
AN INVITATION TO THE SIMILARITY PROBLEMS
(AFTER PISIER)

NARUTAKA OZAWA

Abstract. This note is intended as a handout for the minicourse given in RIMS
workshop “Operator Space Theory and its Applications” on January 31, 2006.

1. The Similarity Problems

1.1. The similarity problem for continuous homomorphisms. In this note,
we mainly consider unital C∗-algebras and unital (not necessarily ∗-preserving)
homomorphisms for the sake of simplicity. Let A be a unital C∗-algebra and
π : A → B(H) be a unital homomorphism with ‖π‖ < ∞. We say that π is
similar to a ∗-homomorphism if there exists S ∈ GL(H) such that Ad(S) ◦ π is
a ∗-homomorphism. Here, GL(H) is the set of invertible element in B(H) and
Ad(S)(x) = SxS−1.

Similarity Problem A (Kadison 1955). Is every continuous homomorphism
similar to a ∗-homomorphism?

We note that a homomorphism π is a ∗-homomorphism iff ‖π‖ = 1, since an
element x ∈ B(H) is unitary iff ‖x‖ = ‖x−1‖ = 1. We say A has the similarity
property (abbreviated as (SP)) if every unital continuous homomorphism from A
into B(H) is similar to a ∗-homomorphism. Do we really need the assumption
that π is continuous? That is another problem. Indeed, the subject of automatic
continuity is extensively studied in Banach algebra theory, and it is known that the
existence of a discontinuous homomorphism from a C∗-algebra into some Banach
algebra is independent of (ZFC). As far as the author knows, it is not known
whether or not the automatic continuity of a homomorphism between C∗-algebras
(say, with a dense image) is provable within (ZFC).

Similarity Problem A is equivalent to several long-standing problems in C∗, von
Neumann and operator theories. Among them is the Derivation Problem;

Derivation Problem. Is every derivation δ : A → B(H) inner?

Let A ⊂ B(H) be a (unital) C∗-algebra. A derivation δ : A → B(H) is a linear
map which satisfies the derivative identity δ(ab) = δ(a)b + aδ(b). The celebrated
theorem of Kadison and Sakai is that every derivation into A′′ is inner. We recall
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that δ : A → B(H) is said to be inner if there exists T ∈ B(H) such that

∀a ∈ A δ(a) = δT (a) := Ta− aT.

It is known that every derivation is automatically continuous (Ringrose). We say
A has the (DP) if any derivation δ : A → B(H), for any faithful ∗-representation
A ⊂ B(H), is inner.

Theorem 1.1 (Kirchberg 1996). Let A be a unital C∗-algebra. Then A has the
(SP) iff A has the (DP).

The easier implication (SP) ⇒ (DP) (which precedes Kirchberg) follows from
the following lemma.

Lemma 1.2. Let A ⊂ B(H) be a unital C∗-algebra and δ : A → B(H) be a deriva-
tion. Then the homomorphism π : A →M2(B(H)) defined by

π(a) =

(
a δ(a)
0 a

)

is similar to a ∗-homomorphism iff δ is inner.

Proof. We first observe that π is indeed a homomorphism since δ is a derivation.
If δ = δT , then we have

π(a) =

(
1 T
0 1

) (
a 0
0 a

)(
1 −T
0 1

)

and π is similar to a ∗-homomorphism idA ⊕ idA. We now suppose that σ(a) =
Sπ(a)S−1 is a ∗-homomorphism. Let D = S∗S. Since

‖S−1‖2〈Dξ, ξ〉 = ‖S−1‖2‖Sξ‖2 ≥ ‖ξ‖2,

we have D ≥ ‖S−1‖−2. Since σ is ∗-preserving, we have

Dπ(a) = S∗σ(a)S = (S∗σ(a∗)S)∗ = π(a∗)∗D

for every a ∈ A. Developing the equation, we get
(

D11 D12

D21 D22

)(
a δ(a)
0 a

)
=

(
a 0

δ(a∗)∗ a

)(
D11 D12

D21 D22

)

Looking at the (1, 1)-entry, we have D11a = aD11 for every a ∈ A. Combined with
D11 ≥ ‖S−1‖−2, this implies that D−1

11 ∈ A′ with ‖D−1
11 ‖ ≤ ‖S−1‖2. Looking at the

(2, 1)-entry, we have

D11δ(a) + D12a = aD12.

