ORBIT EQUIVALENCE AND OPERATOR ALGEBRAS

NARUTAKA OZAWA

ABSTRACT. This treatise is based on the lecture given by Narutaka Ozawa at
the University of Tokyo during the winter semester 2006-2007. It includes an
elementary theory of orbit equivalence via type II; von Neumann algebras,
Liick’s dimension theory [6] and its application to L? Betti numbers [5], con-
vergence of the semigroup associated to a derivation and a theorem of Popa
on embeddability of subalgebras.
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1. INTRODUCTION

1.1. Orbit equivalence.

Definition 1.1. Let Y be a topological space, By the o-algebra of the Borel sets of
Y. When Y is a separable complete metric space, (Y, By) (or, by abuse of language,
Y') is said to be a standard Borel space (standard o-algebra).

Remark 1.2. When X is a standard Borel space, X is either (at most) countable
or isomorphic to the closed interval [0, 1].
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Definition 1.3. A standard Borel space with a Borel probability measure is said
to be a (standard) probability space. A point z of a probability space (X, u) is said
to be an atom of (X, u) when p(z) > 0. A probability space (X, p) is said to be
diffuse when it has no atom.

Example 1.4. (Examples of standard probability spaces)

(1) The infinite product (J[,cy {0, 1}, ®nptn), where p, is a probability mea-
sure on {0, 1} for each n € N is standard.

(2) When G is a separable compact group, the normalized Haar measure on G
makes G into a standard probability space.

When (X, ) is a probability space, we obtain a (w*-) separable von Neumann
algebra L>°X and a normal state (also denoted by u) on it. To each isomorphism
¢: (X, u) — (Y,v) of probability spaces, we obtain an isomorphism ¢, : L®Y —
L>*X, f+— fo¢ satisfying po ¢* = v.

Theorem 1.5. (von Neumann)

(1) When (X, ) and (Y,v) are diffuse probability spaces, there is an isomor-
phism (L% (X, p), p) = (LY, v),v).

(2) For each isomorphism o: L®Y — L®X with uo = v, there exists a Borel
isomorphism ¢: X — 'Y such that ¢*u=v and ¢, = 0.

Proof. (Outline): (1) We may assume that Y = [[{0,1}, 1 = ®n(3, 1). Since X
is diffuse, we have a decomposition X = X, [[ X1 by Borel sets with p(X) = 5. We
can continue this procedure as Xo = Xoo [[ Xo1, #(Xo0) = %, so on. The partition
by X.x... can be made fine enough because there is a separating family (B, )nen in
Bx, which will imply the desired isomorphism between L*°X and L*°Y compatible
with the normal states.

(2) Let A denote the Lebesgue measure on the closed interveal [0, 1]. Since there
exists an isomorphism (L*°Y,v) ~ (L*°[0,1],\), we may assume that ¥ = [0, 1]
and v = X here. For each r € QN [0,1], put E, = o(x[o,r). Define a mapping
¢: X — [0,1] by ¢(x) = inf {r:x € E.}. The inverse image of [0,¢) under ¢ is
equal to U,«¢FE,. The latter is obviously Borel, which means that ¢ is a Borel
map. By o(xjo0,r) = ¢*(x[o,r)) for r € QN [0,1], we have ¢ = ¢* and ¢,u =
Lebesgue measure.

It remains to replace ¢ by a Borel isomorphism. Let (B, )n,en be a separating
family of X. For each n, there exists F, € By such that ¢.xr, = xB,. Thus
N =U,B,A¢"'F, is a null set. On X \ N, the condition z € B,, is equivalent to
¢(x) € F,. If z and y are distinct points of X \ N, there exists an integer n such
that © € B,, while y € B,,. Thus ¢(z) # ¢(y) and ¢ is injective on X \ N. We may
assume that N and Y\ ¢(X \ N) are uncountable so that there is an isomorphism
of N to Y\ ¢(X \ N). O

Let ' ~ (X, 1) be a measure preserving action by a discrete countable group.
(We may assume that it acts by Borel isomorphisms.) Let s be an element of T'.
When f is a complex Borel function defined on X, put a4(f): x — f(s~'x). This
induces a p-preserving kx-automorphism on L*>°X. This way we obtain an action
a: T'~ L°(X, u) preserving the state p.

Definition 1.6. Two actions I' ~ (X, ) and T’ ~ (Y, v) are said to be conjugate
when there exists an probability space isomorphism ¢: (X, u) — (Y, v) witch is a.e.
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I'-equivariant. This is equivalent to the existence of a I'-equivariant state preserving
isomorphism o: L*®(Y,v) — L™ (X, ).

Definition 1.7. Let I' ~ (X, ) be an action by measure preserving Borel iso-
morphisms. The subset Zr~ (x ) = {(sz,2) : s € T'} of X x X is called the orbit
equivalence relation of the action.

Definition 1.8. Two actions I' ~ (X,u) and A ~ (Y,v) are said to be orbit
equivalent when there exists a measure preserving Borel isomorphism ¢: Y — X
satisfying T'¢(y) = ¢(Ay) for ae. y €Y.

Definition 1.9. A partial Borel isomorphism on X is a triple (¢, A, B) consisting
of A, B € Bx and a Borel isomorphism ¢ of A onto B.

Definition 1.10. A measure preserving standard orbit equivalence is a subset %
of X x X satisfying the following conditions:

(1) Z is a Borel subset with respect to the product space structure.

(2) Z is an equivalence relation on X.

(3) For each z € X, the Z-equivalence class of x is at most countable.

(4) Any partial Borel isomorphism ¢ whose graph is contained in Z, ¢ preserves
measure.

Theorem 1.11. (Lusin) Let X,Y be standard spaces.

(1) When ¢: X — Y is a countable-to-one Borel map, ¢(X) is Borel. More-
over there exists a Borel partition X = [[ X, such that ¢|x, is a Borel
isomorphism onto ¢(X,,).

(2) When Z is a standard orbit equivalence, # = Un9(pn) where ¢y, is a
partial Borel isomorphism for each n.

Lemma 1.12. Let A be a subset of a standard space X, ¢ a mapping of A into X.
¢ and A are Borel if and only if the graph 94(¢) = {(¢z,x) : © € A} of ¢ is Borel
imn X xX.

Proof. < is an immediate consequence of Theorem |1.11
=: Let (Bn)nen be a separating family of X. The condition y # ¢(x) is equiv-
alent to (y,z) € U,(CB,) x ¢~ 1(B,). Thus 4(¢) = C(U(CB,) x ¢~ 1(By,)). O

1.2. Preliminaries on von Neumann algebras. Let H be a Hilbert space,
B(H) the involutive Banach algebra of the continuous endomorphisms of H, A
a *-subalgebra of B(H). (typically A generates a von Neumann algebra M of
our interest.) In the following A is often assumed to admit a cyclic tracial vector
& € H,ie. ||| =1, A&, is dense in H, and that the vector state 7(a) = (a&.,&;)
is tracial.

Remark 1.13. A state 7 is tracial means that by definition the two sesquilinear
forms 7(ab*) and 7(b*a) in (a,b) are same. To check this property, by polarization
it is enough to show 7(aa*) = 7(a*a). Under the assumption above &, becomes a
separating vector for A”. Indeed, a&; = 0 implies 7(bc*a) = 0 for b,c € A, which
means 7(c*ab) = 0 and in turn (aH, H) = 0.

Notation. Let é denote a&,. (Hence we have (a,b) = 7(ab*).)
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Remark 1.14. We have a conjugate linear map J: H — H determined by a — a*.
Then we have JaJb = ba* which implies JAJ C A’ and JA”J C A’. On the other
hand, for any x € A’ and a € A

<J.7J§.,., a§7'> = <Ja§‘rv m€T> = <a*§-,—, 3767’) = <x*577 a£T>'
Thus Jx&, = x*&,, thence &, is a cyclic tracial vector for A’. The J-operator for

(A’,&;) is exactly equal to the original J. Doing the same argument as above, we
obtain JA'J C A”.

Remark 1.15. The map A” — A’,a +— JalJ is a conjugate linear *-algebra isomor-
phism.

1.3. Crossed products. Let ' ~ (X, ) be a measure preserving action of a
discrete group on a standard probability space X. Recall that we have an action
I' ~ L% X induced by as(f) = f(s71—) for s € T

On the other hand, we get a unitary representation 7: I' ~ L?(X, u) given by
the same formula 7sf = asf as the one on L>°X. Note that 7y fr} = a,(f) for
sel' and f e L*X.

Definition 1.16. Let A\: I' ~ B(¢2I") denote the regular representation. The von
Neumann algebra L>X x T on L?(X) ® (5] is generated by the operators m ® A(s)
forseland f®1 for f € L°°X is called the crossed product of L>°X by «.

Let A denote {) g0 fs ® 1-m™® A(s)} C L X xI'. By abuse of notation, in the
following f stands for f®1 and A(s) for t®@\(s). Now &, = 1®5, € L2X @4, is a
cyclic tracial vector for A. Indeed, it is obviously cyclic, while 7(fA(s)) = de, sp1(f)
implies the tracial property:

T(fAS)GA(E)) = Sst.e fs(9) = Ots,ce(f)g = T(gAE) FA(s))-
Note that the above expressions are nonzero only if s = ¢~ 1.

Let V denote the isometry L%(X) — L?(X) ® {31, f — f ® 6.. Then the
contraction E: L®X x ' — B(L?*(X)), a — V*aV has image L*°X, i.e. E is a
conditional expectation (see Definition of L*X x I onto L>*X. Note that
T=pokE.

1.4. von Neumann algebras of orbit equivalence. Let # be a standard orbit
equivalence on X. Hence it is a countable disjoint union [[, ¥ (¢,) of the graphs
of partial isometries. We may assume that ¢y = Idx. We will define a “Borel
probability measure” on Z.

Observe that when f: # — C is a Borel function, X — C, 2z — > f(y,2) =

> [(dnx, ) is also Borel. Define a measure v on Z by putting

|ew= [ 3 swauta)

yRx
for each Borel function £ on #. Thus when B is a Borel subset of #Z, v(B) =
[l () N Bldu(z) for the second projection m,: Z — X, (y,x) — .
We get a pseudogroup [#] whose underlying set is

{® : partial Borel isomorphism, ¢4 (¢) C Z} .

