψσφψ,θ = (σψ,θ ◦ φ−1)σφ,ψθ. Then vσφv

σ
ψ =

σφ,ψv
σ
φψ determines an associative product on CJRK with a trace τ . The GNS

representation gives an inclusion L∞X ⊂ vN(R, σ) ⊂ B(L2R) of von Neumann
algebras.

Fact. Any Cartan subalgebra of vN(R, σ) is isomorphic to L∞X.

Theorem 2.14. Let R (resp. S ) be an orbit equivalence on X (resp. Y ), F : X →
Y a measure preserving Borel isomorphism. The induced isomorphism F∗ : L∞X →
L∞Y can be extended to a normal ∗-homomorphism vNR → vNS if and only if
FR ⊂ S up to a ν-null set.
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Proof. For simplicity we identify Y with X by means of F . If JRK ⊂ JS K, the
required homomorphism is induced by the isometry L2R → L2S . Conversely, if
π : vNR → vNS is an extension of F∗, for any φ ∈ JRK we have

π(vφ)π(f)π(vφ)∗ = π(f ◦ φ−1) = f ◦ φ−1,

which implies π(vφ) = σφvφ for some σφ ∈ L∞X. �

Let M be a finite von Neumann algebra with trace τ , identified to a subalgebra of
B(L2M). Suppose A is a von Neumann subalgebra of M . Let eA be the projection
onto the span of Aξτ and put 〈M,A〉 = (M ∪ {eA})′′.

For any x ∈M and â ∈ L2A,

eAxâ = eAx̂a = ÊA(xa) = ÊA(x)a

which implies eAxeA = EA(x)eA. In particular, we have

〈M,A〉 =
{∑

xjeAyj + z : xj , yj , z ∈M
}wop

.

Now,
eAJxJeAâ = eAâx∗ = ̂EA(ax∗) = aÊA(x∗) = JEA(x)Jâ

implies 〈M,A〉′ = M ′ ∩ {eA}′ = JAJ , consequently 〈M,A〉 = (JAJ)′. Note that
when A is commutative eAJaJ = a∗eA for a ∈ A.

We have the “canonical trace” Tr on 〈M,A〉 which is a priori unbounded defined
by

∑
i xieAyi 7→ τ(

∑
i xiyi). Still, Tr is normal semifinite, and its tracial property

is verified as follows:∥∥∥∑
xieAyi

∥∥∥2

2,Tr
= Tr(

∑
y∗i eAx

∗
i xjeAyj) =

∑
τ(y∗iEA(x∗i xj)yj)

=
∑

τ(EA(yjy∗i )EA(x∗i xj)) = ‖yieAx∗i ‖
2
2,Tr .

Suppose A ⊂M is Cartan. Put Ã = {A, JAJ}′′ ⊂ 〈M,A〉.

Example 2.15. When A = L∞X, M = vNR, we have Ã = L∞R, eA = χ∆ and
Tr |Ã =

∫
dν on L∞R. Indeed,

Tr(feA) = τ(f) =
∫

∆

fdµ =
∫
fdν (f ∈ L∞X)

implies

Tr(ufeAu∗) = Tr(feA) =
∫

∆

fdµ =
∫
ufeAu

∗dν (f ∈ L∞X,u ∈ NA).

Remark 2.16. When A ⊂M is Cartan and p ∈ Proj(A), Ap ⊂ pMp is also Cartan
since N p

pMp(Ap) = pN p
M (A)p.

Example 2.17. When Y ⊂ X, the restricted equivalence R|Y = Y × Y ∩R gives
vN(R|Y ) = pY (vNR)pY .

Exercise 2.18. Show that when A is a Cartan subalgebra of a factor M , τp1 = τp2

for p1, p2 ∈ Proj(A) implies the existence of v ∈ N pA such that p1 ∼ p2 via v. This
implies that given an ergodic relation R on X, subsets Y1 and Y2 of X with the
same measure, one would obtain (ApY1

⊂MpY1
) ' (ApY2

⊂MpY2
) via v.
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2.3. Theorem of Connes-Feldman-Weiss.

Definition 2.19. A discrete group Γ is said to be amenable when `∞Γ has a left
Γ invariant state.

Example 2.20. Commutative groups, or more generally solvable groups are amenable.
The union of an countable increasing sequence of amenable groups are again amenable.

Definition 2.21. A cartan subalgebra A ⊂ M is said to be amenable when there
exists a state m : Ã → C invariant under the adjoint action of NA. An orbit
equivalence R on X is said to be amenable when L∞X ⊂ vNR is amenable.

Remark 2.22. Let Γ y X be a measure preserving essentially free action. Since
Γ is assumed to be discrete, R can be identified to Γ × X as a measurable space
and an invariant measure on R is nothing but a product measure on Γ ×X of an
invariant measure on Γ times an arbitrary measure on X. Thus, R is amenable if
and only if Γ is amenable.

Definition 2.23. A von Neumann algebra M on H is said to be injective when
there exists a conditional expectation Φ: B(H) →M .

Fact. The above condition is independent of the choice of a faithfull representa-
tion M ↪→ B(H). Moreover, M is injective if and only if it is AFD [2].

Theorem 2.24. (Connes-Feldman-Weiss [3]) Let M be a factor with separable
predual, A a Cartan subalgebra of M . The following conditions are equivalent:

(1) The pair A ⊂M is amenable.
(2) This pair is AFD in the sense that for any finite subset F of NA and a

positive real number ε > 0, there exists a finite dimensional subalgebra B
of M such that
• B has a matrix unit consisting of elements of N pA.
• ‖v − EB(v)‖ < ε for any v ∈ F .

(3) (A,M) is isomorphic to (D, ⊗̄M2C where D = ⊗̄D2 for the diagonal sub-
algebra D2 ⊂ M2. (Note that N pD is generated by the “matrix units” of
M2∞ = ⊗M2.)

(4) M is injective.

Lemma 2.25. In the assertion of (2), B may be assumed to be isomorphic to M2N

for some N .

Proof of the lemma. Perturbing a bit, we may assume that τ(e(d)ij ) ∈ 2−NN for

large enough N where (e(d)ij )d,1≤i,j≤nd
is a matrix unit of B = ⊕dMnd

. By taking

a partition if necessary, we may assume that τ(e(d)ii = 2−N for any d and i. Then,
since M is a factor, we have e(d)ii ∼ e

(f)
jj in M for any d, f, i and j. This means that

B is contained in a subalgebra of M which is isomorphic to M2N . �

Proof of (2) ⇒ (3): Note that there is a total (with respect to the 2-norm)
sequence (vk)k∈N ⊂ N pA. We are going to construct an increasing sequence of
subalgebras (Bk)k inM with compatible matrix units (e(k)i,j )i,j satisfyingBk 'M2Nk

and ‖EBk
(vl)− vl‖2 < 1

k for l ≤ k.
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Suppose we have constructed B1, . . . , Bk. Applying the assertion of (2) to the
finite set F ′ =

{
e
(k)
i,r vle

(k)
r,1

}
, we obtain a matrix units (fij)i,j in N pA such that∑

fii = e
(k)
11 and ∥∥Espanfij

(x)− x
∥∥ < 1

n(k)2(k + 1)
where n(k) denotes the size of Bk. By the assumption that A is a maximal abelian
subalgebra in M , the projections of N pA are actually contained in A. Thus we ob-
tain an inclusion D ⊂ A (hence the equality between them) under the identification
M ' ⊗NM2 = (∪Bk)′′.

Proof of (3)⇒ (4): By assumption M = (∪Bn)′′ where Bn are finite dimensional
subalgebras of M , M ′ = (∪JBnJ)′′. Let Φn denote the conditional expectation of
B(H) onto (JBnJ)′: Φn(x) =

∫
U(JBnJ)

uxu∗du where du denotes the normalized
Haar measure on the compact group U(JBnJ). For each x, the sequence (‖Φn(x)‖)n
is bounded above by ‖x‖. Thus we can take a Banach limit Φ(x) of (Φn(x))n, which
defines a conditional expectation of B(H) onto ∩n(JBnJ)′ = (∪JBnJ)′ = M .

Proof of (4) ⇒ (1): Put H = L2M and let Φ be a conditional expectation of
B(H) onto M . Then τΦ is an AdUM -invariant state on B(H) . NA is obviously
contained in UM and so is Ã in B(H).

Remark 2.26. When A ⊂M is an amenable Cartan subalgebra and e is a projection
in A, the Cartan subalgebra Ae ⊂Me is also amenable.

We are going to complete the proof of Theorem 2.24 by showing (1) ⇒ (2).

Lemma 2.27. Let φ be a measure preserving partial Borel isomorphism on a stan-
dard probability space (X,µ). Let E0 denote the fixed point set Xφ = {x ∈ domφ : φx = x}.
There exist Borel sets B1, B2, B3 of X satisfying X =

∐
0≤i≤3Ei and φEi ∩ Ei is

null for i > 0.

Proof. Take E1 to be a Borel set with a maximal measure which satisfies φE1∩E1 =
∅. Put E2 = φE1. Then φE2 ∩ E2 = ∅ by the injectivity of φ. Finally, put
E3 = {(∪0≤i≤2Ei). Then φE3 ∩ E3 is null by the maximality of E1. �

Corollary 2.28. For any finite set F of N pA, there exist projections q1, . . . , qm
of A (m = 4|F |) satisfying

∑
qk = 1 and that qkvqk is either 0 or in UAqk

for any
v ∈ F .

Lemma 2.29. (Dye) For any finite subset F ⊂ NA and ε > 0, there exists a ∈ Ã+

with Tr(a) = 1 and
∑
u∈F ‖uau∗ − a‖1,Tr < ε. (Here, ‖x‖1,Tr = Tr(|x|).)