It follows that δ = δT for T = −D−1
11 D12 with ‖T‖ ≤ ‖S‖2‖S−1‖2. ¤
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1.2. Known cases and open cases. The important result of Haagerup (1983)
is that a continuous homomorphism π : A → B(H) admitting a finite cyclic subset
(i.e., there exists a finite subset F ⊂ H such that span{π(a)ξ : a ∈ A, ξ ∈ F} is
dense in H), is inner. This does not finish the similarity problem since we cannot
decompose a general (non ∗-preserving) representation into a direct sum of cyclic
representations.

Theorem 1.3. The following C∗-algebras have the (SP).

(1) Nuclear C∗-algebras.
(2) C∗-algebras without tracial states (Haagerup).
(3) Type II1 factors with the property (Γ) (Christensen).

We note that one may reduce Similarity problem A (or derivation problem) for
C∗-algebras to that for type II1 factors by considering the second dual, then con-
sidering the type decomposition and direct integration. We do not know whether
or not the von Neumann algebras LF2 and

∏∞
n=1Mn have the (SP). We suspect

that
∏∞

n=1Mn should be a counterexample.

1.3. The similarity problem for group representations. We only consider
discrete groups. Let Γ be a discrete group and C∗Γ be the full group C∗-algebra.
We regard Γ as the corresponding subgroup of unitary elements in C∗Γ. Every
continuous homomorphism π : C∗Γ → B(H) gives rise to a uniformly bounded
(abbreviated as u.b.) representation of Γ on H; π : Γ → GL(H) is a group homo-
morphism such that ‖π‖ := sups∈Γ ‖π(s)‖ < ∞1. Obviously, the homomorphism
π : C∗Γ → B(H) is similar to a ∗-homomorphism iff the representation π|Γ is uni-
tarizable (i.e., ∃S ∈ GL(H) such that Ad(S) ◦ π|Γ is a unitary representation).

Theorem 1.4 (Diximier 1950). Let Γ be an amenable group. Then, every u.b.
representation of Γ is unitarizable. More precisely, if π : Γ → GL(H) is a u.b.
representation, then there exists S ∈ GL(H) ∩ vN(π(Γ)) with ‖S‖ ‖S−1‖ ≤ ‖π‖2

such that Ad(S) ◦ π is unitary.

Proof. Let Γ be amenable and π : Γ → GL(H) be a u.b. representation. Let Fn ⊂ Γ
be a Følner net. Since π is u.b., the set |Fn|−1

∑
s∈Fn

π(s)∗π(s) ∈ vN(π(Γ)) has a
weak∗-accumulation point. Since the accumulation point is positive, we let S be
the the square root of it. Then, we have

‖Sξ‖2 = lim
n

1

|Fn|
∑
s∈Fn

‖π(s)ξ‖2,

and hence ‖π‖−1 ≤ S ≤ ‖π‖ and ‖Sπ(s)ξ‖ = ‖Sξ‖ for every s ∈ Γ and ξ ∈ H. It
follows that ‖Ad(S) ◦ π‖ = 1 and hence Ad(S) ◦ π is unitary. ¤

1This notation may cause confusion since the value ‖π‖ is not same as ‖π : C∗Γ → B(H)‖.



4 NARUTAKA OZAWA

If one employ the fact that a nuclear C∗-algebra is amenable as a Banach algebra
(Haagerup 1983), then we can adopt the above proof to the case of nuclear C∗-
algebras. We say Γ is unitarizable if every u.b. representation of Γ is unitarizable.
Pisier (2004, 2005) proved that if Γ is unitarizable and in addition that the similar-
ity S can be chosen so that (i) S ∈ GL(H) ∩ vN(π(Γ)), or (ii) ‖S‖ ‖S−1‖ ≤ ‖π‖2,
then Γ is amenable. However, the following is still open.

Similarity Problem B. Is every unitarizable group amenable?

Theorem 1.5. The free group F∞ on countably many generators is not unitariz-
able.

Proof. We denote by |t| the word length of t ∈ F∞, by CF∞ the space of all finitely
supported C-valued functions on F∞, and by λ(s) the left translation operator by
s on `∞Γ (and its subspaces). Let B : CF∞ → `∞F∞ be the linear map defined by

Bδt =
∑

{δt′ : |t−1t′| = 1, |t′| = |t|+ 1},
i.e., Bδt is the characteristic function of those points which are just one-step ahead
of t (looking from e). Then, for every s ∈ F∞, we have