The composition ¢ o i of ¢ and 1 is defined as the composition of the maps on
1=t dom(¢). In particular, the identity maps of the Borel sets are the units of [%],
and ¢ € [#] implies ¢~ € [Z].



ORBIT EQUIVALENCE AND OPERATOR ALGEBRAS 5

For each ¢ € [#], define a partial isometry v, € B(L*(%,v)) by v4é(y, x)
£(¢7'y,x). Thus vgvy = Vgoy. On the other hand, the set {xg ) : ¢ € [Z]} i
total in L?(2,v) and vsXwy = X«@pow. Moreover, we have

»n

(VoXwys Xg0) = /g(@ﬁ) NG (0)dv = p{z : pvpx = 0z} = (Xgp, vs-1X50),
which implies v = vy-1.

Definition 1.17. The von Neumann algebra vNZ on L?(%, v) generated by {v, : ¢ € [Z]}
is called the von Neumann algebra of Z.

§r = Xw(1dy) 18 a cyclic tracial vector for vNZ: in fact,

T(vgy) = p({z : potp(z) = x})
=u{y:voy=y}) (y=9¢"'2)
= 7 (Uyp)-
Note that L°°X is contained “in the diagonal” of vNZ, subject to the relation

vef = (fog™1)v,. We have a conditional expectation E: VNZ — L*X, a — V*aV
implemented by the “diagonal inclusion” isometry V: L?2X — L2%. We have

E(“d’) = X{z:px=x}"

2. ELEMENTARY THEORY OF ORBIT EQUIVALENCE

2.1. Essentially free action of countable discrete groups. Suppose we are
given a measure preserving action I' ~ (X, u) by a discrete group on a standard
probability space. As in the last section we get two inclusions of von Neumann
algebras:

(1) L®°X C L>®°X x T in B(L2X ® £,T).

(2) L>®X C VN(Zr~(x,u)) in B(L*%).

In general these are different, e.g. when the action is trivial.

Definition 2.1. An action I' ~ (X, ) is said to be essentially free when the fixed
point set of s has measure 0 for any s € G\ {e}.

Theorem 2.2. When the action T' ~ (X, u) is essentially free, the above two
inclusions of von Neumann algebras are equal.

Remark 2.3. Juy = vg-1 implies JE(z,y) = £(y, v).

Proof of the theorem. Identification of the representation Hilbert spaces is given by
U: L*’X @1 — L*Z#, g6; — g-Xg(1)- When we have an equality fx«(s) = 9X» ()
of nonzero vectors in L2%, s must be equal to t by the essential freeness assumption.
Now,

U vsU(g ® 6t) = Uras(g)vsxeg @) = Uras(9)Xg(st) = as(g) @ Ost-

This shows U*v,U = @ A(s). On the other hand, U* fU = f ® 1 is trivial. Thus,
via U, L2X x T is identified to L>Z. (]
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Definition 2.4. Let M be a finite von Neumann algebra, A a von Neumann
subalgebra (in the following A is often assumed to be commutative). The sub-
set NA = {u e UM : uAu* = A} of UM is called the normalizer of A. Likewise
NPA = {v € M : partial isometry, v*v,vv* € A, vAv* = Avv*} is called the partial
normalizer of A.

Lemma 2.5. For any v € NPA, there exist u € NA and e € Proj(A) such that
v = ue. For any ¢ € [#], there exists a Borel isomorphism ¢ whose graph is
contained in Z and Plaom ¢ = @.

Proof. We prove the second assertion as the demonstration of the first one is an
algebraic translation of it. Put E = dom¢ and F = ran¢. When pu(EAF) = 0,
there is nothing to do. When u(EAF) # 0, 3k > 0 such that ¢*(E\ F) N (F\ E)
is non-null. If not, ¢*(E\ F) C FNC(F\ E) = FNE C E up to a null set and
#**1 can be defined a.e. on E'\ F. Thus we would get a sequence (¢*(E \ F))ren
of subsets with nonzero measure. For any pair m < n, ¢"(E\ F)N¢"(E\ F) is
equal to ¢™(¢""™(E\ F)N (E \ F)) which is null. This contradicts to u(X) = 1.

Now, given such k, put ¢; = ¢H(¢_k‘¢k(E\F)ﬂ(F\E)). Then we can use the
maximality argument (Zorn’s lemma) to obtain a globally defined Borel isomor-
phism. (I

2.2. Inclusion of von Neumann algebras.

Definition 2.6. Let M C N be an inclusion of von Neumann algebras. A unital
completely positive map F : N — M is said to be a conditional expectation when
it satisfies F(axb) = aE(x)b for a,b € M and x € N.

Fact. When N is finite with a faithful tracial state 7, there exists a unique con-
ditional expectation E that preserves 7. Then we obtain an orthogonal projection
en : L2N — ME, ~ L>M extending F.

Remark 2.7. (Martingale) If we are given Ny C N C --- C M with N = V,;N;
or M D Ny D Ny D --- with N = N;NN;, together with conditional expectations
E,:M — N, and E: M — N, e, — e in the strong operator topology implies
[E(x) = En(z)ll; — 0.

For example, let A C M be a finite dimensional commutative subalgebra, e;
(1 < i < n) the minimal projections of A. Then Exnn(z) = D1, e;ze;. If we
have a sequence Ay C Ay C -+ C M of finite dimensional commutative subalgebras
and A = VA;, we have Ear nayr — Earnn. The latter is equal to Ey4 if and only if
A is a maximal abelian subalgebra.

Definition 2.8. A von Neumann subalgebra A C M is said to be a Cartan subal-
gebra of M when it is a maximal abelian subalgebra in M and N (A)” = M. (Then
we also have M = NP(A)".)

Theorem 2.9. L>*X C vNZ is a Cartan subalgebra.

Proof. Since the generators v, are in N'A, it is enough to show that L>°X is max-
imal abelian in vNZ. Recall that Z = [[9(¢,) with ¢ = Idx. Then let a be an
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element of the relative commutant of L>°X. a can be written as ), fnXw@(¢,)- By
assumption fa = af for any f € L*°X. Thus,

J/""EZfonXg(%), (/z?:Jde:ZfO(b;l-fnxg(%)_

Hence ff, = f o ¢,f, for any n and any f, which implies f,, = 0 except for
n =0. (I

Definition 2.10. Z is said to be ergodic when any Z#-invariant Borel subset of X
is of measure either 0 or 1. An action I' ~ (X, p) is said to be ergodic when %~ x
is ergodic.

Corollary 2.11. vNZ is a factor if and only if Z is ergodic.

Proof. The Cartan subalgebra L°° X contains the center of vNZ. The central pro-
jections are the characteristic functions of the Z-invariant Borel subsets. O

Let v € NPL*>®, E,F € By the Borel sets (up to null sets) respectively repre-
senting the projections v*v and vv* in A. The map L*E — L*®F, f — vfv*e
is a *x-isomorphism. Thus there exists a Borel isomorphism ¢, : F — F' such that
vfv* = fogyt. (v=ovy, for some o € UL>®F.)

Theorem 2.12. In the notation as above, v&v* = &(¢yt(y),z) v-a.e. for any
v € NPL>® and any £ € L®°Z. In particular, ¢, € [#] up to a null set. Moreover,
we have LV JL>®J = L*Z%.

Proof. Put A = L*X. First, fJgJ € L™ for f,g € A: indeed, fJgJ is the
multiplication by the function f(y)g(z) on Z.

vfJgJv* =vfv*Jg] = fody Jg] (JMJ =M.

Hence vév*(y,x) = v(¢,; ty,x) for € € AV JAJ. It remains to show X (dx) €
AV JAJ. Because, if this is satisfied, we will have x4 (4,) = VX% 1a)v" € L7Z.
Take an increasing sequence A; C As C --- of finite dimensional algebras with
A = VAj. The conditional expectation E,: VN#Z — A, is equal to >, egn)Jeén)J
(as an operator on L2%) for the minimal projections (eé"))k of A,. Now, (E,)n
converges to the conditional expectation E4 onto A which is equal to the multipli-
cation by Xg(1dy) in the strong operator topology. Hence xg1q) € AV JAJ. (]

Remark 2.13. (2-cocycle [4]) Suppose we are given a map oy ran(¢yp) — T for
each pair ¢,9 € [Z], satisfying 04 404y = (040 © ¢~ )ogpe. Then vivg =
0,05, determines an associative product on C[#] with a trace 7. The GNS
representation gives an inclusion L*X C vN(%Z,0) C B(L?>%) of von Neumann
algebras.

Fact. Any Cartan subalgebra of vN(Z, o) is isomorphic to L>®X.

Theorem 2.14. Let % (resp. .7’ ) be an orbit equivalence on X (resp. V), F: X —
Y a measure preserving Borel isomorphism. The induced isomorphism Fy,: L*X —
L>®Y can be extended to a normal x-homomorphism vNZ — vN.% if and only if
F# C .7 up to a v-null set.
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Proof. For simplicity we identify ¥ with X by means of F. If [#Z] C [], the
required homomorphism is induced by the isometry L2% — L2.%. Conversely, if
m: VNZ — vN. is an extension of Fl, for any ¢ € [#] we have

w(vg)m(f)m(vg)* =m(fog™!) = foo™t,
which implies 7m(vg) = o4v, for some o4 € L®X. O
Let M be a finite von Neumann algebra with trace 7, identified to a subalgebra of
B(L?>M). Suppose A is a von Neumann subalgebra of M. Let e4 be the projection
onto the span of A&, and put (M, A) = (M U{ea})”.
For any x € M and & € L?A,

—

eara = eara = Fa(za) = Ea(z)a

which implies eqzes = Ea(x)es. In particular, we have

(M, A) = {ijeij +z:1x5,Y5,2 € M}

wop

Now, - -
eadzJeqi = eqar* = Ex(ax*) = aE (%) = JEA(x)Ja
implies (M, A) = M’ N {es} = JAJ, consequently (M, A) = (JAJ)'. Note that
when A is commutative e4JaJ = a*ey for a € A.
We have the “canonical trace” Tr on (M, A) which is a priori unbounded defined
by >, xieay; — 7(>_, xiy;). Still, Tr is normal semifinite, and its tracial property
is verified as follows:

HZ TiCAYi

2
2

. Tr(> yreazizjeay;) = Y m(y; Balx}a;)y;)
= > T(Balyy))Ealwzy) = |ysearf | -
Suppose A C M is Cartan. Put A = {4, JAJ}"' c (M, A).