Proof. Let m : Ã→ C be an AdNA-invariant state. Since L1 is w∗-dense in (L∞)∗,
there exists a net ai ∈ Ã+ satisfying Tr(ai) = 1 and Tr(aix) → m(x) for any x ∈ Ã.
Then, for any u ∈ NA and x ∈ Ã

Tr((uaiu∗ − ai)x) = Tr(aiu∗xu)− Tr(aix) → m(u∗xu)−m(x) = 0.

Thus uaiu∗ − ai is weakly convergent to 0. By Hahn-Banach’s theorem, by taking
the convex closure of the sets {uaiu∗ − ai : k < i}, we find a sequence (bi)i as convex
combinations of the ai satisfying ‖ubiu∗ − bi‖1,Tr → 0 uniformly for u ∈ F . �
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Lemma 2.30. (Namioka) Let F , ε be as above. There exists a projection p of Ã
satisfying Tr(p) <∞ and

∑
u∈F ‖upu∗ − p‖22,Tr < ε ‖p‖22,Tr.

Proof. Let a ∈ Ã+ be an element given by Lemma 2.29. For each r > 0 put
Pr = χ(r,∞)(a). We have

‖uau∗ − a‖1,Tr =
∫ ∞

0

‖uPru∗ − Pr‖1,Tr dr 1 = ‖a‖1,Tr =
∫ ∞

0

‖Pr‖1,Tr dr.

Hence ∫ ∞

0

∑
u∈F

‖uPru∗ − Pr‖1,Tr dr < ε

∫ ∞

0

‖Pr‖1,Tr dr.

Thus there exists r such that p = Pr satisfies
∑
‖upu∗ − p‖1,Tr < ε ‖p‖1,Tr. Since

the summands are differences of projections, ‖−‖1,Tr is approximately equal to
‖−‖22,Tr. �

Lemma 2.31. (Local AFD approximation by Popa) Let F , ε be as above. There
exists a finite dimensional subalgebra B ⊂ M with matrix units in N pA, satis-
fying

∥∥EB(eue)− (u− e⊥ue⊥)
∥∥2

2
< ε ‖e‖22 for every u ∈ F , where e denotes the

multiplicative unit of B and EB the conditional expectation eMe→ B.

Proof. We may assume 1 ∈ F . Take p ∈ Ã+ as in Lemma 2.30. Since Tr p < ∞,
we may assume that p can be written as

∑n
i=1 vieAv

∗
i for vi ∈ N pA. By Corollary

2.28, there exist projections (qk)k in A with
∑
qk = 1 and each qkv∗i uvjqk is either

0 or is in U(Aqk) for 1 ≤ i, j ≤ n, u ∈ F . Taking finer partition if necessary, we
deduce that dist(qkv∗i uvjqk,Cqk) <

√
ε/n.

On the other hand,∑
u∈F ,k

‖(upu∗ − p)JqkJ‖22,Tr =
∑
u∈F

‖upu∗ − p‖22,Tr < ε ‖p‖22,Tr = ε
∑
k

‖pJqkJ‖22,Tr .

Hence for some k, q = qk satisfies
∑
‖(upu∗ − p)JqJ‖2 ≤ ε ‖pJqJ‖2. By pJqJ =∑

vieAJqJv
∗
i =

∑
viqeAv

∗
i since A is commutative, replacing vi by viq, we may

assume v∗i vj = δi,jq and pJqJ = p. (Note that p =
∑
vieAv

∗
i is a projection, which

means that the ranges of vi are mutually orthogonal.)
This way we obtain

∑
‖upu∗ − p‖2 ≤ ε ‖p‖2, each viuv

∗
j ∈ Aq is close to a

constant zij by
√
ε/n, and (vi)i is a matrix unit in Aq. Put e =

∑
viv

∗
i . Thus,

‖p‖22,Tr = Tr(
∑

vieAv
∗
i ) = τ(

∑
viv

∗
i ) = ‖e‖2τ .

Consequently,

‖upu∗ − p‖22,Tr = 2 Tr p− 2 Tr(upu∗p) = 2τ(e)− 2 Tr(
∑

uvieAv
∗
i u

∗vjeAvj)

= 2τ(e)− 2τ(
∑

uviv
∗
i u

∗vjv
∗
j ) = 2τ(e)− 2τ(ueu∗e)

= ‖ueu∗ − e‖22,τ .

Hence
∑
u∈F ‖ue− eu‖22 < ε ‖e‖22. Now eue =

∑
viv

∗
i uvjv

∗
j ≈

∑
zijviv

∗
j ≈ ε ‖e‖2

in ‖−‖22,τ . Hence

‖eue− EB(eue)‖22,τ < ε ‖e‖22,τ
∥∥EB(eue)− (u− e⊥ue⊥)

∥∥2

2,τ
< 2ε ‖e‖22,τ .
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When we have a family (Bi) of mutually orthogonal finite dimensional algebras
satisfying the assertion of the lemma, e =

∑
1Bi satisfies∥∥E⊕Bi

(eue)− (u− e⊥ue⊥)
∥∥2

2,τ
< 2ε ‖e‖22,τ . �

Lemma 2.32. In the notation of Lemma 2.31, e = 1.

Proof. Otherwise we can apply Lemma 2.31 to Ae⊥ ⊂ Me⊥ and F ′ = e⊥Fe⊥, to
obtain a finite dimensional algebra B0 ⊂ Me⊥ satisfying the assertion of Lemma
2.31. Use the Pythagorean equality. �

Proof of (1) ⇒ (2): Take B1, . . . , Bm satisfying ‖
∑
m 1Bi‖

2
2 > 1 − ε. Put B =

⊕iBi ⊕ C(
∑

1Bi
)⊥. Then we have ‖EB(u)− u‖22 < 3ε for u ∈ F . �

3. L2-Betti numbers

3.1. Introduction. Let F(Ω, X) denote the set of the mappings of a set Ω into
another set X. Let Γ be a discrete group, λ the left regular representation of Γ on
`2Γ. We have the “standard complex” of right Γ modules

0 // `2Γ
∂ // F(Γ, `2Γ) ∂ // F(Γ2, `2Γ) // · · ·

given by

∂(f)(s1, . . . , sn+1) = λ(s1)f(s2, . . . , sn+1)+∑
1≤j≤n

(−1)jf(s1, . . . , sjsj+1, . . . , sn+1) + (−1)n+1f(s1, . . . , sn).

Conceptually, the above complex can be regarded as HomCΓ(P∗, CΓ`2Γ) where P∗
denotes the standard free resolution of the trivial left Γ-module C. For each n ∈ N,
Pn is the vector space with basis Γn+1 as a vector space over C. Since Γn+1 is a
left Γ-set by s.(s0, . . . , sn) = (s.s0, s1, . . . , sn), Pn has the canonically induced left
action of Γ.

Let Hi(Γ, `2Γ) denote the i-th (co)homology group of this complex. Note that
this complex consists of RΓ modules given by the action on `2Γ, with boundary
maps being RΓ-homomorphisms. The space of 1-cocycles

Z1 = {b ∈ F(Γ, `2Γ) : b(st) = b(s) + λ(s)b(t)}
is identified with the space of the derivations from Γ to `2Γ with respect to the
trivial right action. When b ∈ Z1 the map

s 7→
(
λ(s) b(s)
0 1

)
of Γ into B(`2Γ ⊕ C) becomes multiplicative. On the other hand the space of
1-coboundaries

B1 = {b ∈ F(Γ, `2Γ) : ∃f ∈ `2Γ, b(s) = λ(s)f − f}
is identified with the space of the inner derivations. Note that for any b ∈ Z1, there
is a function f ∈ F(Γ,C) satisfying b(s) = λ(s)f − f if we do not require the square
summability of f . Indeed, a vector system (b(s))s∈Γ is a derivation if and only if
we have 〈b(s), δt〉 = 〈b(st) − b(t), δe〉 for any s, t ∈ Γ, and in such a case we may
put f(s) = 〈b(s), δs〉 to obtain b(s) = λ(s)f − f .
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Remark 3.1. The 0-th homology grouop H0 = Z0 is the space of the Γ-invariant
vectors in `2Γ. Thus this becomes the 0-module if and only if Γ is infinite.

In the following we assume that Γ admits a finite generating set S . Let DΓ
denote the space Z1 of the derivations, InnDΓ the space B1 of the inner derivations.
Let OS denote the mapping b 7→ (b(s))s∈S of DΓ into ⊕S `2Γ. This is an injective
RΓ-module map. Note that the range of OS is closed. Indeed, (f(s))s∈S is in
ranOS if and only if

f(s1) + λ(s1)f(s2) + · · ·+ λ(s1 · · · sn−1)f(sn) = 0

holds for each relation s1 · · · sn = e among elements of S .
A sequence (fn)n∈N of unit vectors is said to be an approximate kernel of

the restriction OS |InnDΓ when λ(s)fn − fn tends to zero (in norm) for any s ∈
S . OS |InnDΓ has an approximate kernel if and only if Γ is amenable. Thus
OS (InnDΓ) is closed if and only if Γ is finite or non-amenable.

Let P , Q denote the orthogonal projections onto OS (DΓ) and OS (InnDΓ).
These commute with the diagonal action of RΓ on ⊕S `2Γ, i.e. P,Q ∈ MSLΓ.
We can measure them by the trace τ̃ = Tr⊗τ . The first Betti number β(2)

1 =
dimLΓH1(Γ, `2) is equal to the difference τ̃(P )− τ̃(Q).

Example 3.2. When Γ is a finite group, β(2)
0 = 1

|Γ| while β
(2)
i = 0 for 0 < i

because any CΓ module is projective. On the other hand when Γ is equal to the
free group Fn generated by a set S consisting of n elements, ranOS = ⊕S `2Γ and
β

(2)
1 = n− 1.