(Bλ(s)− λ(s)B)δt =

{
0 if |s| 6= |st|+ |t−1|
δs(|st|+1) − δs(|st|−1) if |s| = |st|+ |t−1| ,

where s(k) is the unique element such that |s(k)| = k and |s| = |s(k)|+ |s(k)−1s|.
Hopefully, the figures below explain the above equation. It follows that we may
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Figure 1. |s| 6= |st|+ |t−1|
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Figure 2. |s| = |st|+ |t−1|

view D(s) = Bλ(s) − λ(s)B as an element in B(`2F∞) with ‖D(s)‖ = 2. Thus,
D : F∞ → B(`2F∞) is a u.b. derivation; D(st) = D(s)λ(t) + λ(s)D(t). It is not
hard to show that D is not inner, i.e., there is no B0 ∈ B(`2F∞) such that B −B0

commutes with every λ(s) (in L(CF∞, `∞F∞)). We define a u.b. representation
π : F∞ →M2(B(`2F∞)) by

π(s) =

(
λ(s) D(s)
0 λ(s)

)
.

We conclude the proof by using the fact, which is proved in the same way to
Lemma 1.2, that π is similar to ∗-homomorphism only if D is inner. ¤



SIMILARITY PROBLEMS AFTER PISIER 5

We observe that a subgroup of a unitarizable group is again unitarizable thanks
to the fact that the induction of a u.b. representation is again u.b. (and a little
more effort). Hence a counterexample (if any) to Similarity Problem B has to be a
non-amenable group which does not contain F2 as a subgroup. Do you think this
might be a good time to stop chasing the problem?

2. Isomorphic Characterization of Injectivity

2.1. A free Khinchine inequality. Let Γ be a discrete group and LΓ be its
group von Neumann algebra. By definition, the map

LΓ 3 λ(f) 7→ f = λ(f)δe ∈ `2Γ

is contractive. For which operator space structure on `2Γ, does the above map
completely bounded? We briefly review the column and row Hilbert space struc-
tures. Let H be a Hilbert space. When it is viewed as a column vector space, we
say it is a column Hilbert space and denote it by HC , i.e., HC = B(C,H) as an
operator space. For any finite sequence2 (xi)i in B(H) and orthonormal vectors
ξ1, . . . , ξn ∈ H, we have

‖(xi)i‖C := ‖
∑

i

xi ⊗ ξi‖B(H)⊗HC
= ‖




x1

x2
...


 ‖ = ‖

∑
i

x∗i xi‖1/2.

Likewise, we define the row Hilbert space as HR = B(H,C), where H is the
conjugate Hilbert space ofH. For any finite sequence (xi) in B(H) and orthonormal
vectors ξ1, . . . , ξn ∈ H, we have

‖(xi)i‖R := ‖
∑

i

xi ⊗ ξi‖B(H)⊗HR
= ‖ (

x1 x2 · · · ) ‖ = ‖
∑

i

xix
∗
i ‖1/2.

We regard the following lemma trivial and use it without referring it.

Lemma 2.1. For any finite sequences (ai)i and (bi)i in B(H), we have

‖
∑

i

aibi‖ ≤ ‖(ai)i‖R‖(bi)i‖C .

In particular, ‖∑
ai ⊗ bi‖ ≤ min{ ‖(ai)i‖R‖(bi)i‖C , ‖(ai)i‖C‖(bi)i‖R}.

We define HC∩R = {ξ ⊕ ξ ∈ HC ⊕HR : ξ ∈ H}.
Proposition 2.2. The map

LΓ 3 λ(f) 7→ f ∈ (`2Γ)C∩R

is completely contractive.

2A finite sequence is a sequence of vectors such that all but finitely many are zero
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Proof. We view δe ∈ B(C, `2Γ) and δ∗e ∈ B(`2Γ,C). Since f = λ(f)δe ∈ B(C, `2Γ),
the above map is a complete contraction into HC . Since f = δ∗eλ(f) ∈ B(`2Γ,C),
the above map is a complete contraction into HR as well. ¤

We simply write C ∩ R for (`2)C∩R and {θi} for a fixed orthonormal basis for
C ∩ R. For instance, we can take θi = ei1 ⊕ e1i ∈ B(`2) ⊕ B(`2). For a finite
sequence (xi)i in B(H), we set

‖(xi)i‖C∩R = ‖
∑

i

xi ⊗ θi‖B(H)⊗(C∩R) = max{‖(xi)i‖C , ‖(xi)i‖R}.

The following is the rudiment of free Khinchine inequalities.

Theorem 2.3 (Haagerup and Pisier 1993). Let F∞ be the free group on countable
generators, S = {si} ⊂ F∞ be the standard set of free generators and

Eλ = span{si} ⊂ LF∞
be an operator subspace. Then, the map

Φ: C ∩R 3 θi 7→ λ(si) ∈ LF∞
is completely bounded with ‖Φ‖cb ≤ 2. In particular, the projection Q from LF∞
onto Eλ, defined by

Q : LF∞ 3 λ(s) 7→
{

λ(s) if s ∈ S
0 if s /∈ S ,

is completely bounded with ‖Q‖cb ≤ 2.

