II_1 factors with at most one Cartan subalgebra

Narutaka OZAWA Joint work with Sorin POPA

University of Tokyo

Analyse harmonique, algèbres d'opérateurs et représentations, Luminy, November 2008

Introduction

geared for rigidity phenomena

Travel supported by JSPS

 $\begin{array}{ll} \mathsf{\Gamma} & \mbox{countable discrete group} \\ (X,\mu) & \mbox{standard probability measure space} \\ \mathsf{\Gamma} \curvearrowright (X,\mu) & \mbox{(ergodic) measure preserving action} \end{array}$

- $\Gamma \curvearrowright X$ is said to be *ergodic* if $A \subset X$ and $\Gamma A = A \Rightarrow \mu(A) = 0, 1.$ We only consider either • $(X, \mu) \cong ([0, 1], \text{Lebesgue})$ and $\Gamma \curvearrowright X$ is *essentially-free* i.e. $\mu(\{x : gx = x\}) = 0 \ \forall g \in \Gamma \setminus \{1\};$ or
- $X = \{\mathsf{pt}\}.$

How do we classify?

To what extent do vN/OE remember OE/GA/GP?

Group measure space constructions

$$\Gamma \curvearrowright (X,\mu) \quad \text{p.m.p.} \qquad \longleftarrow \qquad \begin{array}{c} \sigma \colon \Gamma \curvearrowright L^{\infty}(X,\mu) \\ \sigma_g(f)(x) = f(g^{-1}x) \\ \int \sigma_g(f) \, d\mu = \int f \, d\mu \end{array}$$

The unitary element $u_g = \sigma_g \otimes \lambda_g \in \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma))$ satisfies $u_g f u_g^* = \sigma_g(f)$

for all $f \in L^{\infty}(X, \mu)$, identified with $f \otimes 1 \in \mathbb{B}(L^{2}(X) \otimes \ell_{2}(\Gamma))$. We encode the information of $\Gamma \frown X$ into a single vN algebra

$$\mathrm{vN}(X \rtimes \Gamma) := \{ \sum_{g \in \Gamma}^{\mathrm{finite}} f_g \, u_g : f_g \in L^{\infty}(X) \}'' \subset \mathbb{B}(L^2(X) \otimes \ell_2(\Gamma)).$$

 $\operatorname{vN}(X \rtimes \Gamma)$ is same as the crossed product vN algebra $L^{\infty}(X) \rtimes \Gamma$.

Group measure space constructions

 $vN(X \rtimes \Gamma)$ is a vN algebra of type II₁, with the trace τ given by

$$\tau(\sum_{g} f_{g} u_{g}) = \langle \sum_{g} f_{g} u_{g} (\mathbf{1} \otimes \delta_{1}), (\mathbf{1} \otimes \delta_{1}) \rangle = \int f_{1} d\mu.$$

(It follows $\tau(xy) = \tau(yx)$.)

The subalgebra $L^{\infty}(X) \subset vN(X \rtimes \Gamma)$ has a special property.

Definition

A von Neumann subalgebra $A \subset M$ is called a *Cartan subalgebra* if it is a maximal abelian subalgebra such that the normalizer $\mathcal{N}(A) = \{u \in M : \text{unitary } uAu^* = A\}$

generates M as a von Neumann algebra.

Orbit Equivalence Relation

$$\begin{array}{c} \mathsf{GA} & \mathsf{OE} & \mathsf{vN} \\ \Gamma \curvearrowright (X,\mu) & \longrightarrow & L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma) & \longrightarrow & \mathrm{vN}(X \rtimes \Gamma) \end{array}$$

Theorem (Singer, Dye, Krieger, Feldman–Moore 1977)

Let $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ be ess-free p.m.p. actions, and $\theta \colon (X, \mu) \to (Y, \nu)$

be an isomorphism. Then, the isomorphism

$$\theta^* \colon L^\infty(Y,\nu) \ni f \mapsto f \circ \theta \in L^\infty(X,\mu)$$

extends to a *-isomorphism

$$\pi : \operatorname{vN}(Y \rtimes \Lambda) \to \operatorname{vN}(X \rtimes \Gamma)$$

if and only if θ preserves the orbit equivalence relation:

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x.

Lack of rigidity

Theorem (Hakeda–Tomiyama, Sakai 1967)

 $\operatorname{vN}(X \rtimes \Gamma)$ is injective (amenable) $\Leftrightarrow \Gamma$ is amenable.