Example 2.15. When A = L>*°X, M = vN&%, we have A=L%R, eq = xa and
Tr|; = [dv on L®¥Z. Indeed,

T(fen) = ()= [ fdu= [ av (1€ L7%)
implies

Tr(ufeAu*):Tr(feA):/Afd,u:/ufeAu*du (feL>®X,ueNA).

Remark 2.16. When A C M is Cartan and p € Proj(A), A, C pMp is also Cartan
since Ny, (Ap) = pNy (A)p.

Example 2.17. When Y C X the restricted equivalence Z|y =Y x Y NZ gives
W(Zly) = py (WNZ)py .

Exercise 2.18. Show that when A is a Cartan subalgebra of a factor M, 7p; = 7ps
for p1,p2 € Proj(A) implies the existence of v € NP A such that p; ~ ps via v. This
implies that given an ergodic relation Z on X, subsets Y7 and Y5 of X with the
same measure, one would obtain (A4,,, C My, ) ~ (Ap,, C M,,, ) via v.
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2.3. Theorem of Connes-Feldman-Weiss.

Definition 2.19. A discrete group I is said to be amenable when /,.I" has a left
T" invariant state.

Example 2.20. Commutative groups, or more generally solvable groups are amenable.
The union of an countable increasing sequence of amenable groups are again amenable.

Definition 2.21. A cartan subalgebra A C M is said to be amenable when there
exists a state m: A — C invariant under the adjoint action of A’A. An orbit
equivalence Z on X is said to be amenable when L>°X C vN& is amenable.

Remark 2.22. Let ' ~ X be a measure preserving essentially free action. Since
I" is assumed to be discrete, Z can be identified to I' x X as a measurable space
and an invariant measure on &% is nothing but a product measure on I' x X of an
invariant measure on I' times an arbitrary measure on X. Thus, # is amenable if
and only if I is amenable.

Definition 2.23. A von Neumann algebra M on H is said to be injective when
there exists a conditional expectation ®: B(H) — M.

Fact. The above condition is independent of the choice of a faithfull representa-
tion M — B(H). Moreover, M is injective if and only if it is AFD [2].

Theorem 2.24. (Connes-Feldman-Weiss [3]) Let M be a factor with separable
predual, A a Cartan subalgebra of M. The following conditions are equivalent:

(1) The pair A C M is amenable.

(2) This pair is AFD in the sense that for any finite subset F of NA and a
positive real number € > 0, there exists a finite dimensional subalgebra B
of M such that

e B has a matriz unit consisting of elements of NPA.
o |[u— Eg()| <e foranyve F.

(3) (A, M) is isomorphic to (D,®M>C where D = ®Ds for the diagonal sub-
algebra Dy C Ms. (Note that NPD is generated by the “matriz units” of
Mos = Q@Ms,.)

(4) M is injective.

Lemma 2.25. In the assertion of (2), B may be assumed to be isomorphic to My~
for some N.

Proof of the lemma. Perturbing a bit, we may assume that T(el(;i)) € 27NN for
large enough N where (é?)d,lgi,jgnd is a matrix unit of B = ®&4M,,,. By taking
a partition if necessary, we may assume that T(e(fj) = 27N for any d and 4. Then,

1
since M is a factor, we have egf) ~ e in M for any d, f,i and j. This means that

B is contained in a subalgebra of M which is isomorphic to My~ . [

Proof of (2) = (3): Note that there is a total (with respect to the 2-norm)

sequence (vg)geny C NPA. We are going to construct an increasing sequence of
subalgebras (By,) in M with compatible matrix units (egf;)

and | Ep, (v) — v < + for I < k.

)i,j satistying By ~ Myn,



10 NARUTAKA OZAWA

Suppose we have constructed By, ..., Bg. Applying the assertion of (2) to the
finite set F' = {egi)vgeg.ﬁ)}, we obtain a matrix units (f;;);; in NPA such that

> fi = 6&1? and
1
[Fopsnss ) =2l < sy
where n(k) denotes the size of By. By the assumption that A is a maximal abelian
subalgebra in M, the projections of NP A are actually contained in A. Thus we ob-
tain an inclusion D C A (hence the equality between them) under the identification
M ~ QMg = (UBk)".

Proof of (3) = (4): By assumption M = (UB,,)" where B,, are finite dimensional
subalgebras of M, M’ = (UJB,J)". Let ®,, denote the conditional expectation of
B(H) onto (JB,J)": ®,(x) = fM(JBnJ) uzu*du where du denotes the normalized
Haar measure on the compact group U (J B, J). For each z, the sequence (|| @, (x)||)n
is bounded above by ||z||. Thus we can take a Banach limit ®(x) of (®,,(x)),, which
defines a conditional expectation of B(H) onto N, (JB,J) = (UJB,J) = M.

Proof of (4) = (1): Put H = L?M and let ® be a conditional expectation of
B(H) onto M. Then 7® is an AdU M-invariant state on B(H) . N A is obviously
contained in UM and so is A in B(H).

Remark 2.26. When A C M is an amenable Cartan subalgebra and e is a projection
in A, the Cartan subalgebra A, C M, is also amenable.

We are going to complete the proof of Theorem by showing (1) = (2).

Lemma 2.27. Let ¢ be a measure preserving partial Borel isomorphism on a stan-

dard probability space (X, i1). Let Ey denote the fized point set X¢ = {x € dom ¢ : px = x}.
There exist Borel sets B1, By, B3 of X satisfying X = [[y<;<3 Ei and ¢E; N E; is

null for i > 0. o

Proof. Take E4 to be a Borel set with a maximal measure which satisfies pE1NE; =
). Put Es = ¢F;. Then ¢E> N Ey = () by the injectivity of ¢. Finally, put
E; = E(UogiggEi>. Then ¢pFE3 N E3 is null by the maximality of Ej. O

Corollary 2.28. For any finite set .F of NPA, there exist projections qi,...,qm
of A (m = 4171) satisfying 3" qr = 1 and that qrvqy is either 0 or in UA,, for any
veEF.

Lemma 2.29. (Dye) For any finite subset & C N'A and € > 0, there exists a € Ay
with Tr(a) =1 and 3, c 7 [[uau* — al|, 1 <e. (Here, ||z, 1 = Tr(|z]).)

Proof. Let m: A — C be an Ad N A-invariant state. Since L! is w*-dense in (L),
there exists a net a; € A satisfying Tr(a;) = 1 and Tr(a;z) — m(z) for any z € A.
Then, for any u € NA and z € A

Tr((ua;u™ — a;)x) = Tr(a;u*zu) — Tr(a;x) — m(u*zu) —m(x) = 0.

Thus wa;u* — a; is weakly convergent to 0. By Hahn-Banach’s theorem, by taking
the convex closure of the sets {ua;u* — a; : k < i}, we find a sequence (b;); as convex
combinations of the a; satisfying ||ub;u* — b;||; 1, — 0 uniformly for u € .#. O
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Lemma 2.30. (Namioka) Let %, ¢ be as above. There exists a projection p offl
L N 2 2
satisfying Tr(p) < oo and 3, ¢ 5 [lupu® — pll5 1, < €|l 1y

Proof. Let a € /~l+ be an element given by Lemma m For each » > 0 put
P, = X(r,00)(@). We have

oo o0
Juaw’ ~al = [ JuP = Pl 1= lallg = [ 1P g
0 0
Hence
o o
/ S luPyu” — Byl gy dr < e/ 1Py e
0 ueF 0

Thus there exists r such that p = P, satisfies ) |lupu® — p||, 1, < €[lpl[; - Since
the summands are differences of projections, |||, 1, is approximately equal to

2
=112, 7 U

Lemma 2.31. (Local AFD approximation by Popa) Let %, € be as above. There

exists a finite dimensional subalgebra B C M with matriz units in NPA, satis-

fying || Ep(eue) — (u — eLueJ—)H; <€ ||e||§ for every u € %, where e denotes the

multiplicative unit of B and Epg the conditional expectation eMe — B.

Proof. We may assume 1 € .Z. Take p € Ay as in Lemma Since Trp < oo,
we may assume that p can be written as Y. ; v;eav; for v; € NPA. By Corollary
there exist projections (gx)x in A with Y g = 1 and each gxv;uv,gy, is either
0 or is in U(Agy) for 1 < 4,57 < n,u € F#. Taking finer partition if necessary, we

deduce that dist(grv;uv;qx, Car) < \/€/n.
On the other hand,

* 2 * 2 2 2
> lupw —p)Jard |y m = Y lupu* = plls 1 < ellplm =€ IPJaud |51 -
ueF k uc.F k

Hence for some k, ¢ = g, satisfies 3 ||(upu* — p)JqJ||> < €|lpJqJ||*. By pJqJ =
S vieadgJvl = > vigeav] since A is commutative, replacing v; by v;q, we may
assume v;v; = 0; jq and pJgJ = p. (Note that p = )" v;eqv] is a projection, which
means that the ranges of v; are mutually orthogonal.)

This way we obtain 3 [upu* — p||> < €||p||®, each viuvy € Ay is close to a

constant z;; by y/€/n, and (v;); is a matrix unit in A;. Put e =) v;v;. Thus,
Ipll5 e = Te(D vieavy) =73 vivf) = lle]l}

Consequently,

lupu® *PH;Tr =2Trp — 2Tr(upup) = 27(e) — 2Tr(z uveav; utveav;)
=27(e) — 27'(2 uvv; utvvy) = 27(e) — 27 (ueue)
2

= [Jueu” —ell3, -

Hence ) . 5 |lue — equ <€ HeHg Now eue = Y vvfuvjvi ~ ) zijviv] ~ elle]|®

in Hf||37 Hence

2 2 2 2
||leue — EB(eue)HQ’T <e HeHQ’T HEB(eue) —(u— eLueL)szT < 2¢ ||e||277 .
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When we have a family (B;) of mutually orthogonal finite dimensional algebras
satisfying the assertion of the lemma, e = ) 15, satisfies

| B, (eue) — (u—etuet)|; < 2¢lel3, - O

Lemma 2.32. In the notation of Lemma|2.51], e = 1.