We omit the injection OS and identify DΓ with a subspace of ⊕S `2Γ. Thus
∂0 : `2Γ → F(Γ, `2Γ) factors through ⊕S `2Γ and ∂0 : `2Γ → ⊕S `2Γ is written as
f 7→ (λ(s)f − f)s∈S .

Let ε(2)1 : ⊕S `2Γ → `2Γ denote the adjoint of ∂. Thus ε(2)1 is expressed as
(ξs)s∈S 7→

∑
s∈S (λ(s−1)− 1)ξs and the orthogonal complement of ker ε(2)1 is equal

to the closure of ran ∂ = InnDΓ.

Proposition 3.3. When we identify CΓ with the space of vectors with finite support
in `2Γ, we have DΓ = (ker ε(2)1 ∩ ⊕S CΓ)⊥.

Proof. The space CΓ has F(Γ,C) as its algebraic dual. A vector system b ∈ ⊕S `2
is in DΓ if and only if there is an f ∈ F(Γ,C) such that b(s) = λ(s)f − f . The
latter implies

∀ξ ∈ ker ε(2)1 ∩ ⊕S CΓ, 〈ξ, b〉 =
∑
s

〈ξ(s), b(s)〉 =
∑
s

〈(λ(s−1)− 1)ξ(s), f〉 = 0.

Conversely, when (b(s))s∈S is orthogonal to ker ε(2)1 ∩⊕S CΓ, the functional 〈b,−〉
on ⊕S CΓ is induced by a functional f on the kernel of the map CΓ → C. This f
can be extended to a linear map on the whole CΓ, and we have b(s) = λ(s)f − f ,
i.e. b ∈ DΓ. �

Remark 3.4. The i-th cohomology group Hi(Γ, `2Γ) is dimension isomorphic to
TorCΓ

i (C, `2Γ). This is seen by considering the exact functors E → E∗ on the
category of LΓ-modules and that of LΓ-bimodules, where E∗ denotes the dual
module of the weak closure of E. We have functors (A,B) → A⊗CΓB and (A,B) →
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HomCΓ(A,B) of CΓ-mod× LΓ-bimod into LΓ-mod. Then the functor equivalence
(A ⊗CΓ B)∗ ' HomCΓ(A,B∗) up to dimension implies the dimension equivalence
between the derived functors Torp(A,B)∗ ' Extp(A,B∗). The case A = C and
B = `2Γ describes the desired isomorphism.

For example, we have a flat resolution P· of the trivial Γ-module C with P0 = CΓ
and P1 = CΓ⊗C CS , with d1(a⊗b) = ab−a. The first torsion group TorCΓ

1 (`2Γ,C)
is by definition the quotient ker(id`2Γ ⊗ d1)/`2Γ ⊗ ker d1. Now id`2Γ ⊗ d1 = ε

(2)
1

implies ker(id`2Γ ⊗ d1) = InnDΓ⊥ while `2Γ ⊗ ker d1 = ker ε(2)1 ∩ ⊕S CΓ implies
`2Γ⊗ ker d1 = DΓ⊥.

3.2. Operators affiliated to a finite von Neumann algebra. Let (M, τ) be a
finite von Neumann algebra with a faithful normal tracial state (τ is unique if M is
a factor), L2M the induced Hilbert M -M module. For each n ∈ N put τ̃ = τ ⊗ Tr
on M ⊗MnC 'MnM .

Definition 3.5. Let H be a left Hilbert module over M . A densely defined closed
operator T on H is said to be affiliated to M , written as T ∼ M , when we have
uT = Tu for any u ∈ U(M ′). Here the equality entails the agreement of the
domains, i.e. u domT = domT .

Remark 3.6. An operator T is affiliated to M if and only if for the polar decompo-
sition T = v|T | the partial isometry v and the spectral projections of |T | are in M .
Note that in such cases τ takes the same value on the left support l(T ) = vv∗ of T
and the right support r(T ) = v∗v.

We consider the case H = L2M . Suppose T ∼ M . It is said to be square
integrable when 1̂ ∈ domT . This condition is equivalent to

τ(|T |2) = ‖T 1̂‖2 =
∫
t2dτ(E) <∞

for the spectral measure T =
∫
tdE of T . For each ξ ∈ L2M let L◦ξ denote the

unbounded operator defined by domL◦ξ = M̂ ⊂ L2M and L◦ξx = ξx.

Proposition 3.7. The operator L◦ξx is closable and its closure Lξ is affiliated to
M . Moreover we have L∗ξ = LJξ. If T is affiliated to M and square integrable,
T = LT 1̂.

Proof. We show the inclusion L◦Jξ ⊂ (L◦ξ)
∗. For any elements x, y ∈M ,

〈L◦ξ x̂, ŷ〉 = 〈ξx, y〉 = 〈Jŷ, J(ξx)〉 = 〈1̂y∗, x∗Jξ〉 = 〈x̂, (Jξ)y〉.

On the other hand, when u ∈ URM , uL◦ξ = L◦ξu implies uLξ = Lξu.
Next we show the inclusion (Lξ)∗ ⊂ LJξ. Let η ∈ dom(L◦ξ)

∗. Consider the polar
decomposition LJξ = v|LJξ| and the spectral decomposition |LJξ| =

∫∞
0
λdeλ.

Then eλv
∗LJξ = eλ|LJξ| is bounded (i.e. is in M+) for any λ. By definition,

LJξ(y1̂) = (Jξ)y for y ∈ M . Hence eλv
∗LJξ(y1̂) = eλv

∗((Jξ)y) = (eλv∗Jξ)y.
Putting y = 1, we obtain eλv∗LJξ1̂ = eλv

∗Jξ ∈M.1̂ for any λ > 0.
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Thus, by definition of (Lξ)∗, we have

〈(Lξ)∗η, (eλv∗)∗y1̂〉 = 〈η, Lξ(eλv∗)∗y1̂〉 = 〈η, ξ(eλv∗)∗y〉 = 〈η, Jy∗(eλv∗)Jξ〉

= 〈η, Jy∗eλv∗LJξ1̂〉 (by using above)

= 〈η, (eλv∗LJξ)∗y1̂〉.
Hence eλv∗(Lξ)∗η = eλv

∗LJξη = |LJξ|eλη for any λ > 0. By letting λ→∞, eλη →
η and |LJξ|eλη → v∗(Lξ)∗η. Since |LJξ| is a closed operator, η ∈ dom(|LJξ|) =
dom(LJξ). Hence (Lξ)∗ ⊂ LJξ and |LJξ| = v∗(Lξ)∗.

Finally, let us prove the last part. Let T ∼ M with the polar decomposition
v|T | = T . Note that v̂∗ = 1̂v∗ ∈ domT , 1̂ ∈ domT ∗, T ∗1̂ = |T |v̂∗. Put ξ = T 1̂, η =
T ∗1̂. Since T ∼M , L◦ξ ⊂ T , L◦η ⊂ T ∗ and we obtain Lξ ⊂ T ⊂ LJη. �

3.3. Projective modules over a finite von Neumann algebra. Let m,n ∈
N. We have an isomorphism Mor(M⊕m,M⊕n) = Mm,n(M) by multiplication of
matrices on column vectors.

Definition 3.8. An left M -module V is said to be finitely generated projective
module when it is a projective object in the category of the M -modules and has a
finite set generating itself.

Remark 3.9. Any finitely projective M module is isomorphic to some M⊕m.P for
a natural number m and an idempotent matrix P in MmM .

Lemma 3.10. In the above we may replace P with an orthogonal projection P ∗ = P
without changing the value of τ̃(P ).

Proof. Let P0 be the right support of P . P (P − P0) = 0 implies P0(P − P0) = 0.
Thus S = Id+(P −P0) is invertible. With respect to the orthogonal decomposition
Id = P0 ⊕ P⊥0 , these operators are expressed as

P0 =
(

Id 0
0 0

)
, P =

(
Id 0
? 0

)
, S =

(
Id 0
? Id

)
.

The operator SP0 = SP0S
−1 is self adjoint. �

Remark 3.11. When M⊕mP and M⊕nQ are isomorphic, τ̃(P ) = τ̃(Q).

Definition 3.12. For each finitely projective M -module V isomorphic to M⊕mP
where P is a orthogonal projection in MmM , dimM V − τ̃(P ) is called the τ -
dimension

Lemma 3.13. Let V be a submodule of M⊕n. When V is closed M⊕n with respect
to the L2-norm (V is weakly closed), V is finitely generated and projective.

Proof. The L2 completion V̄ ‖·‖2 ⊂ L2M⊕n is written as L2M⊕P for an orthogonal
projection P . Then V is equal to M⊕nP . �

Lemma 3.14. For each T ∈ Mor(M⊕m,M⊕n), its kernel and range are finitely
generated projective modules.
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Proof. Obviously the kernel of T is weakly closed in M⊕m. On the other hand for
the projection P such that kerT = M⊕mP , T induces an isomorphism MP⊥ →
ranT . �

Remark 3.15. When a submodule V ⊂M⊕m is finitely generated, V is projective.
In fact, V = M⊕mA for some A ∈Mm,n(M). Thus we have

V 'M⊕nl(A) 'M⊕mr(A) ' V̄ .

Hence dimM V = dimM V̄ .

Remark 3.16. If W ⊂ V are finitely generated projective modules, dimM W ≤
dimM V .

Definition 3.17. Let V be an M -module. Put

dimM V = sup {dimM W : W ⊂ V,W is projective} ∈ [0,∞].

Remark 3.18. Note that the above definition of dimM is compatible with the pre-
vious one for finitely generated projective modules. In general, W ⊂ V implies
dimM W ≤ dimM V and (Vi)i∈I ↑ V (V = ∪i∈IVi) implies dimM V = limi dimM Vi.