E.g. Solvable groups and subexponential groups are amenable. Non-abelian free groups \mathbb{F}_r are not.

Theorem (Connes 1974, Ornstein–Weiss, C–Feldman–W 1981)

Amenable **vN** and **OE** are unique modulo center.

Lack of rigidity

Theorem (Connes-Jones 1982)

OE ----- vN is not one-to-one,

i.e. \exists a II_1 -factor with non-conjugate Cartan subalgebras.

Example (Oz-Popa 2008)

 $\operatorname{vN}\left((\varprojlim(\mathbb{Z}/k_n\mathbb{Z})^2)\rtimes(\mathbb{Z}^2\rtimes\operatorname{SL}(2,\mathbb{Z}))\right)$

has at least two Cartan subalg $L^{\infty}(\varprojlim(\mathbb{Z}/k_n\mathbb{Z})^2)$ and $vN(\mathbb{Z}^2)$.

Lack of rigidity

Theorem (Connes 1975)

 \exists a II_1 -factor which is not *-isomorphic to its complex conjugate.

Theorem (Voiculescu 1994)

 $vN(\mathbb{F}_r)$ does not have a Cartan subalgebra.

Rigidity

Theorem (Furman 1999, (Monod–Shalom,) Popa, Kida, Ioana)

Some **OE** fully remembers **GA**. E.g., $SL(3,\mathbb{Z}) \curvearrowright \mathbb{T}^3$.

Theorem (Oz-Popa 2007, 2008)

Some **vN** fully remembers **OE**, *i.e.*, \exists a (non-amenable) II₁-factor with a unique Cartan subalgebra up to unitary conjugacy.

Note: Popa (2000) proved $vN(\mathbb{Z}^2) \subset vN(\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ is a unique "Cartan subalgebra with the relative property (T)."

Open problems

Problem

- Is there **vN** which fully remembers **GA**?
- Is there vN which fully remembers GP?
- $\mathrm{vN}(\mathbb{F}_r) \ncong \mathrm{vN}(\mathbb{F}_s)$?

Note: Popa (2004) proved $vN([0,1]^{\Gamma} \rtimes \Gamma) \cong vN(Y \rtimes \Lambda)$ implies $(\Gamma \frown [0,1]^{\Gamma}) \cong (\Lambda \frown Y)$ provided that Λ has the property (T). Further results by Popa and Vaes.

From \mathbf{vN} to \mathbf{OE}

Definition

A 1-cocycle of a loc. cpt group G consists of a conti. unitary rep (π, \mathcal{H}) and a conti. map $b: G \to \mathcal{H}$ such that

$$\forall g, h \in G, \quad b(gh) = b(g) + \pi_g b(h).$$

(i.e., $\theta_g \xi = \pi_g \xi + b(g)$ defines an affine isometric action θ on \mathcal{H} . Schönberg: $\phi_t(g) = e^{-t ||b(g)||^2}$ is a semigroup of positive type functions.) The 1-cocycle *b* is proper if $||b(g)|| \to \infty$ as $g \to \infty$. A group *G* has the Haagerup property if it admits a proper 1-cocycle (π, \mathcal{H}, b) . The group *G* has the property (HH) if in addition π can be taken non-amenable (i.e., no Ad π -invariant state on $\mathbb{B}(\mathcal{H})$).

Observation

A group G with the property (HH) is not inner-amenable. In particular, (infinite amenable) $\times \Gamma$ does not have (HH).

Proof.

Let (π, \mathcal{H}, b) be a proper 1-cocycle, and suppose that \exists a singular Ad*G*-invariant state μ on $C_b(G)$. Define a u.c.p. map $\mathbb{B}(\mathcal{H}) \ni x \mapsto f_x \in C_b(G)$ by $f_x(g) = \|b(g)\|^{-2} \langle xb(g), b(g) \rangle$. Let $h \in G$ be fixed. Since $\lim_g \|b(g)\| = \infty$ and $\|b(h^{-1}gh) - \pi_h^{-1}b(g)\| = \|b(h^{-1}) + \pi_{h^{-1}g}b(h)\| \le 2\|b(h)\|$, one has $(\operatorname{Ad} h)(f_x) - f_{\pi_h \times \pi_h^*} \in C_0(G)$. It follows that the state $x \mapsto \mu(f_x)$ is Ad π -invariant.