Proof. For each i, let Ω±
i ⊂ F∞ be the subsets of all reduced words which begins

with respectively s±1
i , and P±

i ∈ B(`2F∞) be the orthogonal projection onto `2Ω
±
i .

Then, for each i, we have

λ(si) = λ(si)P
−
i + λ(si)(1− P−

i ) = λ(si)P
−
i + P+

i λ(si).

Therefore for any finite sequence (xi)i ⊂ B(H), we have

‖
∑

i

xi ⊗ λ(si)P
−
i ‖B(H⊗`2F∞) ≤ ‖(xi)i‖R‖(λ(si)P

−
i )i‖C ≤ ‖(xi)i‖R

since ‖(λ(si)P
−
i )i‖C = ‖∑

i P
−
i ‖1/2 = 1. Likewise, we have

‖
∑

i

xi ⊗ P+
i λ(si)‖B(H⊗`2F∞) ≤ ‖(xi)i‖C‖(P+

i λ(si))i‖R ≤ ‖(xi)i‖C .

It follows that

‖
∑

i

xi ⊗ λ(si)‖B(H⊗`2F∞) ≤ 2‖(xi)i‖C∩R = 2‖
∑

i

xi ⊗ θi‖.

This means that ‖Φ‖cb ≤ 2. The second assertion follows from Proposition 2.2. ¤
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Remark 2.4. The above property of LF∞ is related to the fact that LF∞ is not
injective. We simply write En for (`n

2 )C∩R. Thus

En = span{ei1 ⊕ e1i : i = 1, . . . , n} ⊂Mn ⊕Mn.

It is known that En is far from injective, i.e., any projection fromMn⊕Mn onto En

has cb-norm ≥ 1
2
(
√

n+1). It follows that if M is an injective von Neumann algebra,
then any maps α : En → M and β : M → En with β◦α = idEn satisfy ‖α‖cb‖β‖cb ≥
1
2
(
√

n + 1). It is conjectured(?) by Pisier that for any non-injective von Neumann
algebra M , there exist sequences of maps αn : En → M and βn : M → En such
that βn ◦αn = idEn and sup ‖αn‖cb‖βn‖cb < ∞. An affirmative answer would solve
several problems around operator spaces (e.g., whether existence of a bounded
linear projection from B(H) onto M implies injectivity of M .) A negative answer
would lead to a non-injective type II1 factor which does not contain LF2.

2.2. Isomorphic characterization of injective von Neumann algebras. For
a finite sequence (xi)i in B(H), we set

‖(xi)i‖C+R = ‖Φ: C ∩R 3 θi 7→ xi ∈ B(H)‖cb.

We say that a von Neumann algebra M has the property (P)3 if there exists a
constant CM > 0 with the following property; For any finite sequence (xi)i in M
with ‖(xi)i‖C+R ≤ 1, there exist finite sequences (ai)i and (bi)i in M such that

‖(ai)i‖C ≤ CM , ‖(bi)i‖R ≤ CM and xi = ai + bi for every i.

Theorem 2.5 (Pisier 1994). A von Neumann algebra M is injective iff it has the
property (P).

The “if” part requires several lemmas, and we first prove the “only if” part.
Let M be an injective von Neumann algebra and consider a complete contraction
Φ: C ∩ R 3 θi 7→ xi ∈ M . Since M is injective, this map extends to a complete
contraction Φ̃ : C ⊕ R → M , where C = span{ei1} and R = span{e1i}. Then
ai = Φ̃(0 ⊕ e1i) and bi = Φ̃(ei1 ⊕ 0) satisfies the required condition with CM = 1.
We note that ‖(ϕ(ai))i‖C ≤ ‖ϕ‖cb‖(ai)i‖C for any cb-map ϕ and any finite sequence
(ai)i. Hence the following is trivial.

Lemma 2.6. The property (P) inherits to a von Neumann subalgebra which is the
range of a completely bounded projection.

As a corollary to Theorem 2.5, we see that a von Neumann subalgebra M ⊂ B(H)
which is the range of a completely bounded projection is in fact injective. We
observe that by the type decomposition and the Takesaki duality, it suffices to
show Theorem 2.5 for a von Neumann algebra of type II1.

Let M ⊂ B(H) be a von Neumann algebra. An M-central state is a state ϕ
on B(H) such that ϕ(uxu∗) = ϕ(x) for u ∈ M and x ∈ B(H) (or equivalently

3This nomenclature is nonstandard.