Proof. Otherwise we can apply Lemma to A,. C M, and .F' = e+ Fet, to
obtain a finite dimensional algebra By C M,. satisfying the assertion of Lemma
Use the Pythagorean equality. ([l

Proof of (1) = (2): Take Bu,..., B, satisfying ||, 15, 3 >1—¢€ Put B=
®;B; ®C(>.1p,)*. Then we have |[Ep(u) — u||§ < 3e for u € Z. O

3. L2-BETTI NUMBERS

3.1. Introduction. Let F(2, X) denote the set of the mappings of a set Q into
another set X. Let ' be a discrete group, A the left regular representation of I' on
£, We have the “standard complex” of right T modules

00— £l —2 > F(T, 6T) — 2 §(I2,0,T) —> - --
given by
O(f)(S1s---s8n+1) = A(s1)f(S2, -y Sny1)+
D (=1 f (5158585405 Sng1) + (1) F (s, sn).
1<j<n

Conceptually, the above complex can be regarded as Homer (Ps, crfal’) where P,
denotes the standard free resolution of the trivial left '-module C. For each n € N,
P, is the vector space with basis "' as a vector space over C. Since I'"*! is a
left T'-set by s.(sg,...,8n) = (8.80,51,--+,8n), Pn has the canonically induced left
action of I'.

Let H;(T',¢2T") denote the i-th (co)homology group of this complex. Note that
this complex consists of RI' modules given by the action on ¢;I", with boundary
maps being RI'-homomorphisms. The space of 1-cocycles

Z1 ={be F(T,0T) : b(st) =b(s) + A(s)b(t)}

is identified with the space of the derivations from I' to />I" with respect to the
trivial right action. When b € Z; the map

e (K9 H)

of T' into B({sI" @ C) becomes multiplicative. On the other hand the space of
1-coboundaries

By ={beF(I,6I) : 3f € LI, b(s) = A(s)f — f}
is identified with the space of the inner derivations. Note that for any b € Z;, there
is a function f € F(T', C) satisfying b(s) = A(s)f — f if we do not require the square
summability of f. Indeed, a vector system (b(s))ser is a derivation if and only if

we have (b(s),d;) = (b(st) — b(t),d.) for any s,¢ € I', and in such a case we may
put f(s) = (b(s),ds) to obtain b(s) = A\(s)f — f.
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Remark 3.1. The 0-th homology grouop Hy = Zj is the space of the I'-invariant
vectors in foI". Thus this becomes the 0-module if and only if T' is infinite.

In the following we assume that I' admits a finite generating set .. Let DT’
denote the space Z1 of the derivations, Inn DI the space By of the inner derivations.
Let 05 denote the mapping b — (b(s))se.s» of DI into @ s £¢s. This is an injective
RT-module map. Note that the range of € is closed. Indeed, (f(s))ser is in
ran O« if and only if

f(s1) +A(s1)f(s2) + -+ A(s18n-1)f(sn) =0

holds for each relation s; - -- s, = e among elements of .%.

A sequence (fp)nen of unit vectors is said to be an approximate kernel of
the restriction 0|1 pr when A(s)f, — fn tends to zero (in norm) for any s €
. Og|mnpr has an approximate kernel if and only if I' is amenable. Thus
O (Inn DT) is closed if and only if T is finite or non-amenable.

Let P, @ denote the orthogonal projections onto &% (DT') and € (Inn DT").
These commute with the diagonal action of RI' on @05, i.e. P.Q € Mo LI.
We can measure them by the trace 7 = Tr®7. The first Betti number ﬁ?) =
dimyr Hq (T, ¢5) is equal to the difference 7(P) — 7(Q).

Example 3.2. When I' is a finite group, ﬁéz) = \T1| while BZ-(Q) =0for 0 < i
because any CI' module is projective. On the other hand when I' is equal to the
free group F,, generated by a set . consisting of n elements, ran 6 = @ 05" and

ﬂf) =n-—1.

We omit the injection &5 and identify DI" with a subspace of @ »¢>I". Thus
0%: oI — F(T, £oT) factors through @ ool and 9°: T — @€l is written as
f = ()‘(S)f - f)se.?’-

Let 652)2 @ lI' — foI' denote the adjoint of 0. Thus 652) is expressed as
(2)
1

(€s)ser = 2 ser(A(s™1) —1)& and the orthogonal complement of ker €1 is equal

to the closure of rand = Inn DT".

Proposition 3.3. When we identify CI' with the space of vectors with finite support
in €5, we have DT = (ker 652) N&sCr)t.

Proof. The space CI' has §(I',C) as its algebraic dual. A vector system b € @® 0l
is in DT if and only if there is an f € F(I',C) such that b(s) = \(s)f — f. The
latter implies

W € ker el M@ CL, (,0) = Y (£(s),b(s)) = D ((A(s™) = 1)E(s), f) = 0.

S S

Conversely, when (b(s))se. is orthogonal to ker e§2) N @ »CT, the functional (b, —)
on @ »CI is induced by a functional f on the kernel of the map CI"' — C. This f
can be extended to a linear map on the whole CI", and we have b(s) = A(s)f — f,
ie. be DI (]

Remark 3.4. The i-th cohomology group H*(T,/,I') is dimension isomorphic to
Tort"(C, £,T). This is seen by considering the exact functors E — E* on the
category of LI'-modules and that of LI-bimodules, where E* denotes the dual
module of the weak closure of E. We have functors (A, B) — A®cr B and (A, B) —
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Homer (A, B) of CI'-mod x LT-bimod into LI'-mod. Then the functor equivalence
(A ®cr B)* ~ Homcr(A, B*) up to dimension implies the dimension equivalence
between the derived functors Tor,(A, B)* ~ Ext’(A, B*). The case A = C and
B = (5T describes the desired isomorphism.

For example, we have a flat resolution P. of the trivial I'-module C with Py = CT"
and P, = CT ®@¢ C.7, with d; (a®b) = ab—a. The first torsion group Tort" (6,1, C)
is by definition the quotient ker(idy,r ® dy)/f2l’ ® kerd;. Now idp,r ® di = 6&2)

implies ker(idy,r ® di) = Inn DT while /,I' @ kerd; = ker 6(12) N @.»CI' implies
EQF X ker d1 = DFJ‘

3.2. Operators affiliated to a finite von Neumann algebra. Let (M, 1) be a
finite von Neumann algebra with a faithful normal tracial state (7 is unique if M is
a factor), L2M the induced Hilbert M-M module. For each n € N put 7 =7 ® Tr
on M ® M, C ~ M,M.

Definition 3.5. Let H be a left Hilbert module over M. A densely defined closed
operator 1" on H is said to be affiliated to M, written as T ~ M, when we have
uT = Tu for any u € U(M'). Here the equality entails the agreement of the
domains, i.e. udomT = domT.

Remark 3.6. An operator T is affiliated to M if and only if for the polar decompo-
sition T' = v|T| the partial isometry v and the spectral projections of |T'| are in M.
Note that in such cases 7 takes the same value on the left support I[(T) = vv* of T
and the right support r(T) = v*v.

We consider tAhe case H = L?M. Suppose T ~ M. Tt is said to be square
integrable when 1 € dom 7. This condition is equivalent to

(|T]?) = ||T1H2 = /tng(E) < 00

for the spectral measure T = f tdE of T. For each & € L2M let LZ denote the
unbounded operator defined by dom L¢ = M C L?M and Lix = Ex.

Proposition 3.7. The operator Lex us closable and its closure L¢ is affiliated to
M. Moreover we have Ly = Lyje. If T is affiliated to M and square integrable,
T =Lps.

Proof. We show the inclusion Lj, C (Lg)* For any elements z,y € M,

(Lez,5) = (€a,y) = (J§, J(€x)) = (1y*, 2 JE) = (2, (JE)y).

On the other hand, when u € UZ, ulLg = Lgu implies uLe = Leu.

Next we show the inclusion (L¢)* C Lje. Let n € dom(Lg)*. Consider the polar
decomposition Ly = v|Lye| and the spectral decomposition |Lye| = [;° Adex.
Then exv*Lje = ex|Lje| is bounded (i.e. is in My) for any A. By definition,
Lye(yl) = (J&)y for y € M. Hence e,\v*LJg(yi)A = exv*((JE)y) = (exv*J&)y.
Putting y = 1, we obtain exv*L ¢l = exv*JE € M.1 for any A > 0.
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Thus, by definition of (L¢)*, we have

((Le) n, (eav*)*yl) = (n, Le(exv*) y1) = (n, E(eav®)*y) = (n, Jy* (exv™)JE)
= (n, Jy*e)\U*LJgi> (by using above)

= (n, (exv*Lye)*yl).
Hence exv*(Lg)*n = exv*Lyen = |L jelean for any A > 0. By letting A — oo, exn —
n and |Lyelean — v*(L¢)*n. Since |Lye| is a closed operator, n € dom(|Lj¢|) =
dom(LJf). Hence (Lg)* - LJg and |LJ§‘ = U*(LE)*.
Finally, let us prove the last part. Let T' ~ M with the polar decomposition
v|T| = T. Note that v* = 1v* € dom T, 1 € domT*, T*1 = |T|v*. Put & = T1,n =
T*1. Since T ~ M, Lg CT, Ly, CT" and we obtain L¢ CT' C L y. O

3.3. Projective modules over a finite von Neumann algebra. Let m,n €
N. We have an isomorphism Mor(M®™ M®%") = M,, , (M) by multiplication of
matrices on column vectors.

Definition 3.8. An left M-module V is said to be finitely generated projective
module when it is a projective object in the category of the M-modules and has a
finite set generating itself.