Observation

A group G with the property (HH) is not inner-amenable. In particular, (infinite amenable) $\times \Gamma$ does not have (HH).

The converse...

Theorem (Haagerup 1978, De Cannière–H. 1985, Cowling 1983)

The connected simple Lie groups SO(n, 1) with $n \ge 2$ and SU(n, 1) have the property (HH). In particular, lattices of products of SO(n, 1) with $n \ge 2$ and SU(n, 1) have the property (HH). Moreover, they have the complete metric approximation property.

Proposition

Suppose Γ has (H) and CMAP, and $\exists \Delta \triangleleft \Gamma$ infinite normal amenable. Then \exists a mean on Δ which is both Δ - and $\operatorname{Ad} \Gamma$ -invariant. In particular, Γ is inner amenable and does not have (HH).

Counterexample by de Cornulier, Stalder and Valette: $(\bigoplus_{\mathbb{F}_2} \mathbb{Z}/2\mathbb{Z}) \rtimes \mathbb{F}_2$.

Proof.

Regard $\phi_t(g) = e^{-t ||b(g)||^2}$ as multipliers acting on $C^*_{\lambda}(\Gamma) \subset \mathbb{B}(\ell^2(\Gamma))$. Since $\phi_t \to 1$, one has $\|\phi_t \circ \operatorname{Ad}_{\lambda(g)} - \operatorname{Ad}_{\lambda(g)} \circ \phi_t\| \to 0$ for every $g \in \Gamma$. Since Δ is amenable, the trivial character $\tau_0 \colon C^*_{\lambda}(\Delta) \to \mathbb{C}$ is continuous. Thus, states $\omega_t = \tau_0 \circ \phi_t$ on $C^*_{\lambda}(\Delta)$ satisfy $\omega_t(\lambda(h)) \to 1$ for every $h \in \Delta$ and $\|\omega_t \circ \operatorname{Ad}_{\lambda(g)} - \omega_t\| \to 0$ for every $g \in \Gamma$. Thanks to the CMAP, \exists a finite approximation of ϕ_t and $\omega_t(x) = \langle x\eta_t, \eta_t \rangle$ with $\eta_t \in \ell^2(\Gamma)_{\text{pos.}}$. Then, $|\eta_t|^2 \in \operatorname{Prob}(\Gamma)$ is approximately Δ - and Ad Γ -invariant.

Narutaka OZAWA (Tokyo)

At Most One Cartan Subalgebra

The previous proposition says if Γ has the property (HH) and the CMAP, then it does not admit an infinite normal amenable subgroup.

Theorem A (Oz–Popa 2008)

Let Γ be a countable group with the property (HH) and the CMAP. Then, vN(Γ) has no Cartan subalgebra. Moreover, if $\Gamma \curvearrowright X$ is profinite action, then $L^{\infty}(X)$ is the unique Cartan subalgebra in vN($X \rtimes \Gamma$).

Definition

An ergodic action $\Gamma \curvearrowright X$ is *profinite* if $X = \varprojlim \Gamma/\Gamma_n$ for some finite index subgroups $\Gamma \ge \Gamma_1 \ge \Gamma_2 \ge \cdots$; or equivalently $\exists A_1 \subset A_2 \subset \cdots \subset L^{\infty}(X)$ finite-dim Γ -invariant vN subalgebras with dense union. $(A_n = \ell_{\infty}(\Gamma/\Gamma_n).)$

$$\operatorname{vN}(X \rtimes \Gamma) = \left(\bigcup \operatorname{vN}((\Gamma/\Gamma_n) \rtimes \Gamma)\right)'' \cong \left(\bigcup \mathbb{M}_{[\Gamma:\Gamma_n]}(\operatorname{vN}(\Gamma_n))\right)''.$$

The proof of Theorem **A** is in principle similar to the case of groups, but requires a notion of weak compactness which substitutes inner amenability, and spectral analysis of the quantum Markov semigroup associated with a closable derivation (Sauvageot, et al. and Peterson).

Theorem (Oz–Popa 2007)

Suppose that M has CMAP and A is an amenable vN subalgebra. Then, $A \subset M$ is weakly compact in the following sense: $\exists \eta_n \in L^2(A \otimes \overline{A})_+$ such that

•
$$\|\eta_n - (u \otimes \overline{u})\eta_n\|_2 \to 0$$
 for every $u \in \mathcal{U}(A)$;

•
$$\|\eta_n - \operatorname{Ad}(u \otimes \overline{u})\eta_n\|_2 \to 0$$
 for every $u \in \mathcal{N}(A)$;

•
$$\langle (x \otimes 1)\eta_n, \eta_n \rangle = \tau(x) = \langle \eta_n, (1 \otimes \overline{x})\eta_n \rangle$$
 for every $x \in M$.