8 NARUTAKA OZAWA

ϕ(ax) = ϕ(xa) for a ∈ M and x ∈ B(H)). Recall that the celebrated theorem of
Connes states that a finite von Neumann algebra M is injective iff there exists an
M -central state ϕ such that ϕ|M is a faithful normal tracial state.

Lemma 2.7. Let M ⊂ B(H). Then, there exists an M-central state if

‖
n∑

i=1

ui ⊗ ui‖B(H⊗H) = n

for every n and unitary elements u1, . . . , un ∈ M .

Proof. We first recall that H is the complex conjugate Hilbert space of H and
x ∈ B(H) means the element associated with x ∈ B(H). We have the canonical
identification between the Hilbert space H⊗H and the space S2(H) of the Hilbert-
Schmidt class operators on H, given by ξ ⊗ η ↔ 〈 · , η〉ξ ∈ S2(H). Under this
identification,

∑
ai ⊗ bi acts on S2(H) as S2(H) 3 h 7→ ∑

aihb∗i ∈ S2(H).
Let u1, . . . , un ∈ M be unitary elements such that u1 = 1. If ‖∑n

i=1 ui⊗ui‖ = n,
then there exists a unit vector h ∈ S2(H) such that ‖∑n

i=1 uihu∗i ‖2 ≈ n. By
uniform convexity, we must have ‖uihu∗i − h‖2 ≈ 0 for every i. This implies that
‖uih

∗hui−h∗h‖1 ≈ 0 for every i. It follows that ϕ(x) = Tr(h∗hx) defines a state on
B(H) such that ‖ϕ◦Ad(ui)−ϕ‖B(H)∗ ≈ 0 for every i. Therefore, taking appropriate
limit, we can obtain an M -central state. ¤

Lemma 2.8 (Haagerup 1985). Let M be a von Neumann algebra. Assume that
there exists a constant c > 0 with the following property; For every n, unitary
elements u1, . . . , un ∈ M and every non-zero central projection p ∈ M , we have

‖
n∑

i=1

pui ⊗ pui‖B(pH⊗pH) ≥ cn.

Then, M is injective.

Proof. Let u1, . . . , un ∈ M be unitary elements and p ∈ M be a non-zero central
projection. By assumption, we have

‖(
n∑

i=1

pui ⊗ pui)
k‖B(pH⊗pH) ≥ cnk

for every positive integer k. Therefore, we actually have that

‖
n∑

i=1

pui ⊗ pui‖B(pH⊗pH) ≥ lim
k→∞

c1/kn = n.

By Lemma 2.7, there exists a pM -central state ϕp on B(pM) for every non-zero
central projection p ∈ M . Fix a normal faithful tracial state τ on M . For any finite
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partition P = {pi}i of unity by central projections in M , we define the M -central
state ϕP on B(H) by

ϕP(x) =
∑

i

τ(pi)ϕpi
(pixpi).

Taking appropriate limit of ϕP , we obtain an M -central state ϕ on B(H) such that
ϕ|M = τ . We conclude that M is injective by Connes’s theorem. ¤

For a finite sequence (xi)i in B(H), we set

‖(xi)i‖OH = ‖
∑

i

xi ⊗ xi‖1/2

B(H⊗H)
.

We note that ‖(xi)i‖OH ≤ ‖(xi)i‖1/2
R ‖(xi)i‖1/2

C ≤ ‖(xi)i‖C∩R. Besides those appear-
ing in Lemma 2.1, we have the following mysterious inequality (which manifests
the self-dual property of the operator Hilbert spaces).

Lemma 2.9. For every finite sequences (ai)i in B(H) and (bi)i in B(K), we have

‖
∑

i

ai ⊗ bi‖B(H⊗K) ≤ ‖(ai)i‖OH‖(bi)i‖OH

Proof. We may assume that K = H and use bi in the place of bi. Identifying H⊗H
with S2(H) as in the proof of Lemma 2.7, we see

‖
∑

i

ai ⊗ bi‖B(H⊗H) = sup{|
∑

i

Tr(haikb∗i )| : h, k ∈ S2(H) with norm 1}.

Let h, k ∈ S2(H) with norm 1 be given. Then, we can find decompositions h = h1h2

and k = k1k2 such that hj, kj ∈ S4(H) with norm 1. It follows that

|
∑

i

Tr(haikb∗i )| = |
∑

i

Tr((h2aik1)(k2b
∗
i h1))|

≤ Tr(
∑

i

h2aik1k
∗
1a
∗
i h
∗
2)

1/2 Tr(
∑

i

h∗1bik
∗
2k2b

∗
i h1)

1/2

≤ ‖
∑

i

ai ⊗ ai‖1/2

B(H⊗H)
‖

∑
i

bi ⊗ bi‖1/2

B(H⊗H)
.