Remark 3.9. Any finitely projective M module is isomorphic to some M®™ P for
a natural number m and an idempotent matrix P in M,, M.

Lemma 3.10. In the above we may replace P with an orthogonal projection P* = P
without changing the value of 7(P).

Proof. Let Py be the right support of P. P(P — Py) = 0 implies Py(P — Py) = 0.
Thus S = Id +(P — Py) is invertible. With respect to the orthogonal decomposition
Id = Py @ Pg-, these operators are expressed as

Id 0 Id 0 Id 0
PO:(O 0)’ PZ(? o)’ SZ(? Id)'
The operator SPy = SPyS~! is self adjoint. O

Remark 3.11. When M®™P and M®"(Q are isomorphic, 7(P) = 7(Q).

Definition 3.12. For each finitely projective M-module V isomorphic to M®™P
where P is a orthogonal projection in M, M, dimy V — 7(P) is called the 7-
dimension

Lemma 3.13. Let V be a submodule of M®". When V is closed M®™ with respect
to the L?-norm (V is weakly closed), V is finitely generated and projective.

Proof. The L? completion VIl ¢ L2M®™ is written as L2 M® P for an orthogonal
projection P. Then V is equal to M®"P. ([l

Lemma 3.14. For each T € Mor(M®™ M®")  its kernel and range are finitely
generated projective modules.
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Proof. Obviously the kernel of T is weakly closed in M®™. On the other hand for
the projection P such that kerT = M®™P, T induces an isomorphism M P+ —
ranT. (]

Remark 3.15. When a submodule V C M®™ is finitely generated, V is projective.
In fact, V.= M®™A for some A € M, ,,(M). Thus we have

Vo MOM(A) ~ MO r(A) ~ V.
Hence dim; V = dimy, V.
Remark 3.16. If W C V are finitely generated projective modules, dimy; W <
Definition 3.17. Let V be an M-module. Put
dimy, V = sup {dimy, W : W C V, W is projective} € [0, o0].

Remark 3.18. Note that the above definition of dimj; is compatible with the pre-
vious one for finitely generated projective modules. In general, W C V implies
dimy; W < dimp; V and (V;)ier TV (V = Uier Vi) implies dimpy V' = lim; dimp, V;.

Theorem 3.19. (Lick [6]) When

L K

0 Vo Vi Vs 0

is exact, we have dimy; Vi = dimpy; Vy + dimp, Vs.

Proof. When W C V5 is finitely generated and projective, 7~ !W is identified to
W & Vy. Hence dimV; > dim Vy 4+ dim V,. Conversely, let W C Vi be finitely
generated projective. The weak closure tVy N W is closed in a finite free module,
hence is projective. From the sequence (Vo NW — W — W/iVo N W, we have
dim W = dim Vo N W + dim W/:Vy N W. Note that there is a natural surjection
W/iVo N W — W/iVoNW. By the first part of the argument this implies the
dimension inequality dim VN W < dim:Vy N W. On the other hand W//Vy N W
is identified to a submodule of V5. O

Corollary 3.20. LetV be a finitely generated M -module. We have a decomposition
V =V, &V, where V, is projective and dimV = dimV},. (Hence dimV; =0.)

Proof. We have a surjection T: M®™ — V. Note that kerT may not be closed
since we have no matrix presentation of 7. Nonetheless, V ~ M®™ /ker T and the
next lemma imply that V, = M®™ /ker T satisfies

dimV =m —dimkerT = m — dimker T' = dim V},. 0

Lemma 3.21. Let W be a subset of a finite free module M®™ . We have dim W =
dim W.
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Proof. Put L = {A € M,,M : M®. A C W}. This is a left ideal of M,,M. We get
a right approximate identity A; of L. For the orthogonal projection P such that
W = M®™ P, the right support r(A; converges to P in strong operator topology
(for any normal representation, thus, in the ultrastrong topology). Thus for any
€ >0, Py — X[e1](AjA;) is in L and converges to P in the ultrastrong operator
topology. O

Proposition 3.22. For any LT'-module V, dimV = 0 is equivalent to
VEeV,e>0,dP € ProjM : 7P > 1 — € and P{ = 0.

Proof. =: Let £ € V. Consider the exact sequence 0 — L — M — M.£ — 0 where
L is the annihilator of £. dim L = dim M implies the existence of projections P;

convergent to 1 in the ultrastrong topology.
<: If VO M.Q, P satisfies 7P > 1 — 7Q and PQ # 0. O

Definition 3.23. A homomorphism ¢: V. — W of L-modules is said to be a
dimension isomorphism when dim; ker ¢ = dimjs cok ¢ = 0.

Remark 3.24. The torsion N-modules 7 = {V : dimy V = 0} form a Serre sub-
category of N-mod. Analyzing N-modules up to dimension isomorphisms amounts
to considering the localization N-mod/7 of N-mod by 7. Thus, in general, when
a morphism V, — W, of complexes is a dimension isomorphism at each degree,
the induced homomorphism between the cohomology groups is also an dimension
isomorphism because it factors through an isomorphism in the localization category
C*(N-mod/7) of the N-module complex category over the torsion module category.

Lemma 3.25. The standard inclusion M — L*(M) is a dimension isomorphism.

Proof. Let € € L2M. We get the corresponding square integrable operator affiliated
with M. Put P, = xjo,n)({£*) € Proj M. Then P,§ € M and P, — 1, thus P,[¢] -0
in the quotient LM /M. O

When H is a Hilbert M-module, i.e. a normal representation of M on H,
H ~ L?>M®" P for some cardinal n and an idempotent P in M, M.

Lemma 3.26. In the above notation, dimy; H = 7(P).

Proof. We have the following commutative diagram

M®" pY—s [2\fOn p — C(%k
p.b. O |

\
MO ——— [2 " ——— cok.

The cokernel in the lower row has dimension 0, thus so does the one in the upper

row. O

Definition 3.27. ﬁy(f) (T') = dimgr TorSF(LF,(CtriV) is called the n-th L2-Betti
number of T'.
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Remark 3.28. /6’,(?) (T") is equal to dimyr TorSF(KQF, Ciriv)-

Example 3.29. @(12) (F,) =7 —1 when n = 2, 0 otherwise. This is seen as follows:
let g1,...,9- be the standard generators of F,. A free resolution of the trivial
C[F,]-module C is given by

0 —— (C[F,])" - ClF,] —— C
where di: (§k)p—y — 2o(N;, — 1) and « is the augmentation map. Now, d is
injective: let x; € {sF, be the characteristic function of F,g;. Then (Ag, —1)x; =
;.10 and (&)r € kerd; implies

0= (A = Déroxs) = D (& (g = Diy) = &5(e).
k k
Replacing x; by x4 = x;(—t~") for t € T', we have &;(t) = 0 for any j and . Thus,
the torsion group is the cohomology of the complex
0 —— (L°F,)" L°F, 0.

d1

Let R be a ring. Recall that a right R-module NV is flat if and only if the tensor
product functor NV ®p — preserves injections V < F where F' is a finitely generated
free module. The latter holds if and only if N ® g — preserves the injectivity of
inclusion I — R of the left ideals.

Theorem 3.30. Let M — N be a trace preserving inclusion of finite von Neumann
algebras. Then N is flat over M and dimy N ®p; V = dimpy; V' for any M -module
V.

Proof. Recall that any finitely generated submodule of a free M-module is projec-
tive. (That is, M is semihereditary.) To see this, let V' be a finitely generated
submodule of a finitely generated free module M®™. V ~ M®" A for some (m,n)-
matrix A. Then V is projective, being isomorphic to M®.I(A). Now,

N@V ~ NP [(A)~ N4 — N® ~ N @ M®™,

Thence N is flat over M.

Let V be a finitely generated M-module. Suppose we had an inclusion ®: M®™ P «—
V of a projective module. Then N®™ P < N ® V by the flatness of N. This
shows that dimy NV ®3; V' < dimp; V. On the other hand, for any surjection
7M®" = V, the induced homomorphism =, : N®* — N ® V is surjective and
dim N ®V =n—dimm,, thusdimN @V <dim V. O

3.4. Application to orbit equivalence.

Notation. Let a: ' ~ (X, 1) be a probability measure preserving essentially free
action. Put A = L®(X,u),M = LT, N = L™ (X,u) xI' = vN(%Zr~x). Let Ry
denote the linear span alg(L>(X, u),T") of fA(s) for the f € A,s € T'. Let R denote
the linear span alg(N(A)) of fuv, for the f € A, ¢ € [[Z]].
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Remark 3.31. Ry is free over CI' and Ry ®¢cr C ~ L*°(X). The induced left Rg-
structure on L™ (X) is given by > fsAs).g = >_ fsas(g) thus Ro®cr C ~ A and we
have Tor (N, A) ~ Tor® (N, C). The latter is isomorphic to N @y Tort! (M, C)
by the flatness of N. Note that dimy N ®j; TorS' (M, C) = dimy; TorSh (M, C) =
().
Our goal is to show the equality dimy Tor (N, A) = dimy Tor’ (N, A). Note
that the latter only depends on the orbit equivalence Zr .

Lemma 3.32. For any x € R and € > 0, there is a projection p in A such that
Tp > € and xpt € Ry.

Proof. When z is of the form vy f, the assertion is trivial by the expression vy =
> Mgk )er. The general case reduces o the above by 7(pV q) < 7p + 7¢. O

For the time being let A denote an arbitrary finite von Neumann algebra.
Definition 3.33. Let V be a left A-module. For £ € V,
[§] =inf{rp:p € Proj A, p§ — £}

is called the rank norm of &.

Remark 3.34. [£] is subadditive and scalar invariant. V; = {£ : [(] = 0} is the largest
submodule with dimy V; = 0. Any A-module homomorphism ¢: V' — W contracts
[€]. Moreover for any 7 € ker ¢ and € > 0, there is an element &n € ¢~ such that

(€] < [n] +e

Definition 3.35. Let V be an A-module. Consider a metric on V' defined by
d(&,mn) = [€ —n]. Let C(V) denote the completion of V' with respect to d.