Theorem 3.19. (Lück [6]) When

0 // V0
ι // V1

π // V2
// 0

is exact, we have dimM V1 = dimM V0 + dimM V2.

Proof. When W ⊂ V2 is finitely generated and projective, π−1W is identified to
W ⊕ ιV0. Hence dimV1 ≥ dimV0 + dimV2. Conversely, let W ⊂ V1 be finitely
generated projective. The weak closure ιV0 ∩W is closed in a finite free module,
hence is projective. From the sequence ιV0 ∩W → W → W/ιV0 ∩W , we have
dimW = dim ιV0 ∩W + dimW/ιV0 ∩W . Note that there is a natural surjection
W/ιV0 ∩ W → W/ιV0 ∩W . By the first part of the argument this implies the
dimension inequality dim ιV0 ∩W ≤ dim ιV0 ∩W . On the other hand W/ιV0 ∩W
is identified to a submodule of V2. �

Corollary 3.20. Let V be a finitely generated M -module. We have a decomposition
V = Vp ⊕ Vt where Vp is projective and dimV = dimVp. (Hence dimVt = 0.)

Proof. We have a surjection T : M⊕m → V . Note that kerT may not be closed
since we have no matrix presentation of T . Nonetheless, V 'M⊕m/ kerT and the
next lemma imply that Vp = M⊕m/ kerT satisfies

dimV = m− dim kerT = m− dim kerT = dimVp. �

Lemma 3.21. Let W be a subset of a finite free module M⊕m. We have dimW =
dim W̄ .
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Proof. Put L = {A ∈MmM : M⊕.A ⊂W}. This is a left ideal of MmM . We get
a right approximate identity Ai of L. For the orthogonal projection P such that
W̄ = M⊕mP , the right support r(Ai converges to P in strong operator topology
(for any normal representation, thus, in the ultrastrong topology). Thus for any
ε > 0, Pε,i − χ[ε,1](A∗iAi) is in L and converges to P in the ultrastrong operator
topology. �

Proposition 3.22. For any LΓ-module V , dimV = 0 is equivalent to

∀ξ ∈ V, ε > 0,∃P ∈ ProjM : τP > 1− ε and Pξ = 0.

Proof. ⇒: Let ξ ∈ V . Consider the exact sequence 0 → L→M →M.ξ → 0 where
L is the annihilator of ξ. dimL = dimM implies the existence of projections Pi
convergent to 1 in the ultrastrong topology.
⇐: If V ⊃M.Q, P satisfies τP > 1− τQ and PQ 6= 0. �

Definition 3.23. A homomorphism φ : V → W of L-modules is said to be a
dimension isomorphism when dimM kerφ = dimM cokφ = 0.

Remark 3.24. The torsion N -modules T = {V : dimN V = 0} form a Serre sub-
category of N -mod. Analyzing N -modules up to dimension isomorphisms amounts
to considering the localization N -mod/T of N -mod by T . Thus, in general, when
a morphism V∗ → W∗ of complexes is a dimension isomorphism at each degree,
the induced homomorphism between the cohomology groups is also an dimension
isomorphism because it factors through an isomorphism in the localization category
C∗(N -mod/T ) of the N -module complex category over the torsion module category.

Lemma 3.25. The standard inclusion M → L2(M) is a dimension isomorphism.

Proof. Let ξ ∈ L2M . We get the corresponding square integrable operator affiliated
withM . Put Pn = χ[0,n](ξξ∗) ∈ ProjM . Then Pnξ ∈M and Pn → 1, thus Pn[ξ]−0
in the quotient L2M/M . �

When H is a Hilbert M -module, i.e. a normal representation of M on H,
H ' L2M⊕n.P for some cardinal n and an idempotent P in MnM .

Lemma 3.26. In the above notation, dimM H = τ̃(P ).

Proof. We have the following commutative diagram

M⊕n.P
� � //

� _

��
p.b.

L2M⊕n.P //
� _

��
	

cok� _

���
�
�

M⊕n // L2M⊕n // cok .

The cokernel in the lower row has dimension 0, thus so does the one in the upper
row. �

Definition 3.27. β(2)
n (Γ) = dimLΓ TorCΓ

n (LΓ,Ctriv) is called the n-th L2-Betti
number of Γ.
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Remark 3.28. β(2)
n (Γ) is equal to dimLΓ TorCΓ

n (`2Γ,Ctriv).

Example 3.29. β(2)
n (Fr) = r− 1 when n = 2, 0 otherwise. This is seen as follows:

let g1, . . . , gr be the standard generators of Fr. A free resolution of the trivial
C[Fr]-module C is given by

0 −−−−→ (C[Fr])r −−−−→
d1

C[Fr] −−−−→
α

C

where d1 : (ξk)rk=1 7→
∑

(λ∗gk
− 1)ξk and α is the augmentation map. Now, d1 is

injective: let χj ∈ `∞Fr be the characteristic function of Frgj . Then (λgk
− 1)χj =

δj,kδe and (ξk)k ∈ ker d1 implies

0 = 〈
∑
k

(λ∗gk
− 1)ξk, χj〉 =

∑
k

〈ξk, (λgk
− 1)χj〉 = ξj(e).

Replacing χj by χtj = χj(−t−1) for t ∈ Γ, we have ξj(t) = 0 for any j and t. Thus,
the torsion group is the cohomology of the complex

0 −−−−→ (L2Fr)r −−−−→
d1

L2Fr −−−−→ 0.

Let R be a ring. Recall that a right R-module N is flat if and only if the tensor
product functor N⊗R− preserves injections V ↪→ F where F is a finitely generated
free module. The latter holds if and only if N ⊗R − preserves the injectivity of
inclusion I ↪→ R of the left ideals.

Theorem 3.30. Let M ↪→ N be a trace preserving inclusion of finite von Neumann
algebras. Then N is flat over M and dimN N ⊗M V = dimM V for any M -module
V .

Proof. Recall that any finitely generated submodule of a free M -module is projec-
tive. (That is, M is semihereditary.) To see this, let V be a finitely generated
submodule of a finitely generated free module M⊕m. V 'M⊕nA for some (m,n)-
matrix A. Then V is projective, being isomorphic to M⊕.l(A). Now,

N ⊗ V ' N⊕n.l(A) ' N⊕mA ↪→ N⊕ ' N ⊗M⊕m.

Thence N is flat over M .
Let V be a finitely generatedM -module. Suppose we had an inclusion Φ: M⊕m.P ↪→

V of a projective module. Then N⊕m.P ↪→ N ⊗ V by the flatness of N . This
shows that dimN N ⊗M V ≤ dimM V . On the other hand, for any surjection
πM⊕n ⇒ V , the induced homomorphism π∗ : N⊕n → N ⊗ V is surjective and
dimN ⊗ V = n− dimπ∗, thus dimN ⊗ V ≤ dimV . �

3.4. Application to orbit equivalence.

Notation. Let α : Γ y (X,µ) be a probability measure preserving essentially free
action. Put A = L∞(X,µ),M = LΓ, N = L∞(X,µ) o Γ = vN(RΓyX). Let R0

denote the linear span alg(L∞(X,µ),Γ) of fλ(s) for the f ∈ A, s ∈ Γ. Let R denote
the linear span alg(N(A)) of fvφ for the f ∈ A,φ ∈ [[R]].
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Remark 3.31. R0 is free over CΓ and R0 ⊗CΓ C ' L∞(X). The induced left R0-
structure on L∞(X) is given by

∑
fsλs).g =

∑
fsαs(g) thus R0⊗CΓ C ' A and we

have TorR0
∗ (N,A) ' TorCΓ

∗ (N,C). The latter is isomorphic to N ⊗M TorCΓ
∗ (M,C)

by the flatness of N . Note that dimN N ⊗M TorCΓ
n (M,C) = dimM TorCΓ

n (M,C) =
β

(2)
n (Γ).

Our goal is to show the equality dimN TorR0
n (N,A) = dimN TorRn (N,A). Note

that the latter only depends on the orbit equivalence RΓy.

Lemma 3.32. For any x ∈ R and ε > 0, there is a projection p in A such that
τp > ε and xp⊥ ∈ R0.

Proof. When x is of the form vφf , the assertion is trivial by the expression vφ =∑
λ(gk)ek. The general case reduces o the above by τ(p ∨ q) ≤ τp+ τq. �

For the time being let A denote an arbitrary finite von Neumann algebra.

Definition 3.33. Let V be a left A-module. For ξ ∈ V ,

[ξ] = inf {τp : p ∈ ProjA, pξ − ξ}
is called the rank norm of ξ.

Remark 3.34. [ξ] is subadditive and scalar invariant. Vt = {ξ : [ξ] = 0} is the largest
submodule with dimA Vt = 0. Any A-module homomorphism φ : V →W contracts
[ξ]. Moreover for any η ∈ kerφ and ε > 0, there is an element ξη ∈ φ−1η such that
[ξ] ≤ [η] + ε.

Definition 3.35. Let V be an A-module. Consider a metric on V defined by
d(ξ, η) = [ξ − η]. Let C(V ) denote the completion of V with respect to d.

Remark 3.36. C(V ) admits an left action of A: the continuity with respect to d
follows from [aξ] ≤ min[a], [ξ]: pξ = ξ implies

apξ = l(ap)apξ − l(ap)aξ ⇒ [aξ] ≤ τ(l(ap)) = τ(r(ap))

C(V) contains V/Vt as a dense subspace.

Remark 3.37. V ⊂W is dense if and only if for any ξ ∈W and ε > 0, there exists
p ∈ A such that τp < ε such that p⊥ξ ∈ V , which, in turn, happens if and only if
dimW/V = 0.