This proves the assertion. ¤
Lemma 2.10. For every finite sequence (xi)i in B(H), we have

‖(xi)i‖C+R ≤ ‖(xi)i‖OH .

Proof. Let Φ: C ∩R 3 θi 7→ xi ∈ B(H) and take z =
∑

i ai⊗ θi ∈ B(H)⊗ (C ∩R).
We note that ‖z‖ = ‖(ai)i‖C∩R ≥ ‖(ai)i‖OH . Hence, by Lemma 2.9, we have

‖(id⊗ Φ)(z)‖ = ‖
∑

ai ⊗ xi‖ ≤ ‖(ai)i‖OH‖(xi)i‖OH ≤ ‖(xi)i‖OH‖z‖.
This implies that ‖(xi)i‖C+R = ‖Φ‖cb ≤ ‖(xi)i‖OH . ¤
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We have prepared enough lemmas for the proof of Theorem 2.5.

Proof of Theorem 2.5. It is left to show that a finite von Neumann algebra M
with the property (P) is injective. To verify the assumption of Lemma 2.8, we give
ourselves unitary elements u1, . . . , un ∈ M , a non-zero central projection p ∈ M
and a constant c > 0 such that

‖(pui)i‖2
OH ≤ cn.

Then, by Lemma 2.10 and the property (P), there exist (ai)i and (bi)i in M such
that ‖(ai)i‖C ≤ CM

√
cn, ‖(bi)i‖R ≤ CM

√
cn and pui = ai + bi for every i. We fix

a tracial state on pM and denote by ‖ · ‖2 the corresponding 2-norm. It follows
that

n =
n∑

i=1

‖pui‖2
2 ≤ 2

n∑
i=1

(‖ai‖2
2 + ‖bi‖2

2) ≤ 2(‖(ai)i‖2
C + ‖(bi)i‖2

R) ≤ 2C2
Mcn.

Therefore, we have c ≥ (2C2
M)−1 and we are done. ¤

2.3. A characterization of nuclearity. Let A be a (unital) C∗-algebra. We
say A has the strong similarity property (abbreviated as (SSP)) if for every unital
continuous homomorphism π : A → B(H), there exists S ∈ GL(H) ∩ vN(π(A))
such that Ad(S) ◦ π is a ∗-homomorphism.

Theorem 2.11 (Pisier 2005). A C∗-algebra A is nuclear iff it has the (SSP).

Proof. As we remarked, the “only if” part follows from Diximier’s proof + the
amenability of nuclear C∗-algebra. To prove the “if” part, let A be a C∗-algebra
with the (SSP). By a standard direct sum argument, it is not hard to see that
there exists a constant C > 0 with the following property; Every unital continuous
homomorphism π : A → B(H) with ‖π‖ ≤ 54, there exists S ∈ GL(H) ∩ vN(π(A))
with ‖S‖ ‖S−1‖ ≤ C such that Ad(S) ◦π is a ∗-homomorphism. Let A ⊂ B(H) be
a universal ∗-representation. It suffices to show that A′ is injective. Let (xi)i be a
finite sequence in A′ with ‖(xi)i‖C+R ≤ 1. Since B(H) is injective, there exist (ci)i

and (di)i in B(H) such that ‖(ci)i‖C ≤ 1, ‖(di)i‖R ≤ 1 and xi = ci + di for every
i. We define a derivation δ : A → B(H)⊗̄LF∞ by

δ(a) = δP ci⊗λ(si)(a⊗ 1) =
∑

i

δci
(a)⊗ λ(si) ∈ B(H)⊗ Eλ ⊂ B(H)⊗̄LF∞.

We recall from the proof of Theorem 2.3 that λ(si) = ui + vi with ‖(ui)‖C ≤ 1 and
‖(vi)‖R ≤ 1. Since δci

= δ−di
on A, we have δ = δB, where B =

∑
(ci⊗vi−di⊗ui)

4We can choose any other number that is strictly greater than 1 by scaling the δ later.
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with ‖B‖ ≤ ‖(ci)i‖C‖(vi)‖R + ‖(di)i‖R‖(ui)‖C ≤ 2. Hence, we have ‖δ‖cb ≤ 4. We
define a homomorphism π : A →M2(B(H)⊗̄LF∞) by

π(a) =

(
a⊗ 1 δ(a)

0 a⊗ 1

)
.