Remark 3.36. C(V) admits an left action of A: the continuity with respect to d
follows from [a€] < min[a], [¢]: p§ = £ implies

ap§ = l(ap)ap — l(ap)ag = [a§] < 7(I(ap)) = 7(r(ap))
C(V) contains V/V; as a dense subspace.

Remark 3.37. V. C W is dense if and only if for any £ € W and € > 0, there exists
p € A such that 7p < e such that p~¢ € V, which, in turn, happens if and only if
dim W/V = 0.

Lemma 3.38. The functor V — CV is ezact.

Proof. Right exactness: consider an exact sequence Vi — Vp — 0. Let £ € CV,
(&n)nen C Vo a sequence convergent to . We may assume that d(&,&,) < 2—(n+1),
We can inductively lift (&,) to (n,) in V; such that d(n,, nn41 < 27"

General exactness: let

Vy Vi Vo
g f

be an exact sequence, £ an element of ker C(f). Choose a sequence (&, ), convergent
to & Then f(&,) — C(f)(&) = 0. This implies the existence of a sequence (7,)n,
convergent to 0 and fn, = f€,. £ =1lim¢, —nn is in the closure of the image of g,
which, by the right exactness of C, is equal to the image of C(g). O




20 NARUTAKA OZAWA
Now we turn to the orbit equivalence situation: A C Ry C R C N. We consider
A-rank metric on Rg-modules.

Lemma 3.39. When V is an Ry (resp. R) module, CV admits an Ry (resp. R)
module structure.

Proof. If x — 271;7:1 Vg, fn, for any £ € V we have the estimate [z{] < n[¢]. O
Lemma 3.40. When V' is an Ry module, CV admits an R-module structure.

Proof. Let x € R, (z,), be a sequence in Ry convergent to z. For any £ € V| z,£
is A-rank convergent to x€. O

Lemma 3.41. WhenV is a left Ro-module. N®pr,V — N®pg,CV is a dimension
isomorphism.

Proof. Suppose © = > a; ® & (a; € N,& € V) represents 0 in N ®p, CV. In the
tensor product over C,
Zai ®& = Z(ijj ® 15 = bj ® v;n;)

for b € N,v; € Ryg,n; € CV. For each j, there is a projection p; such that
7(p;) ~ 0 and pjlnj € V. Thus we get a representative of x given by

> (b5 @ pjm; — by @vipim;) + > (bjv; @ py; — by @ vip; ;)

The second summand becomes 0 in N ®pg, V. Now, choose the smallest projection
p in N such that pv;p; = v;p;,p; < p. Then 2 = (1 ® p)x and [z]y ~ 0. Hence
N®V — N ®CV is an isometry. When £, € V converges to £ € CV, a ® &,
converges to a ® £ in [—]n. O

Remark 3.42. For any R-module W, N®pr, W — N®prW is an dim y-isomorphism.
Theorem 3.43. dimy Tor*(N, A) = dimy TorZ(N, A).

Proof. Consider projective resolutions of A: P, — A as an Ryp-module, Q. — A as
an R-module. We have morphisms ¢,: P, — @, and ¥, : Q. — CP,. Thus we get
a commutative diagram

P, e Pp —— A
. . H
Pn o l

CP, CPhh —— CA
Con Cdo H

CQn CQoy —— CA.
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By the uniqueness of projective resolution up to homotopy, compositions of two
homomorphisms ¥, ¢, and C¢,1, are homotope to the the standard inclusion
isomorphisms.

Now, the standard inclusion P, — C'P, induces a dim y-isomorphism after apply-
ing the N ® g, — functor by Lemma Thus, Idy ®¢, : and Idy ®, are inverse
to each other via the identification of N ® P, ¥~ N Q@ CP, and N ® Q,« ~ N ® CQ,.
Hence Idy ®¢. induces a dimension isomorphism on cohomology groups. ([

Corollary 3.44. Let T' ~ (X,u) and A ~ (Y,v) be essentially free probability
measure preserving actions. If Br~x ~ Ba~y , 57(12)(11) = ﬁ,(f)(A).

Remark 3.45. Put $2(A, N) = dimy Torf (N, A). For any nonzero projection p in
A, B2(A,N) = 7(p)BZ(pA,pNp).

4. DERIVATIONS ON VON NEUMANN ALGEBRAS

In the following we only consider normal Hilbert (bi)modules over von Neumann
algebras. Examples of such modules include the identity bimodule L?N and the
coarse (M, N)-module L?M ® L2N.

Let I' be a countable discrete group, (m, Hp) a unitary representation of I". A
map b: I' — Hj is said to be a derivation when it satisfies b(st) = b(s) + 7(s)b(t)
i. e. a derivation for the (m, triv)-bimodule structure. A derivation b is said to be
inner when there exists £ € Hy such that b(s) = w(s)€ — £. Put

H* (T, 7) = {derivations} / {inner derivations} .

When b is a derivation, ¢,(s) = eI for > 0 determines a positive semidefi-
nite semigroup. Our goal is to show that it extends to a semigroup ¢,: LT' — LT’
of 7 preserving completely positive maps.

4.1. Densely defined derivations. Let M denote L?I". Consider H = M ® Hy.
A left action M — B(H) is defined by A(f) — A® m(f) (this is possible by the Fell
absorption.) On the other hand we have a right action M° — B(H) is defined by
p(g) — p(g) ®id. Put 6(s) = s @ b(s) € £rI'®Hy. By

3(st) = 85t @ (b(s) + m(s)b(t)) = p@ L(t™1)d(s) + A @ m(s)d(t),
J extends to a (possibly unbounded) derivation CI" — H satisfying §(zy) = xd(y) +
5(x)y.

Notation. Let (M, 7) be a finite von Neumann algebra with a faithful normal
tracial state, Z a weak*-dense *-subalgebra of M. Let H be a Hilbert bimodule
over M, d: M — H a derivation defined on & which is closable as a densely defined
operator L?M — H. Let § denote its closure.

~ We are going to show that the domain of § is a x-subalgebra of .Z(H) and that
d is a derivation.

Notation. Let [|—|[;;, denote the 1-Lipschitz norm:
[f(x) = ()]
fllgy, = sup ——————.
|| ||L1p oty |1’ _ y|

Let Lip, denote the space of 1-Lipschitz continuous functions which map 0 to 0.
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For any = € L?M,,, regarded as a self adjoint unbounded operator on L?M, we
can consider its functional calculus f(z).

Proposition 4.1. When z,y € L?M,, and f € Lip,, the functional calculus
f(x), f(y) is in L*M and

1 (@) = F@)lly < ([ fllip [l =yl -

Proof. For the spectral measure E(t) of x, x = [tdE(t) and ||z||3 = [|x|2drE(T).
Thus ||f(z)||5 = [|f()2drE(t) < 1 fllLip J1t1?drE(t) and f(x) is in L*M. For the
second assertion, consider the bilinear map

Co(R)* > (f,9) = 7(f(2)g(2)) = (f(2)1f(y),1).

This defines a linear form Co(R x R) — C, i.e. 7(f(z)g(y)) = [ fgdp for some
measure 1 on R x R. Thus, 7(|f(z) — f(y)|?) is equal to

J176) = P (s, < 1718y, [1s = tPdnts,) = 1713 lo — i3 O

Definition 4.2. Let I be a bounded closed interval in R, f € C'(I). The function

f(@)—f()
o= d oy @FY)
Jwv) {f’(x) (v =)

is called the difference quotient of f.

Note that HfH = ||f'll..- When a € M, and [— ||a||,]|lal|]] C I, we have
ma: C(I x I) — B(H) by ma(f @ 9)¢ = f(a)g(a).

Lemma 4.3. For anya € 9 and f € CY(I), the operator f(a) is in domd and
0(f(a)) = ma(f)d(a).

Proof. The assertion is obvious for polynomial functions. The equality for the
general C'-functions follows from it because it is compatible with the C'-norm. [

Remark 4.4. When T is a closed operator on H, x, — = (n — o0) in H and
sup,, [Tz, | < oo imply that z € domT and that Tz € (,°_,conv {Tz, : n > m},
where conv denotes the closed convex span. This is because, taking a suitable
subsequence if necessary, we may assume that the bounded sequence T'z,, is weakly
convergent to some y. Taking the convex closure, we can find a sequence (z,)nen
such that Tz, — y in norm and that z, is in the algebraic convex closure of
{z} : k > n}. By construction, (z,)nen converges to .

Lemma 4.5. Let x be an unbounded self adjoint operator on L2M which is in
domd, f € Lip,. Then f(z) € domd and ||5(f(:c))|| < ||f||Lip ||5(x)||
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Proof. Choose a mollifier (¢,,), and set f, = f * ¢,. Thus f, is of C* class and
fn — f uniformly on I. By

Fn() = ful |—/|f — 1) = £z = n(r)dr < ||l Iy — 2,

we have an||Lip < Hf||Lip. Now take a sequence (an)nen in Dsq which is convergent
to x in ||—||,-norm. Then

13(£a(@)]| = ||ma(F)0@)|| < 1l 100l
This shows f(z) € dom 4. O

Definition 4.6. A derivation §: M — H is said to be real when we have

(0(x),0(y)z) = ("3(y", z7)
for any z,y,z € M.

Remark 4.7. We summarize a few properties of real derivations.

e When M is the group von Neumann algebra LI of a group I', the above
condition is equivalent to (d(s),d(t)) € R.
e In general when we have a J-operator, § is real if and only if J J;é(y)z
z2*0(y*)x*, since, by definition, (d(x),d(y)z) is equal to (z*Jd(y), Joé(x)).
e When § is real, domg is self adjoint.

Let 2 denote dom 6.

Lemma 4.8. Let & be a real derivation. When x € 9, |z| is also in 9 and MNP
is a *-subalgebra of M.

Proof. Consider the linear map 6 : M2 — MoH ~ H%*. Then §@ =52 and
for any z € 2,

* _ 2 _
w=| % | € domé® = w? = 12 82 € dom (2.
z 0 0 |z
Thus [2|* is in 2.
Let =,y € 2. The polarization
1 . .
— ZZz’“|9c+zky|
shows 2*y € 2, and in particular 2* € 2 follows from 1 € 2. O

Lemma 4.9. For any x € 2 N M,,, there exists a sequence (Tn)nen N Dsq such
that
[z — ]|y = 0,[|8(zn) = 8(z)|| — Oand||z|,, < ]

In particular, x,, — x in the ultmstmng topology.