Lemma 3.38. The functor V 7→ CV is exact.

Proof. Right exactness: consider an exact sequence V1 → V0 → 0. Let ξ ∈ CV0,
(ξn)n∈N ⊂ V0 a sequence convergent to ξ. We may assume that d(ξ, ξn) ≤ 2−(n+1).
We can inductively lift (ξn) to (ηn) in V1 such that d(ηn, ηn+1 ≤ 2−n.

General exactness: let
V2 −−−−→

g
V1 −−−−→

f
V0

be an exact sequence, ξ an element of kerC(f). Choose a sequence (ξn)n convergent
to ξ. Then f(ξn) → C(f)(ξ) = 0. This implies the existence of a sequence (ηn)n,
convergent to 0 and fηn = fξn. ξ = lim ξn − ηn is in the closure of the image of g,
which, by the right exactness of C, is equal to the image of C(g). �
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Now we turn to the orbit equivalence situation: A ⊂ R0 ⊂ R ⊂ N . We consider
A-rank metric on R0-modules.

Lemma 3.39. When V is an R0 (resp. R) module, CV admits an R0 (resp. R)
module structure.

Proof. If x−
∑N
n=1 vφn

fn, for any ξ ∈ V we have the estimate [xξ] ≤ n[ξ]. �

Lemma 3.40. When V is an R0 module, CV admits an R-module structure.

Proof. Let x ∈ R, (xn)n be a sequence in R0 convergent to x. For any ξ ∈ V , xnξ
is A-rank convergent to xξ. �

Lemma 3.41. When V is a left R0-module. N⊗R0 V → N⊗R0CV is a dimension
isomorphism.

Proof. Suppose x =
∑
ai ⊗ ξi (ai ∈ N, ξi ∈ V ) represents 0 in N ⊗R0 CV . In the

tensor product over C,∑
ai ⊗ ξi =

∑
(bjvj ⊗ ηj − bj ⊗ vjηj)

for bj ∈ N, vj ∈ R0, ηj ∈ CV . For each j, there is a projection pj such that
τ(pj) ∼ 0 and p⊥j ηj ∈ V . Thus we get a representative of x given by∑

(bjvj ⊗ pjηj − bj ⊗ vjpjηj) +
∑

(bjvj ⊗ p⊥j ηj − bj ⊗ vjp
⊥
j ηj)

The second summand becomes 0 in N ⊗R0 V . Now, choose the smallest projection
p in N such that pvjpj = vjpj , pj ≤ p. Then x = (1 ⊗ p)x and [x]N ∼ 0. Hence
N ⊗ V → N ⊗ CV is an isometry. When ξn ∈ V converges to ξ ∈ CV , a ⊗ ξn
converges to a⊗ ξ in [−]N . �

Remark 3.42. For any R-module W , N⊗R0W → N⊗RW is an dimN -isomorphism.

Theorem 3.43. dimN TorR0
n (N,A) = dimN TorRn (N,A).

Proof. Consider projective resolutions of A: P∗ → A as an R0-module, Q∗ → A as
an R-module. We have morphisms φ∗ : P∗ → Q∗ and ψ∗ : Q∗ → CP∗. Thus we get
a commutative diagram

· · · −−−−→ Pn −−−−→ · · · −−−−→ P0 −−−−→ Ayφn

yφ0

∥∥∥
· · · −−−−→ Qn −−−−→ · · · −−−−→ Q0 −−−−→ Ayψn

yψ0

y
· · · −−−−→ CPn −−−−→ · · · −−−−→ CP0 −−−−→ CAyCφn

yCφ0

∥∥∥
· · · −−−−→ CQn −−−−→ · · · −−−−→ CQ0 −−−−→ CA.
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By the uniqueness of projective resolution up to homotopy, compositions of two
homomorphisms ψnφn and Cφnψn are homotope to the the standard inclusion
isomorphisms.

Now, the standard inclusion P∗ → CP∗ induces a dimN -isomorphism after apply-
ing the N ⊗R0 − functor by Lemma 3.41. Thus, IdN ⊗φ∗ : and IdN ⊗ψ∗ are inverse
to each other via the identification of N ⊗P∗ ' N ⊗CP∗ and N ⊗Q∗ ' N ⊗CQ∗.
Hence IdN ⊗φ∗ induces a dimension isomorphism on cohomology groups. �

Corollary 3.44. Let Γ y (X,µ) and Λ y (Y, ν) be essentially free probability
measure preserving actions. If RΓyX ' RΛyY , β(2)

n (Γ) = β
(2)
n (Λ).

Remark 3.45. Put β2
∗(A,N) = dimN TorR∗ (N,A). For any nonzero projection p in

A, β2
∗(A,N) = τ(p)β2

∗(pA, pNp).

4. Derivations on von Neumann algebras

In the following we only consider normal Hilbert (bi)modules over von Neumann
algebras. Examples of such modules include the identity bimodule L2N and the
coarse (M,N)-module L2M ⊗ L2N .

Let Γ be a countable discrete group, (π,H0) a unitary representation of Γ. A
map b : Γ → H0 is said to be a derivation when it satisfies b(st) = b(s) + π(s)b(t)
i. e. a derivation for the (π, triv)-bimodule structure. A derivation b is said to be
inner when there exists ξ ∈ H0 such that b(s) = π(s)ξ − ξ. Put

H1(Γ, π) = {derivations} / {inner derivations} .

When b is a derivation, φr(s) = e−r‖b(s)‖
2

for r ≥ 0 determines a positive semidefi-
nite semigroup. Our goal is to show that it extends to a semigroup φ̃r : LΓ → LΓ
of τ preserving completely positive maps.

4.1. Densely defined derivations. Let M denote L2Γ. Consider H = M ⊗H0.
A left action M → B(H) is defined by λ(f) 7→ λ⊗π(f) (this is possible by the Fell
absorption.) On the other hand we have a right action Mo → B(H) is defined by
ρ(g) 7→ ρ(g)⊗ id. Put δ(s) = δs ⊗ b(s) ∈ `2Γ⊗̄H0. By

δ(st) = δst ⊗ (b(s) + π(s)b(t)) = ρ⊗ 1(t−1)δ(s) + λ⊗ π(s)δ(t),

δ extends to a (possibly unbounded) derivation CΓ → H satisfying δ(xy) = xδ(y)+
δ(x)y.

Notation. Let (M, τ) be a finite von Neumann algebra with a faithful normal
tracial state, D a weak∗-dense ∗-subalgebra of M . Let H be a Hilbert bimodule
over M , δ : M → H a derivation defined on D which is closable as a densely defined
operator L2M → H. Let δ̄ denote its closure.

We are going to show that the domain of δ̄ is a ∗-subalgebra of L (H) and that
δ̄ is a derivation.

Notation. Let ‖−‖Lip denote the 1-Lipschitz norm:

‖f‖Lip = sup
x6=y

|f(x)− f(y)|
|x− y|

.

Let Lip0 denote the space of 1-Lipschitz continuous functions which map 0 to 0.
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For any x ∈ L2Msa, regarded as a self adjoint unbounded operator on L2M , we
can consider its functional calculus f(x).

Proposition 4.1. When x, y ∈ L2Msa and f ∈ Lip0, the functional calculus
f(x), f(y) is in L2M and

‖f(x)− f(y)‖2 ≤ ‖f‖Lip ‖x− y‖2 .

Proof. For the spectral measure E(t) of x, x =
∫
tdE(t) and ‖x‖22 =

∫
|x|2dτE(T ).

Thus ‖f(x)‖22 =
∫
|f(t)|2dτE(t) ≤ ‖f‖Lip

∫
|t|2dτE(t) and f(x) is in L2M . For the

second assertion, consider the bilinear map

C0(R)2 3 (f, g) 7→ τ(f(x)g(x)) = 〈f(x)1̂f(y), 1̂〉.

This defines a linear form C0(R × R) → C, i.e. τ(f(x)g(y)) =
∫
fgdµ for some

measure µ on R× R. Thus, τ(|f(x)− f(y)|2) is equal to∫
|f(s)− f(t)|2dµ(s, t) ≤ ‖f‖2Lip

∫
|s− t|2dµ(s, t) = ‖f‖2Lip ‖x− y‖22 . �

Definition 4.2. Let I be a bounded closed interval in R, f ∈ C1(I). The function

f̃(x, y) =

{
f(x)−f(y)

x−y (x 6= y)
f ′(x) (x = y)

is called the difference quotient of f .

Note that
∥∥∥f̃∥∥∥

∞
= ‖f ′‖∞. When a ∈ Msa and [−‖a‖ , ‖a‖] ⊂ I, we have

πa : C(I × I) → B(H) by πa(f ⊗ g)ξ = f(a)ξg(a).

Lemma 4.3. For any a ∈ D and f ∈ C1(I), the operator f(a) is in dom δ̄ and
δ̄(f(a)) = πa(f̃)δ(a).

Proof. The assertion is obvious for polynomial functions. The equality for the
general C1-functions follows from it because it is compatible with the C1-norm. �

Remark 4.4. When T is a closed operator on H, xn → x (n → ∞) in H and
supn ‖Txn‖ <∞ imply that x ∈ domT and that Tx ∈

⋂∞
m=0 conv {Txn : n ≥ m},

where conv denotes the closed convex span. This is because, taking a suitable
subsequence if necessary, we may assume that the bounded sequence Txn is weakly
convergent to some y. Taking the convex closure, we can find a sequence (zn)n∈N
such that Tzn → y in norm and that zn is in the algebraic convex closure of
{xk : k ≥ n}. By construction, (zn)n∈N converges to x.