By the assumption on the (SSP), there exists an invertible element S ∈ vN(π(A))
with ‖S‖ ‖S−1‖ ≤ C such that Ad(S) ◦ π is a ∗-homomorphism. By the proof
of Lemma 1.2, there exists T ∈ B(H)⊗̄LF∞ with ‖T‖ ≤ C2 such that δ(a) =
δT (a⊗ 1). Let Q : LF∞ → Eλ be the projection appearing in Theorem 2.3. Since
δ(A) ⊂ B(H)⊗ Eλ and id⊗Q is A-linear, we have

δ(a) = (id⊗Q)(δ(a)) = δ(id⊗Q)(T )(a⊗ 1)

for every a ∈ A. We write (id⊗Q)(T ) =
∑

zi ⊗ λ(si). Then, by Lemma 2.1 and
Theorem 2.3, we have

‖(zi)i‖C∩R ≤ ‖(id⊗Q)(T )‖ ≤ ‖Q‖cb‖T‖ ≤ 2C2.

Since λ(si)’s are linearly independent, we have δci
= δzi

, or equivalently ci−zi ∈ A′.
Therefore, we have ai = ci − zi ∈ A′ with

‖(ai)i‖C ≤ ‖(ci)i‖C + ‖(zi)i‖C ≤ 1 + 2C2,

and likewise bi = xi − ai = di + zi ∈ A′ with ‖(bi)i‖R ≤ 1 + 2C2. We conclude the
injectivity of A′ by Theorem 2.5. ¤

We say a group Γ has the (SSP) if for every u.b. representation π : Γ → GL(H),
there exists S ∈ GL(H)∩vN(π(Γ)) such that Ad(S)◦π is a unitary representation.

Corollary 2.12. A discrete group Γ is amenable iff it has the (SSP).

Proof. This follows from the fact that Γ is amenable iff C∗Γ is nuclear. ¤

3. Similarity Length of C∗-algebras

The following is the fundamental characterization of a homomorphism which is
similar to a ∗-homomorphism. This has several applications to dilation theory.

Theorem 3.1 (Haagerup, Paulsen). Let A be a unital C∗-algebra (or just a unital
operator algebra), π : A → B(H) be a unital homomorphism and C > 0 be a
constant. Then, ‖π‖cb ≤ C iff there exists S ∈ GL(H) with ‖S‖ ‖S−1‖ ≤ C such
that ‖Ad(S) ◦ π‖cb = 1.

Proof. The “if” part is obvious. To prove the “only if” part, let A ⊂ B(H) and
π : A → B(H) be a homomorphism with ‖π‖cb ≤ C. By a Stinespring type

theorem, there exist a Hilbert space Ĥ, a ∗-homomorphism σ : B(H) → B(Ĥ), and

operators V ∈ B(H, Ĥ), W ∈ B(Ĥ,H) with ‖V ‖ ‖W‖ ≤ ‖π‖cb such that

∀a ∈ A π(a) = V σ(a)W.
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Let K1 = span(σ(A)WH). The subspace K1 is σ(A)-invariant and we may assume
that V = V PK1 . Since

V σ(a)
(
σ(x)Wξ

)
= π(ax)ξ = π(a)V σ(x)Wξ,

we have V σ(a)PK1 = π(a)V for every a ∈ A. It follows that K2 = ker V ⊂ K1 is
also σ(A)-invariant. Hence L = K1 ªK2 is “semi-invariant” under σ(A), i.e.,

∀a ∈ A PLσ(a) = PLσ(a)PL.

Consequently, we have

∀a ∈ A π(a) = V PLσ(a)W = V PLσ(a)PLW.

Since V PL is injective on L and V PLW = π(1) = 1, the operator S = V PL is a
linear isomorphism from L onto H with S−1 = PLW . We have π = Ad(S)◦σ with
‖S‖ ‖S−1‖ ≤ C and, since L ∼= H, we are done. ¤
Corollary 3.2. A derivation δ is inner iff it is completely bounded.

By a standard direct sum argument, we obtain the following.

Corollary 3.3. Let A be a unital C∗-algebra with the (SP). Then, there exists a
function f on [1,∞) such that

‖π‖cb ≤ f(‖π‖)
for every unital continuous homomorphism π : A → B(H).