From **OE** to **GA**

Orbit Equivalence Relation

$$\begin{array}{c} \mathsf{GA} & \mathsf{OE} & \mathsf{vN} \\ \Gamma \curvearrowright (X,\mu) & \longrightarrow & L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma) & \longrightarrow & \mathrm{vN}(X \rtimes \Gamma) \end{array}$$

Theorem (Singer, Dye, Krieger, Feldman–Moore 1977)

Let $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ be ess-free p.m.p. actions, and $\theta \colon (X, \mu) \to (Y, \nu)$

be an isomorphism. Then, the isomorphism

$$\theta^* \colon L^\infty(Y,\nu) \ni f \mapsto f \circ \theta \in L^\infty(X,\mu)$$

extends to a *-isomorphism

$$\pi : \operatorname{vN}(Y \rtimes \Lambda) \to \operatorname{vN}(X \rtimes \Gamma)$$

if and only if θ preserves the orbit equivalence relation:

$$\theta(\Gamma x) = \Lambda \theta(x)$$
 for μ -a.e. x.

From OE to Cocycle (after Zimmer)

Suppose $(\Gamma \curvearrowright X) \cong_{OE} (\Lambda \curvearrowright Y)$, i.e. $\exists \theta \colon X \xrightarrow{\sim} Y$ such that $\theta(\Gamma x) = \Lambda \theta(x)$ for μ -a.e. x.

Define $\alpha \colon \Gamma \times X \to \Lambda$ by

$$\theta(gx) = \alpha(g, x)\theta(x).$$

Then, α satisfies the cocycle identity:

 $\alpha(h,gx)\alpha(g,x) = \alpha(hg,x).$

A cocycle α is a *homomorphism* if ess. independent of the second variable. Cocycles α and β are *equivalent* if $\exists \phi \colon X \to \Lambda$ such that

$$\beta(g,x) = \phi(gx)\alpha(g,x)\phi(x)^{-1}.$$

Theorem (Zimmer)

 $(\Gamma \curvearrowright X) \cong (\Lambda \curvearrowright Y)$ if and only if α is equivalent to a homomorphism.

Theorem (Cocycle Superrigidity)

With some assumption on $\Gamma \curvearrowright X$ (and not on Λ), any cocycle $\alpha \colon \Gamma \times X \to \Lambda$

is equivalent to a homomorphism β .

Applied to the Zimmer cocycle, one obtains (virtual) isomorphism $(\Gamma \frown X) \cong (\Lambda \frown Y)$ via the homomorphism $\beta \colon \Gamma \to \Lambda$.

Examples

- Γ higher rank lattice + Λ simple Lie group (Zimmer)
- Γ Kazhdan (T) / product + $\Gamma \curvearrowright X$ Bernoulli (Popa)
- Γ Kazhdan (T) + $\Gamma \frown X$ profinite (Ioana)

New von Neumann Rigidity

By adapting loana's arguments, we obtain a cocycle superrigidity result for some profinite actions of property (τ) groups with residually-finite targets. There are groups with the property (HH) and the property (τ).

Corollary

Let $\Gamma_i = PSL(2, \mathbb{Z}[\sqrt{2}])$ and $p_1 < p_2 < \cdots$ be prime numbers. Let $\Gamma = \Gamma_1 \times \Gamma_2$ act on $X = \varprojlim PSL(2, (\mathbb{Z}/p_1 \cdots p_n\mathbb{Z})[\sqrt{2}])$ by the left-and-right translation. Let $\Lambda \curvearrowright Y$ be any (free ergodic prob.m.p.) action of a residually-finite group Λ such that $vN(X \rtimes \Gamma) \cong vN(Y \rtimes \Lambda)$. Then, $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are virtually isomorphic.

$$\begin{array}{c} \mathsf{GA} & \mathsf{OE} & \mathsf{VN} \\ \Gamma \curvearrowright (X,\mu) & \longrightarrow & L^{\infty}(X) \subset \mathrm{vN}(X \rtimes \Gamma) & \longrightarrow & \mathrm{vN}(X \rtimes \Gamma) \end{array}$$