Lemma 4.5. Let x be an unbounded self adjoint operator on L2M which is in
dom δ̄, f ∈ Lip0. Then f(x) ∈ dom δ̄ and

∥∥δ̄(f(x))
∥∥ ≤ ‖f‖Lip

∥∥δ̄(x)∥∥.
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Proof. Choose a mollifier (φn)n and set fn = f ∗ φn. Thus fn is of C1 class and
fn → f uniformly on I. By

|fn(y)− fn(z)| =
∫
|f(y − r)− f(z − r)|φn(r)dr ≤ ‖f‖Lip |y − z|,

we have ‖fn‖Lip ≤ ‖f‖Lip. Now take a sequence (an)n∈N in Dsa which is convergent
to x in ‖−‖2-norm. Then∥∥δ̄(fn(a))∥∥ =

∥∥∥πa(f̃n)δ(a)∥∥∥ ≤ ‖fn‖Lip ‖δa‖ .

This shows f(x) ∈ dom δ̄. �

Definition 4.6. A derivation δ : M → H is said to be real when we have

〈δ(x), δ(y)z〉 = 〈z∗δ(y∗, x∗〉
for any x, y, z ∈M .

Remark 4.7. We summarize a few properties of real derivations.
• When M is the group von Neumann algebra LΓ of a group Γ, the above

condition is equivalent to 〈δ(s), δ(t)〉 ∈ R.
• In general, when we have a J-operator, δ is real if and only if Jxδ(y)z =
z∗δ(y∗)x∗, since, by definition, 〈δ(x), δ(y)z〉 is equal to 〈z∗Jδ(y), Jδ(x)〉.

• When δ is real, dom δ̄ is self adjoint.

Let D denote dom δ̄.

Lemma 4.8. Let δ be a real derivation. When x ∈ D , |x| is also in D and M ∩D
is a *-subalgebra of M .

Proof. Consider the linear map δ(2) : M2D → M2H ' H⊕4. Then ¯δ(2) = δ̄(2) and
for any z ∈ D ,

w =
[

0 z∗

z 0

]
∈ dom ¯δ(2) ⇒ w2 =

[
|z|2 0
0 |z∗|2

]
∈ dom ¯δ(2).

Thus |z|2 is in D .
Let x, y ∈ D . The polarization

x∗y =
1
4

∑
ik|x+ iky|

shows x∗y ∈ D , and in particular x∗ ∈ D follows from 1 ∈ D . �

Lemma 4.9. For any x ∈ D ∩Msa, there exists a sequence (xn)n∈N in Dsa such
that

‖xn − x‖2 → 0,
∥∥δ(xn)− δ̄(x)

∥∥ → 0and ‖x‖∞ ≤ ‖x‖∞ .

In particular, xn → x in the ultrastrong topology.

Proof. The only nontrivial part is the last inequality. This is achieved by the
functional calculus with respect to the function

f(t) =


‖x‖∞ (‖x‖∞ < t)
t (|t| ≤ ‖x‖∞)
−‖x‖∞ (t < −‖x‖∞). �
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Theorem 4.10. The restriction of δ̄ to D ∩M is a derivation.

Proof. Let x ∈ D∩M . Choose a sequence (xn)n∈N in D weakly convergent to x and
δ(xn) → δ̄(x). For each y ∈ D ∩M , we have xny → xy in the ‖−‖2-norm. Since y
is bounded, we have δ(xn)y → δ̄y. On the other hand, the representation of M on
H is normal, which implies xnδ(y) → xδ(y). Thus we have δ̄(xy) = xδ(y) + δ̄(x)y.
Similar approximation in y shows that δ̄(xy) = xδ̄(y)+δ̄(x)y. for any y ∈ D∩M . �

4.2. Semigroup associated to a derivation. In the following we assume M ∩
D = D . Put ∆ = δ∗δ̄. This is a positive self adjoint operator on L2M satisfying
∆1̂ = 1̂ and commutes with the J operator so that we have “∆(x∗) = (∆x)∗.” Put
φt = e−t∆. This is a semigroup of positive contractions satisfying φt1̂ = 1̂ and
φt ↗ Id as t↘ 0. The normalized resolvents

ηα =
α

α+ ∆
for α > 0 are again positive contractions on L2M satisfying ηα ↗ Id as α ↗ ∞.
These operators are related to each other as follows:

∆
exponential // φt
derivation

oo
Laplace trans.// ηαBC��

inverse

OO

where the Laplace transform is given by

ηα = α

∫ ∞

0

e−αtφtdt =
∫ ∞

0

e−tφ t
α
dt.

Recall that any unital completely positive map φ : M →M is expressed as V ∗π(x)V
for some representation π : M → B(K) and an isometry V : L2M → K (Steine-
spring’s theorem). When φ is normal, π can be taken as a normal representation
(we may take the normal part of a possibly non-normal π given by Steinespring’s
theorem). Thus,

(1) For any x ∈M , φ(x∗x)− φ(x∗)φ(x) = V ∗πx∗(1− V V ∗)πxV ≥ 0. When φ
preserves τ , ‖φ(x)‖2 ≤ ‖x‖.

(2) When φ preserves τ , ‖φ(x∗y)− φ(x∗)φ(y)‖2 =
∥∥V ∗πx(1− V V ∗)πyV 1̂

∥∥ is
bounded from above by

‖φ(x∗x)− φx∗φx‖
1
2
∞ (τ(φ(y∗y)− φy∗φy))

1
2 ≤ 2 ‖x‖∞ ‖y − φ(y)‖2

by τ(φ(y∗y)− φy∗φy) = ‖y‖22 − ‖φy‖
2
2, etc.

Fact. Consider the 1-norm ‖x‖1 = sup {|τ(xy)| : ‖y‖∞ ≤ 1} for x ∈ M . x ∈
L2M is in M if and only if sup {|τ(xy)| : ‖y‖1 ≤ 1, xy ∈M} is finite.

Theorem 4.11. (Sauvageot, [1]?) The contractions φt and ηα map M into M ,
are unital completely positive and τ -symmetric, i. e. τ(φt(x)y) = τ(xφt(y)) etc.

Proof. Observe that φ(n)
t = e−t∆

(n)
where ∆(n) = δ(n)∗ ¯δ(n) for δ(n) : MnD →MnH.

Thus, it is enough to show that the maps are positive to conclude that they are
actually completely positive. Put

∆α =
α∆
α+ ∆

= α(1− ηα).
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Then

φt = e−t∆e = lim
α↗∞

e−t∆α = lim
α↗∞

e−tα
∞∑
n=0

tαηα
n!

where the limit is taken in the strong operator topology (note: this might be the
norm topology, as we are using c0 functions converging from below). The last
expression is compatible with the x 7→ τ(xy) (‖y‖1 ≤ 1) functionals. Thus it
reduces to show that ηα restricts to a positive map on M .

By scaling δ, we may assume that α = 1. Let x ∈M+ and put y = (1+∆)−1x ∈
dom ∆. We have

‖δy‖2 + ‖y‖22 = 〈y,∆y〉+ 〈y, y〉 = 〈y, x〉

Then the function Φ(z) =
∥∥δ̄(z)∥∥2 + ‖z − x‖22 for z ∈ Dsa satisfies∥∥δ̄(z − y)

∥∥2 + ‖z − y‖22 =
∥∥δ̄(z)∥∥2 − 2〈z,∆y〉+

∥∥δ̄(y)∥∥2 + ‖z‖2 − 2〈z, y〉+ ‖y‖2

=
∥∥δ̄(z)∥∥2 + ‖z‖2 − 2〈z, x〉+ ‖x‖2

− (
∥∥δ̄(y)∥∥2 + ‖y‖2 − 2〈y, x〉+ ‖x‖2)

= Ψ(z)−Ψ(y).

Consider a function

f(t) =


‖x‖∞ (‖x‖∞ < t)
t (0 ≤ t ≤ ‖x‖∞)
0 (t < 0).

of Lip0 class with ‖f‖Lip = 1. Then

Ψ(f(z)) =
∥∥δ̄(f(z))

∥∥2 + ‖f(z)− f(x)‖ ≤ Ψ(z).

Take a sequence (zn)n∈N in Dsa with ‖zn − y‖2 → 0 and
∥∥δzn − δ̄y

∥∥ → 0. Then
we have

‖fzn − y‖22 ≤ Ψ(fzn)−Ψ(y) ≤ Ψ(zn)−Ψ(y) → 0.

Thus y = lim fzn and 0 ≤ y ≤ ‖x‖ and η1 is shown to be unital positive. �

Let B be a von Neumann subalgebra of M . Then we are interested in “when φt
converges uniformly on B1?” Roughly, this means “δ is inner on B.”

Lemma 4.12. Let Ω ⊂M1. Then φt → id uniformly on Ω as t→ 0 if and only if
ηα → id uniformly on Ω as α→∞.

Proof. ⇒: We have

‖x− ηαx‖2 ≤
∫ ∞

0

e−s
∥∥x− φ s

a
(x)

∥∥
2
ds,

but
∥∥x− φ s

a
(x)

∥∥
2

does not exceed 2.
⇐: Suppose φs did not converge uniformly on Ω. Then there is a constant c

such that for any t there exists an element xt of Ω satisfying 〈xt − φtxt, xt〉 ≥ c.
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Then

〈xt − η 1
t
xt, xt〉 =

∫ ∞

0

e−s〈xt − φstxt, xt〉ds

≥
∫ 1

0

e−s〈xt − φt(xt), xt〉ds

≥ c(1− e−1)

and ηα is not uniformly convergent on Ω. �

Lemma 4.13. For the latter convenience we record the following equalities:
(1) In B(L2M),

η
1
2
α =

1
π

∫ ∞

0

t−
1
2

1 + t
ηα(1+t)

t
dt.