Proof. The only nontrivial part is the last inequality. This is achieved by the
functional calculus with respect to the function
2l (el <)
fit)=4qt (It < flzll o)
(t<—llzll)- O

oo
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Theorem 4.10. The restriction of 6 to 2 N M ‘s a derivation.

Proof. Let x € 2N M. Choose a sequence (x,,)nen in 2 weakly convergent to x and
§(zn) — 8(z). For each y € 2N M, we have z,y — xy in the ||—||,-norm. Since y
is bounded, we have 6(z,,)y — 6y. On the other hand, the representation of M on
H is normal, which implies z,,0(y) — xd(y). Thus we have 6(zy) = x6(y) + §(x)y.
Similar approximation in y shows that d(xy) = x6(y)+0(x)y. foranyy € 2NM. O

4.2. Semigroup associated to a derivation. In the following we assume M N
9 = 2. Put A = §*5. This is a positive self adjoint operator on L?M satisfying
Al =1 and commutes with the .J operator so that we have “A(z*) = (Az)*.” Put
¢; = e tA. This is a semigroup of positive contractions satisfying ¢;1 = 1 and
or /" Id as t \, 0. The normalized resolvents

@
a+ A

for @ > 0 are again positive contractions on L?M satisfying 1, / Id as a / .
These operators are related to each other as follows:

Na =

exponential Laplace trans.
—_—
A——— o —> "

,t derivation J

inverse

where the Laplace transform is given by

o e}
N = a/ e “odt = / e tprdt.
0 0 “

Recall that any unital completely positive map ¢: M — M is expressed as V*m(x)V
for some representation 7: M — B(K) and an isometry V: L?M — K (Steine-
spring’s theorem). When ¢ is normal, m can be taken as a normal representation
(we may take the normal part of a possibly non-normal 7 given by Steinespring’s
theorem). Thus,
(1) For any z € M, ¢(z*z) — ¢p(a*)p(z) = VF*ra* (1 — VV*)maV > 0. When ¢
preserves 7, [|p(z)|l, < [l
(2) When ¢ preserves 7, ||¢(z*y) — ¢(z*)d(y)|l, = ||V 72 (1l — VV*)’JTij.H is
bounded from above by

p(a*z) — pa* x| (r(6(y™y) — by dw))? <2l lly — o)l

by T(¢(y*y) — dy*dy) = llylls — loyll5, ete.
Fact. Consider the 1-norm |z||; = sup {|7(zy)| : |yl < 1} for z € M. z €
L?M is in M if and only if sup {|7(zy)| : [|yll, < 1,2y € M} is finite.

Theorem 4.11. (Sauvageot, [1]?) The contractions ¢, and no map M into M,
are unital completely positive and T-symmetric, i. e. T(Pp:(x)y) = T(xd:(y)) ete.

Proof. Observe that (bg”) = A" where A = §(W*§(n) for 5, M2 — M,H.
Thus, it is enough to show that the maps are positive to conclude that they are

actually completely positive. Put
alA

Aa OZ+A a( 7704)
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Then
—tA - —tA . —ta o
—e e= lim e = lim e E
& a0 a,/'00 : n!
n=

where the limit is taken in the strong operator topology (note: this might be the
norm topology, as we are using c¢g functions converging from below). The last
expression is compatible with the z — 7(zy) (]lyll; < 1) functionals. Thus it
reduces to show that 7, restricts to a positive map on M.

By scaling §, we may assume that « = 1. Let x € M, and put y = (1+A) "tz €
dom A. We have

6yl + lyll3 = (v, Ay) + (y,y) = (y, )

Then the function ®(z) = ||5(z)H2 +z — ng for z € D, satisfies

118G = )||* + 11z = w3 = [|8)]|” = 2(z. Ay) + 5| + 11217 — 2(z, ) + Iyl
5(

|
|

= |8 + 1% — 2(z, ) + ||]®
—(16@)II” + lyll* - 2(y.2) + [l2]|*)
= U(z) - U(y).

Consider a function

2/l (2l <)
fit)y=4qt O<t<|zl)
0 (t <0).

of Lip, class with || f||;;, = 1. Then

W(f(2) = 8D + () = F(@)]l < ¥(z).

Take a sequence (zn)nen in Zsq with ||z, — yll, — 0 and ||62, — éy|| — 0. Then
we have

1fzn = yll3 < W(F2n) = U(y) < W) = V(y) — 0.
Thus y = lim fz, and 0 < y < ||z|| and 7, is shown to be unital positive. O

Let B be a von Neumann subalgebra of M. Then we are interested in “when ¢
converges uniformly on B;?” Roughly, this means “4 is inner on B.”

Lemma 4.12. Let Q C My. Then ¢ — id uniformly on Q ast — 0 if and only if
Na — td uniformly on Q as a — oo.

Proof. =: We have
|z = nazx|ly < A e’ ||x — d)%(z)HQ ds,
but ||z — ¢i(x)H2 does not exceed 2.

<: Suppose ¢, did not converge uniformly on 2. Then there is a constant ¢
such that for any ¢ there exists an element x; of Q satisfying (x; — ¢rxs, xt) > c.
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Then
o0
(Te —nawe, ap) = / e (T — P, Tr)ds
0
1
> e *(xy — dp(wy), 21 )ds
0
>c(l—e)
and 7, is not uniformly convergent on Q. O

Lemma 4.13. For the latter convenience we record the following equalities:

(1) In B(L*M),
11 [t
na = */ 1 a(1+t) dt.
0

M\»—l

(2) In B(L*M),

[e's) _1
(Id _na>% = l/ e (1 — Na@+t) )dt =1Id —Ga
™ Jo 1+1¢ 7t

where 0, restricts to a unital completely positive map on M.

1
(3) Yy = e7tA? is T-symmetric and unital completely positive on M.

Proof. (1): we have

1 [ L1 [
:—/ ® t=hdt =2 :—/ o 4=3%gt.
iy 0 S+t i 0 t+’r]a

On the other hand,

[N

S

Ne . (07 1
t+na  a(l+i)+tA 1+t

a(1+f)

(3): We have Aé = a2(Id—n,)2 = a2 (Id —0,). Thus t; can be written as

1 1
) N . oyt tad
lim e "¢ = lim e O‘“emzea. O

o— 00 a— 00

Lemma 4.14. For z,y € 9, put T'(z*,y) = A2 (z*)y + a* A2 (y) — 62 (z*y). Then
we have

T, y)lly < 4[10@@)[| ]l 16 Hyllo

Proof. First we have
D, 9) = (W) — (e )
t=0

Note that |[¢:z| < ||z||. Define a sesquilinear form on 2 ® M by {(y ® b,z ® a) =
7(a*T'(x*,y)b). This is positive semidefinite by

(Z T ® ag, Zmi ®a;) = }%T(Z a; Ye(xfa;) _tqﬁtx;wt(ivj)aj) <0.

For z = v|z| € M, we have

I7(D(z*, y)2)| = [y @ vlz|2, 2@ [2]2)] < (y@v|z|2,y@0|2]2) 2 (z© 2|2, 2@ |2]2)3.
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Here, (z ® a,z ® a) < |laa*||, ||T'(z*,z)|, and
Ir@, o)l < |[akar|| ol + ol [a2e] + a2 @)
< 4115@)]| [l -

2

(Here we used the fact that HA%(x*x)H =||d(z*)x + x*§(x)||.) Hence we arrive at
2

(0", 9)2)” < @ @)l 20, 16" )zl .
thus [|T'(z*, y)[I* < T, 2)ll; 2|1 (v", )] 0

1

2
Put ¢o = nd. A2(, = Aé = (Id—n4)? (hence bounded) and HAéxH =
2

o{(1d —a), 7). Put by = a¥éGe. Thus |[5a(@)| = (14 —na)z,2) and 6], (2) —

0 if and only if ||z — naz|, — 0.

Theorem 4.15. (Peterson?) Let  C M; and suppose n, — Id uniformly on
Q. Then we have |64 (az) — Ca(a)ga(x)H — 0 (a0 — o0) uniformly for a € Q and
x € M.

Proof. By assumption (, and 6, converge uniformly to Id on €, by e.g. .

1 [ 2
= | et
In particular, 8, (az) = 0,(a)0,(z) = abf,(x) whre ~ means the 2-norm convergence
under o — 00. Now,

a2 A% (o (az) = a2 (1d —0,)(az) ~ o~ Za(ld =0, )(z) ~ a7 (a(a)(Id —0,)(z)

= a2 a(@)A%Ca (@) & a7 A% (Co(a)a () — Fa(a)ala)
where the last approximation is given by applying Lemma to get the error

estimate
tyfat [ Gl |t o]

5%(@(@)” ~ 0 and Haéécaw is bounded by 1.
Finally we arrive at

Salaz) = a”25(Ca(a)Ca(@)) = da(a)la(z) = Ca(a)da(z). O

1
Here, a2

Theorem 4.16. (Haagerup) Let M be a von Neumann algebra. M is finite injective
if and only if for any nonzero central projection p of M, there exist n € N and
U, ... up € U(pM) such that |37, u; @ ugl| = n.

Proof. (Outline) =: By Connes’ theorem, M ®yin M — B(L>M) can be defined
by (a ®b).& = axb*. Now, (i wi ®4;).1 = nl when u; € UM.

<«: The minimal tensor product M ®min M acts on HQH i.e. the Hilbert-
Schmidt space of H. For any finite set F' C UM containing 1 and queF uU® ﬂ” =
|F|, there exists T € HS(H) of 2-norm 1, ||3°, . uTu*|| = |F|. Then uTu* ~ T.
Now, define ¢p(z) = Tr(T*2T). Then ¢p(uzu®) = ¢o(z) for u € F. We obtain
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an ultrafilter convergence ¢ — ¢ € S(B(H)) such that ¢(uzu*) = ¢(x) for any
u € UM . This holds under any central projection, which means M is injective. [

Recall that we are investigating closable real derivations on M. Thus, H is an
M-bimodule with a J-operator: J(a5(m)b) = b*0(z*)a*. We have the operators

o = ' S aaa* 7750¢M H
n a+5*< n a”20( —

~ 2 2
bal@)| = ||1a—na) 2| = 7((a = naa)a) 0.