Definition 3.4. Let A be a unital C∗-algebra (or a unital operator algebra). The
similarity length of A, denoted by l(A), is the smallest integer l with the following
property; There exists a constant C > 0 such that for any x ∈M∞(A), there exist
α0, α1, . . . αl ∈M∞(C) and D1, . . . , Dl ∈ Diag∞(A) satisfying

x = α0D1α1 · · ·Dlαl

and
l∏

m=0

‖αm‖
l∏

m=1

‖Dm‖ ≤ C‖x‖.

Here, M∞(A) =
⋃∞

n=1Mn(A) and Diag∞(A) ⊂ M∞(A) is the set of diagonal
matrices with entries in A. If there is no l satisfying the above condition, then we
set l(A) = ∞ by convention.

Theorem 3.5 (Pisier 1999). Let A be a unital C∗-algebra (or a unital operator
algebra) with dim(A) > 1. The following are equivalent.

(1) A has the (SP).
(2) There exist d > 0 and C > 0 such that ‖π‖cb ≤ C‖π‖d for every unital

continuous homomorphism π : A → B(H).
(3) l(A) ≤ d.
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The constant d appearing in the conditions (2) and (3) are taken to be same
and are possibly non-integer. It follows that the “optimal” function f appearing
in Corollary 3.3 is a polynomial of degree l(A). The implication (2) ⇒ (1) follows
from Theorem 3.1. We do not prove the hard implication (1) ⇒ (3), but explain
(3) ⇒ (2);

‖π(x)‖ = ‖α0π(D1)α1 · · · π(Dl)αl‖ ≤ ‖π‖l

l∏
m=0

‖αm‖
l∏

m=1

‖Dm‖ ≤ C‖π‖l‖x‖

for x = α0D1α1 · · ·Dlαl ∈M∞(A).
For a unital C∗-algebra A with dim(A) > 1, it is known that

(1) l(A) = 1 ⇔ dim(A) < ∞ (Exercise),
(2) l(A) = 2 ⇔ A is nuclear with dim(A) = ∞ (Pisier 2004),
(3) l(A) ≤ 3 if A has no tracial state,
(4) l(M) = 3 if M is a type II1 factor with the property (Γ) (Christensen 2002),
(5) l(A) = max{l(I), l(A/I)} for every closed 2-sided ideal I / A (Exercise).

It is not known whether there exists a unital C∗-algebra with l(A) > 3. We
note that an affirmative answer to Similarity Problem A would imply that there
exists l0 such that l(A) ≤ l0 for every C∗-algebra A. We close this note by showing
l(A) ≤ 3 for any C∗-algebra A which contains a unital copy of the Cuntz algebra
O∞. (The case where A has no tracial state is then dealt by passing to the second
dual.)

Let x ∈ Mn(A) be given. We choose unitary matrices W1,W2 ∈ Mn(C) with
|W1(i, j)| = |W2(i, j)| = n−1/2 for all i, j (e.g., Wk(i, j) = n−1/2 exp(2π

√−1ij/n)).
Let D1(i) = S∗i and D3(j) = Sj for every i, j, where Si’s are isometries satisfying
S∗i Sj = δi,jI. For every k, we set

D2(k) = n
∑
i,j

W1(i, k)Sixi,jS
∗
j W2(k, j)

= n
(

W1(1, k)S1 · · · W1(n, k)Sn

)



x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n







W2(k, 1)S∗1
...

W2(k, n)S∗n


 .

From the latter expression, we see that ‖D2(k)‖ ≤ ‖x‖. We obtained W1,W2 ∈
Mn(C) and D1, D2, D3 ∈ Diagn(A) ⊂Mn(A) such that

‖D1‖ ‖W1‖ ‖D2‖ ‖W2‖ ‖D3‖ ≤ ‖x‖
and

x = D1W1D2W2D3.
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Indeed, we have

(D1W1D2W2D3)i,j =
n∑

k=1

S∗i W1(i, k)D2(k)W2(k, j)Sj

= n

n∑

k=1

|W1(i, k)|2|W2(k, j)|2xi,j = xi,j.

References

[1] G. Pisier, Introduction to operator space theory. London Mathematical Society Lecture Note
Series, 294. Cambridge University Press, Cambridge, 2003.

[2] , Similarity problems and completely bounded maps. Second, expanded edition. In-
cludes the solution to “The Halmos problem”. Lecture Notes in Mathematics, 1618. Springer-
Verlag, Berlin, 2001.

[3] , A similarity degree characterization of nuclear C∗-algebras. Preprint.
math.OA/0409091

[4] , Simultaneous similarity, bounded generation and amenability. Preprint.
math.OA/0508223

Department of Mathematical Sciences, University of Tokyo, Komaba, 153-8914
E-mail address: narutaka@ms.u-tokyo.ac.jp