(2) In B(L2M),

(Id−ηα)
1
2 =

1
π

∫ ∞

0

t−
1
2

1 + t
(1− ηα(1+t)

t
)dt = Id−θα

where θα restricts to a unital completely positive map on M .
(3) ψt = e−t∆

1
2 is τ -symmetric and unital completely positive on M .

Proof. (1): we have

s
1
2 =

1
π

∫ ∞

0

s

s+ t
t−

1
2 dt⇒ η

1
2
α =

1
π

∫ ∞

0

ηα
t+ ηα

t−
1
2 dt.

On the other hand,
ηα

t+ ηα
=

α

α(1 + t) + t∆
=

1
1 + t

ηα(1+t)
t

.

(3): We have ∆
1
2
α = α

1
2 (Id−ηα)

1
2 = α

1
2 (Id−θα). Thus ψt can be written as

lim
α→∞

e−t∆
1
2
α = lim

α→∞
e−α

1
2 tetα

1
2 θα . �

Lemma 4.14. For x, y ∈ D , put Γ(x∗, y) = ∆
1
2 (x∗)y + x∗∆

1
2 (y)− δ

1
2 (x∗y). Then

we have
‖Γ(x∗, y)‖2 ≤ 4 ‖δ(x)‖ ‖x‖∞ ‖δ(y)‖ ‖y‖∞ .

Proof. First we have

Γ(x∗, y) =
d

dt
(ψt(x∗y)− ψt(x∗)ψt(y))

∣∣∣∣
t=0

.

Note that ‖ψtx‖ ≤ ‖x‖. Define a sesquilinear form on D ⊗M by 〈y ⊗ b, x ⊗ a〉 =
τ(a∗Γ(x∗, y)b). This is positive semidefinite by

〈
∑

xi ⊗ ai,
∑

xi ⊗ ai〉 = lim
t→0

τ(
∑

ai
ψt(x∗i xj)− ψtx

∗
iψt(xj)

t
aj) ≤ 0.

For z = v|z| ∈M , we have

|τ(Γ(x∗, y)z)| = |〈y⊗ v|z| 12 , x⊗ |z| 12 〉| ≤ 〈y⊗ v|z| 12 , y⊗ v|z| 12 〉 1
2 〈x⊗ |z| 12 , x⊗ |z| 12 〉 1

2 .
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Here, 〈x⊗ a, x⊗ a〉 ≤ ‖aa∗‖2 ‖Γ(x∗, x)‖2 and

‖Γ(x∗, x)‖ ≤
∥∥∥∆

1
2x∗

∥∥∥
2
‖x‖∞ + ‖x∗‖∞

∥∥∥∆
1
2x

∥∥∥
2

+
∥∥∥∆

1
2 (x∗x)

∥∥∥
2

≤ 4 ‖δ(x)‖ ‖x‖∞ .

(Here we used the fact that
∥∥∥∆

1
2 (x∗x)

∥∥∥
2

= ‖δ(x∗)x+ x∗δ(x)‖.) Hence we arrive at

|τ(Γ(x∗, y)z)|2 ≤ ‖Γ(x∗, x)‖2 ‖z‖2 ‖(y
∗, y)‖ ‖z‖2 ,

thus ‖Γ(x∗, y)‖2 ≤ ‖Γ(x∗, x)‖2 2 ‖(y∗, y)‖. �

Put ζα = η
1
2
α . ∆

1
2 ζα = ∆

1
2
α = (Id−ηα)

1
2 (hence bounded) and

∥∥∥∆
1
2
αx

∥∥∥2

2
=

α〈(Id−ηα)x, x〉. Put δ̃α = α
1
2 δζα. Thus

∥∥∥δ̃α(x)
∥∥∥ = 〈(Id−ηα)x, x〉 and ‖δ‖α (x) →

0 if and only if ‖x− ηαx‖2 → 0.

Theorem 4.15. (Peterson?) Let Ω ⊂ M1 and suppose ηα → Id uniformly on
Ω. Then we have

∥∥∥δ̃α(ax)− ζα(a)δ̃α(x)
∥∥∥ → 0 (α → ∞) uniformly for a ∈ Ω and

x ∈M1.

Proof. By assumption ζα and θα converge uniformly to Id on Ω, by e.g. .

θα =
1
π

∫ ∞

0

t
1
2

1 + t
η αt

1+t
dt.

In particular, θα(ax) ≈ θα(a)θα(x) ≈ aθα(x) whre ≈means the 2-norm convergence
under α→∞. Now,

α−
1
2 ∆

1
2 ζα(ax) = α−

1
2 (Id−θα)(ax) ≈ α−

1
2 a(Id−θα)(x) ≈ α−

1
2 ζα(a)(Id−θα)(x)

= α−
1
2 ζα(a)∆

1
2 ζα(x) ≈ α−

1
2 ∆

1
2 (ζα(a)ζα(x))− δ̃α(a)ζα(x)

where the last approximation is given by applying Lemma 4.14 to get the error
estimate

4
√
α−

1
2

∥∥∥δ 1
2 (ζα(a)

∥∥∥∥∥∥α 1
2 δζαx

∥∥∥.
Here, α−

1
2

∥∥∥δ 1
2 (ζα(a)

∥∥∥ ∼ 0 and
∥∥∥α 1

2 δζαx
∥∥∥ is bounded by 1.

Finally we arrive at

δ̃α(ax) ≈ α−
1
2 δ(ζα(a)ζα(x))− δ̃α(a)ζα(x) = ζα(a)δ̃α(x). �

Theorem 4.16. (Haagerup) Let M be a von Neumann algebra. M is finite injective
if and only if for any nonzero central projection p of M , there exist n ∈ N and
u1, . . . , un ∈ U(pM) such that ‖

∑n
i=1 ui ⊗ ui‖∞ = n.

Proof. (Outline) ⇒: By Connes’ theorem, M ⊗min M̄ → B(L2M) can be defined
by (a⊗ b).x̂ = âxb∗. Now, (

∑n
i=1 ui ⊗ ūi).1̂ = n1̂ when ui ∈ UM .

⇐: The minimal tensor product M ⊗min M̄ acts on H⊗̂H̄ i.e. the Hilbert-
Schmidt space of H. For any finite set F ⊂ UM containing 1 and

∥∥∑
u∈F u⊗ ū

∥∥ =
|F |, there exists T ∈ HS(H) of 2-norm 1,

∥∥∑
u∈F uTu

∗
∥∥ ≈ |F |. Then uTu∗ ≈ T .

Now, define φF (x) = Tr(T ∗xT ). Then φF (uxu∗) ≈ φα(x) for u ∈ F . We obtain
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an ultrafilter convergence φF → φ ∈ S(B(H)) such that φ(uxu∗) = φ(x) for any
u ∈ UM . This holds under any central projection, which means M is injective. �

Recall that we are investigating closable real derivations on M . Thus, H is an
M -bimodule with a J-operator: J(aδ(x)b) = b∗δ(x∗)a∗. We have the operators

ηα =
α

α+ δ∗δ̄
, ζα = η

1
2
α , δ̃α = α−

1
2 δζα : M → H.

As α→∞, we have
∥∥∥δ̃α(a)

∥∥∥2

=
∥∥∥(Id−ηα)

1
2 a

∥∥∥2

2
= τ((a− ηαa)a∗) ↘ 0.

Theorem 4.17. Let (M ; τ) be a finite von Neumann algebra, H = (L2M ⊗
L2M)⊕N. Suppose Q ⊂ M is a von Neumann subalgebra without injective sum-
mand. Then φt → Id uniformly on (Q′ ∩M)1.

Proof. It is enough to show that for any nonzero central projection p ∈ Q, there
exists a central projection q ≤ p in Q such that φt → Id on q(Q′ ∩M)1. In fact,
then by the maximal argument we would get a family (pi)i∈I of nonzero central
projections such that

∑
i∈I pi = 1 and φt → Id on pi(Q′ ∩M)1 for each i. Taking

a finite subset I0 ⊂ I such that τ(
∑

{I0
pi) < ε

3 , we find t0 such that t > t0 implies
‖φt(a)− a‖2 <

ε
3 for a ∈ pI0(Q′∩M)1. On the other hand, for any a ∈ pI0(Q′∩M)1

τ(a− pI0a) <
ε
3 .

Thus we are going to prove the negation of the above claim leads to that pQ is
injective. Let q ≤ p be a nonzero central projection in Q, u1, . . . , un ∈ U(qQ). As
φt does not converge uniformly on q(Q′ ∩M)1, there exists xα ∈ q(Q′ ∩M)1 for
any α such that lim inf

∥∥∥δ̃α(xα)
∥∥∥ > 0.

Applying Theorem 4.15 to the finite subset Ω = {u1, . . . , un} on which φt is
uniformly convergent, for any x ∈ q(Q′ ∩M), as α→∞,∑

i

ζα(ui)δ̃α(x)ζα(u∗i ) ≈
∑
i

δ̃α(uixu∗i ) = nδ̃α(x).

Thus,
∥∥∥∑

i ζα(ui)⊗ ζα(ui)
∥∥∥

min
→ n as α → ∞. On the other hand, since ζα is a

normal unital completely positive map,
∥∥∥∑

i ζα(ui)⊗ ζα(ui)
∥∥∥

min
is always bounded

by ‖
∑
ui ⊗ ūi‖, which shows that ‖

∑
ui ⊗ ūi‖ = n. Thus we have the injectivity

of pQ by Theorem 4.16. �

Remark 4.18. If a 1-cocycle b : Fr → `2F⊕nr satisfies ‖b(s)‖22 = |s|, we obtain a
derivation δ on `2Fr ⊗ `2F⊕nr given by δ(s) = δ∆ ⊗ b where δ∆ is the “diagonal”
operator on `2Fr which multiplies the standard base δs by |s|. The semigroup
φt associated to this derivation is written as φt(λ(s)) = e−t|s|λ(s), thus it is in
K(L2M).