Theorem 4.17. Let (M;7) be a finite von Neumann algebra, H = (L?M ®
L2M)®N, Suppose Q C M is a von Neumann subalgebra without injective sum-
mand. Then ¢ — Id uniformly on (Q' N M);.

As a — oo, we have

Proof. Tt is enough to show that for any nonzero central projection p € @, there
exists a central projection ¢ < p in @ such that ¢y — Id on ¢(Q' N M);. In fact,
then by the maximal argument we would get a family (p;);er of nonzero central
projections such that ) ., p; = 1 and ¢; — Id on p;(Q' N M), for each i. Taking
a finite subset Iy C I such that 7(> ¢ I p;) < £, we find ¢y such that ¢ > tq implies
lp¢(a) —all, < § fora € p1,(Q'NM);. On the other hand, for any a € pr, (Q'NM);
T(a —pra) < §

Thus we are going to prove the negation of the above claim leads to that pQ is
injective. Let ¢ < p be a nonzero central projection in @, u,...,u, € U(qQ). As
¢+ does not converge uniformly on ¢(Q’ N M)y, there exists x, € ¢(Q' N M); for

any « such that liminf (|6 (24)|| > 0
Applying Theorem to the finite subset Q = {uy,...,u,} on which ¢; is
uniformly convergent, for any € ¢(Q' N M), as a — oo,

Z Ca(ui)ga (2)Ca(u]) ~ Z Sa(uzxur) = nSa(x)'

Thus, ‘ (u;) ® Calus)||  — n as o — oo. On the other hand, since ¢, is a
normal unital completely positive map, ||>°, (o (i) @ Calus) is always bounded
by ||>° u; ® 4;||, which shows that ||>° u; ® @;]] = n. Thus we have the injectivity
of pQ by Theorem O

Remark 4.18. If a l-cocycle b: F, — (,F®™ satisfies ||b(s)||§ = |s|, we obtain a
derivation § on loFF, @ (aFP™ given by d(s) = da ® b where da is the “diagonal”
operator on {F, which multiplies the standard base s by |s|. The semigroup
¢¢ associated to this derivation is written as ¢;(A(s)) = e t*I\(s), thus it is in
K(L2M).

When B is a von Neumann subalgebra of LF,., ¢; — Id uniformly on B, if and
only if B is a direct sum @M, of finite dimensional algebras.

Corollary 4.19. Let Q be a von Neumann subalgebra of L, without injective sum-
mand. Then the relative commutant Q' N LF, is completely atomic. In particular,
Q ® L*>®[0,1] £ LF,.
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Theorem 4.20. Let (M;T) be a finite von Neumann algebra, H = (L2M @ L> M),
0 a closable real derivation. If B C M is diffuse (i.e. without minimal projection)
von Neumann subalgebra such that ¢, converges to Id uniformly on By, one has
¢+ — Id uniformly on N(B)Y.

Proof. Since B is diffuse, there exists a sequence (vn)nen in UB ultraweakly con-
vergent to 0 (e.g. e*™™ € [°[0,1] for n € N). For any u € N(B),

B () = Ca(vm)a () Ca (" v

bolu) H < lim inf

— ‘ bal(t) = do (vpuu*viu)

’:0 (n — o0)

The convergence holds uniformly for u. It remains to apply the following lemma to
N(B)=G. U

Lemma 4.21. When ¢y — Id uniformly on G C UM, we have the uniform con-
vergence ¢ — Id on GY.

Proof of the lemma. Let ¢: M — M be a 7-symmetric unital completely positive
map (hence a contraction). Consider the Stinespring construction on M ®aig L’M
by (a®x,b®y) = (¢(b*a)z,y). This is positive semi definite by the unital completely
positivity. The M-M-action a.(c ® z).b = ac ® xb is bounded and induces an M-
bimodule structure on the completion.

Now, for {§g=1®1e M ® LM,

lago — oall” = 7(¢(aa*)) + 7(aa") — 2R7(¢(aa*)) = 27((a — d(a))a®).
On the other hand,

1
3 lla— $(a)ll5 < llago — &oall < 2lla = ¢(a)ll; - all, -

Thus, if |u— ¢(u)|| < €, we have || — uou*|| < v2e. By taking the circumcen-
ter of {uou* : u € G}, we get a G-invariant vector 7y satisfying [|&o — no| < /2
(this is possible by the Ryll-Nardzewski’s fixed point theorem). Thus we obtain
llago — €oal < 2v/2¢ for a € (G");. O

APPENDIX A. EMBEDDABILITY OF SUBALGEBRAS
Let A C M be an inclusion of finite von Neumann algebras with a trace 7 on M.
Recall that we have the associated Jones projection e4 € B(L2M), the orthogonal
projection onto L?A = Al and the basic extension (M, A) of M:

1
(M, Ay =vN{M,es} = {Z Ti€AY; : TiyYi € M}
finite

and the semifinite trace Tr(>_ wieay;) = > 7(z;y;) on (M, A).

Theorem A.1. (Popa) Let A C M be an inclusion of separable finite von Neumann
algebras, p a nonzero projection in M, B C pMp a von Neumann subalgebra. The
the followings are equivalent:

(1) There are no sequence (wy )y in UB such that |Ea(y*w,x)||, — 0 for any
z,y € M.
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(2) There exists a nonzero positive element d € (M, A) of finite trace such that
0 ¢ conv® {wdw* : w € UB}

(3) There exists a closed nonzero B-A submodule H of pL?> M such that dim 4 H 4
is finite.

(4) There exists a projection e in A, another 0 # f in B and a normal *-
homomorphism 0: fBf — eAe such that there exists a nonzero partial
isometry v € M satisfying xv = v0(z) for any x € fBf, andvv* € (fBf)'N
fMf, vtv e 0(fBf) NeMe.

Proof. (1) = (2): By assumption there exits a finite set &% C M and e > 0 such
that

Now, put d =3_ . zyeay™ € (M, A);. By definition Tr(d) < co and we have

> (wdwi,d) = Y (eagrwr,yur) = Y |Ealywa)l > e
TEF z,ye€F z,yeF
for any w € UB.

(2) = (3): Let C denote the closed convex hull of {wdw* : w € UB} in L*(M, A).
We can take the circumcenter dy of C which is not equal to zero by (2). Then dy
is in B’ Np(M, A)p and Tr(dy) < Tr(d) < oco. Thus we can take a nonzero spectral
projection g of dy such that Tr(q) < co. Now, H = qL?M is a B-A submodule
with dimg Hy = Tr(q).

(3) = (4): Fact. When H is a B-A module with dimg Hy < oo, there exists a
nonzero projectionf of B, an fBf-A module K C fH such that K, < L?A, as a
right A-module.

Thus, let V denote such an injection K4 — L?A4. When x € fBf, VaV* €
Ends(L?A4) = A. Thus §(z) = VaV* defines a normal x-homomorphism (since
V is injective) 6 of fBf into edAe for e = VV*. Put £ = V*1 € K. Since
VE=VV*1l=¢, ¢+#0. On the other hand, for any = € fBf,

o€ =V*VaV*1l = V*0(2)1
=V*10(z) (0(x) € eAe)
=£0(x).
Now we are going to investigate
€K CfHCpL?M C LM

as a square integrable operator affiliated with M. By above we have zL¢ = Le6(x)
for any x € U(fBf). Let v|L¢| be the polar decomposition of L¢. Then

|Lel? = (xLe)" (xLe) = (Leb(x))" Leb(x) = 0(x)"|Le |*6 ()
for € U(fBf). Thus |L¢| commutes with 6(fBf). In particular v*v = s(|L¢|) €
O0(fBf) NneMe. Finally,
av|Le| = xLe = Leb(x) = v|Le|0(z) = v0(z)|Le|,

which implies zvv*v = v0(x)v*v, i.e. v = vl(x) for any =z € fBf.
(4) = (1): Take e, f,v as in (4). Let Ep denote the conditional expectation
eMe — 0(fBf). Then 0 # Eg(v*v) € Z(0(fBf)), vEg(v*v)?v* € (fBf) N fMf.
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Let (fi)icr be a maximal family of mutually orthogonal nonzero projections satis-
fying fo = f and f; 3 f in B. Thus, > f; is equal to the central support zg(f) of
fin B. Put up = f. For each i, take a partial isometry u; satisfyikng w;u} = f;
and uju; < f. Put v; = u;v. Now we have, for w € UB,

S Ea(iweo)|l; =S oo Eo(vjwwo) |l = - = 7(Eg(v*v)*) > 0.

Since ) ||v:‘||§ < 1 and ||Ea(viwvg)|ly < |lvf|l5, there exists a finite subset % of
{v; 1i € I} containing vo and 3°, o5 va||§ < 7(Eg(v*v)3)/2. O

Definition A.2. Let A and B be von Neumann subalgebras of M. B is said to
embed into A inside M when the equivalent conditions of Theorem [A-T] hold for B
and A.

Corollary A.3. If B does not embed into A inside M, there exists a commutative
von Neumann subalgebra By of B which does not embed into A inside M. Equiv-
alently, if any commutative subalgebra of B embeds into A, B also embeds into

A.

Remark A.4. The above theorem is useful when we have T-symmetric unital com-
pletely positive maps ¢;: M — M which restrict to the identity map on A, giving
¢i € (M, Ay N A’. Often one has ¢; € K(M, A) = C*(zey : x,y € M).

B C M is said to be rigid when ¢; — Id uniformly on the unit ball of B;. Then,
taking ¢ = ¢;, that satisfies

1

lo(b) —bll, < 5

3 (Vb € By),

d = X1 11(9) satisfies Tr(d) < oo and

PN 1 PP 1 )
dew*l - 1“ < 3 + Hw¢w*1 - 1H =3 + |p(w™) —w*||y < 6
Hence conv> {wdw*} does not contain 0 and B embeds into A inside M.
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