When B is a von Neumann subalgebra of LFr, φt → Id uniformly on B1 if and
only if B is a direct sum ⊕Mni of finite dimensional algebras.

Corollary 4.19. Let Q be a von Neumann subalgebra of LFr without injective sum-
mand. Then the relative commutant Q′ ∩ LFr is completely atomic. In particular,
Q⊗ L∞[0, 1] 6⊂ LFr.
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Theorem 4.20. Let (M ; τ) be a finite von Neumann algebra, H = (L2M⊗L2M)N,
δ a closable real derivation. If B ⊂ M is diffuse (i.e. without minimal projection)
von Neumann subalgebra such that φt converges to Id uniformly on B1, one has
φt → Id uniformly on N(B)′′1 .

Proof. Since B is diffuse, there exists a sequence (vn)n∈N in UB ultraweakly con-
vergent to 0 (e.g. e2πint ∈ L∞[0, 1] for n ∈ N). For any u ∈ N (B),∥∥∥δ̃α(u)

∥∥∥ ≤ lim inf
∥∥∥δ̃α(u)− ζα(vn)δ̃α(u)ζα(u∗v∗nu)

∥∥∥
→

∥∥∥δ̃α(u)− δ̃α(vnuu∗v∗nu)
∥∥∥ = 0 (n→∞)

The convergence holds uniformly for u. It remains to apply the following lemma to
N(B) = G. �

Lemma 4.21. When φt → Id uniformly on G ⊂ UM , we have the uniform con-
vergence φt → Id on G′′1 .

Proof of the lemma. Let φ : M → M be a τ -symmetric unital completely positive
map (hence a contraction). Consider the Stinespring construction on M ⊗alg L

2M
by 〈a⊗x, b⊗y〉 = 〈φ(b∗a)x, y〉. This is positive semi definite by the unital completely
positivity. The M -M -action a.(c ⊗ x).b = ac ⊗ xb is bounded and induces an M -
bimodule structure on the completion.

Now, for ξ0 = 1⊗ 1̂ ∈M ⊗ L2M ,

‖aξ0 − ξ0a‖2 = τ(φ(aa∗)) + τ(aa∗)− 2<τ(φ(aa∗)) = 2τ((a− φ(a))a∗).

On the other hand,
1
2
‖a− φ(a)‖22 ≤ ‖aξ0 − ξ0a‖ ≤ 2 ‖a− φ(a)‖2 · ‖a‖2 .

Thus, if ‖u− φ(u)‖ ≤ ε, we have ‖ξ0 − uξ0u
∗‖ ≤

√
2ε. By taking the circumcen-

ter of {uξ0u∗ : u ∈ G}, we get a G-invariant vector η0 satisfying ‖ξ0 − η0‖ ≤
√

2ε
(this is possible by the Ryll-Nardzewski’s fixed point theorem). Thus we obtain
‖aξ0 − ξ0a‖ ≤ 2

√
2ε for a ∈ (G′′)1. �

Appendix A. Embeddability of subalgebras

Let A ⊂M be an inclusion of finite von Neumann algebras with a trace τ on M .
Recall that we have the associated Jones projection eA ∈ B(L2M), the orthogonal
projection onto L2A = A1̂ and the basic extension 〈M,A〉 of M :

〈M,A〉 = vN {M, eA} =

{ ∑
finite

xieAyi : xi, yi ∈M

}′′

and the semifinite trace Tr(
∑
xieAyi) =

∑
τ(xiyi) on 〈M,A〉.

Theorem A.1. (Popa) Let A ⊂M be an inclusion of separable finite von Neumann
algebras, p a nonzero projection in M , B ⊂ pMp a von Neumann subalgebra. The
the followings are equivalent:

(1) There are no sequence (wn)n in UB such that ‖EA(y∗wnx)‖2 → 0 for any
x, y ∈M .
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(2) There exists a nonzero positive element d ∈ 〈M,A〉 of finite trace such that
0 6∈ convw {wdw∗ : w ∈ UB}

(3) There exists a closed nonzero B-A submodule H of pL2M such that dimAHA

is finite.
(4) There exists a projection e in A, another 0 6= f in B and a normal ∗-

homomorphism θ : fBf → eAe such that there exists a nonzero partial
isometry v ∈M satisfying xv = vθ(x) for any x ∈ fBf , and vv∗ ∈ (fBf)′∩
fMf , v∗v ∈ θ(fBf)′ ∩ eMe.

Proof. (1) ⇒ (2): By assumption there exits a finite set F ⊂ M and ε > 0 such
that

inf
w∈UB

∑
x,y∈F

‖EA(y∗wx)‖22 ≥ ε.

Now, put d =
∑
y∈F yeAy

∗ ∈ 〈M,A〉+. By definition Tr(d) <∞ and we have∑
x∈F

〈w∗dwx̂, x̂〉 =
∑
x,y∈F

〈eAŷ∗wx, ŷ∗wx〉 =
∑
x,y∈F

‖EA(y∗wx)‖22 ≥ ε

for any w ∈ UB.
(2) ⇒ (3): Let C denote the closed convex hull of {wdw∗ : w ∈ UB} in L2〈M,A〉.

We can take the circumcenter d0 of C which is not equal to zero by (2). Then d0

is in B′ ∩ p〈M,A〉p and Tr(d0) ≤ Tr(d) <∞. Thus we can take a nonzero spectral
projection q of d0 such that Tr(q) < ∞. Now, H = qL2M is a B-A submodule
with dimAHA = Tr(q).

(3) ⇒ (4): Fact. When H is a B-A module with dimAHA < ∞, there exists a
nonzero projectionf of B, an fBf -A module K ⊂ fH such that KA ↪→ L2AA as a
right A-module.

Thus, let V denote such an injection KA → L2AA. When x ∈ fBf , V xV ∗ ∈
EndA(L2AA) = A. Thus θ(x) = V xV ∗ defines a normal ∗-homomorphism (since
V is injective) θ of fBf into eAe for e = V V ∗. Put ξ = V ∗1̂ ∈ K. Since
V ξ = V V ∗1̂ = ê, ξ 6= 0. On the other hand, for any x ∈ fBf ,

xξ = V ∗V xV ∗1̂ = V ∗θ(x)1̂

= V ∗1̂θ(x) (θ(x) ∈ eAe)
= ξθ(x).

Now we are going to investigate

ξ ∈ K ⊂ fH ⊂ pL2M ⊂ L2M

as a square integrable operator affiliated with M . By above we have xLξ = Lξθ(x)
for any x ∈ U(fBf). Let v|Lξ| be the polar decomposition of Lξ. Then

|Lξ|2 = (xLξ)∗(xLξ) = (Lξθ(x))∗Lξθ(x) = θ(x)∗|Lξ|2θ(x)

for x ∈ U(fBf). Thus |Lξ| commutes with θ(fBf). In particular v∗v = s(|Lξ|) ∈
θ(fBf)′ ∩ eMe. Finally,

xv|Lξ| = xLξ = Lξθ(x) = v|Lξ|θ(x) = vθ(x)|Lξ|,

which implies xvv∗v = vθ(x)v∗v, i.e. xv = vθ(x) for any x ∈ fBf .
(4) ⇒ (1): Take e, f, v as in (4). Let Eθ denote the conditional expectation

eMe → θ(fBf). Then 0 6= Eθ(v∗v) ∈ Z(θ(fBf)), vEθ(v∗v)2v∗ ∈ (fBf)′ ∩ fMf .
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Let (fi)i∈I be a maximal family of mutually orthogonal nonzero projections satis-
fying f0 = f and fi - f in B. Thus,

∑
fi is equal to the central support zB(f) of

f in B. Put u0 = f . For each i, take a partial isometry ui satisfyikng uiu∗i = fi
and u∗i ui ≤ f . Put vi = uiv. Now we have, for w ∈ UB,∑

i

‖EA(v∗iwv0)‖
2
2 ≥

∑
i

‖vv∗Eθ(v∗iwv0)‖
2
2 = · · · = τ(Eθ(v∗v)3) > 0.

Since
∑
‖v∗i ‖

2
2 ≤ 1 and ‖EA(v∗iwv0)‖2 ≤ ‖v∗i ‖2, there exists a finite subset F of

{vi : i ∈ I} containing v0 and
∑
vi 6∈F ‖v∗i ‖

2
2 < τ(Eθ(v∗v)3)/2. �

Definition A.2. Let A and B be von Neumann subalgebras of M . B is said to
embed into A inside M when the equivalent conditions of Theorem A.1 hold for B
and A.

Corollary A.3. If B does not embed into A inside M , there exists a commutative
von Neumann subalgebra B0 of B which does not embed into A inside M . Equiv-
alently, if any commutative subalgebra of B embeds into A, B also embeds into
A.

Remark A.4. The above theorem is useful when we have τ -symmetric unital com-
pletely positive maps φi : M → M which restrict to the identity map on A, giving
φ̂i ∈ 〈M,A〉 ∩A′. Often one has φ̂i ∈ K〈M,A〉 = C∗(xeAy : x, y ∈M).
B ⊂M is said to be rigid when φi → Id uniformly on the unit ball of B1. Then,

taking φ = φi0 that satisfies

‖φ(b)− b‖2 <
1
3

(∀b ∈ B1),

d = χ[ 12 ,1]
(φ̂) satisfies Tr(d) <∞ and∥∥wdw∗1̂− 1̂

∥∥ ≤ 1
2

+
∥∥∥wφ̂w∗1̂− 1̂

∥∥∥ =
1
2

+ ‖φ(w∗)− w∗‖2 ≤
5
6
.

Hence conv2 {wdw∗} does not contain 0 and B embeds into A inside M .
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