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What do we classify?

Γ countable discrete group
(X , µ) standard probability measure space

Γ y (X , µ) (ergodic) measure preserving action

Γ y X is said to be ergodic if
A ⊂ X and ΓA = A ⇒ µ(A) = 0, 1.

We only consider either
• (X , µ) ∼= ([0, 1], Lebesgue) and

Γ y X is essentially-free i.e. µ({x : gx = x}) = 0 ∀g ∈ Γ \ {1};
or
• X = {pt}.

Narutaka OZAWA (Tokyo) Classification of II1 factors 06 November 2008 3 / 24



How do we classify?

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

GP

Γ

vN

vN(Γ)

To what extent do vN/OE
remember OE/GA/GP?
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Group measure space constructions

Γ y (X , µ) p.m.p.

σ : Γ y L∞(X , µ)
σg (f )(x) = f (g−1x)
∫

σg (f ) dµ =
∫

f dµ

The unitary element ug = σg ⊗ λg ∈ B(L2(X )⊗ ℓ2(Γ)) satisfies

ug f u∗
g = σg (f )

for all f ∈ L∞(X , µ), identified with f ⊗ 1 ∈ B(L2(X )⊗ ℓ2(Γ)).
We encode the information of Γ y X into a single vN algebra

vN(X ⋊ Γ) := {
finite
∑

g∈Γ

fg ug : fg ∈ L∞(X )}′′ ⊂ B(L2(X )⊗ ℓ2(Γ)).

vN(X ⋊ Γ) is same as the crossed product vN algebra L∞(X ) ⋊ Γ.
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Group measure space constructions

vN(X ⋊ Γ) is a vN algebra of type II1, with the trace τ given by

τ(
∑

g

fg ug ) = 〈
∑

g

fg ug (111⊗ δ1), (111⊗ δ1)〉 =

∫

f1 dµ.

(It follows τ(xy) = τ(yx).)

The subalgebra L∞(X ) ⊂ vN(X ⋊ Γ) has a special property.

Definition

A von Neumann subalgebra A ⊂ M is called a Cartan subalgebra
if it is a maximal abelian subalgebra such that the normalizer

N (A) = {u ∈ M : unitary uAu∗ = A}
generates M as a von Neumann algebra.
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Orbit Equivalence Relation

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

Theorem (Singer, Dye, Krieger, Feldman–Moore 1977)

Let Γ y X and Λ y Y be ess-free p.m.p. actions, and

θ : (X , µ)→ (Y , ν)

be an isomorphism. Then, the isomorphism

θ∗ : L∞(Y , ν) ∋ f 7→ f ◦ θ ∈ L∞(X , µ)

extends to a ∗-isomorphism

π : vN(Y ⋊ Λ)→ vN(X ⋊ Γ)

if and only if θ preserves the orbit equivalence relation:

θ(Γx) = Λθ(x) for µ-a.e. x.
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Lack of rigidity

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

Theorem (Hakeda–Tomiyama, Sakai 1967)

vN(X ⋊ Γ) is injective (amenable) ⇔ Γ is amenable.

E.g. Solvable groups and subexponential groups are amenable.
Non-abelian free groups Fr are not.

Theorem (Connes 1974, Ornstein–Weiss, C–Feldman–W 1981)

Amenable vN and OE are unique modulo center.
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Lack of rigidity

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

Theorem (Connes–Jones 1982)

OE vN is not one-to-one,
i.e. ∃ a II1-factor with non-conjugate Cartan subalgebras.

Example (Oz–Popa 2008)

vN

(

(lim←−(Z/knZ)2) ⋊ (Z2
⋊ SL(2, Z))

)

has at least two Cartan subalg L∞(lim←−(Z/knZ)2) and vN(Z2).
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Lack of rigidity

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

GP

Γ

vN

vN(Γ)

Theorem (Connes 1975)

∃ a II1-factor which is not ∗-isomorphic to its complex conjugate.

Theorem (Voiculescu 1994)

vN(Fr ) does not have a Cartan subalgebra.
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Rigidity

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

Theorem (Furman 1999, (Monod–Shalom,) Popa, Kida, Ioana)

Some OE fully remembers GA. E.g., SL(3, Z) y T
3.

Theorem (Oz–Popa 2007, 2008)

Some vN fully remembers OE, i.e., ∃ a (non-amenable) II1-factor with a
unique Cartan subalgebra up to unitary conjugacy.

Note: Popa (2000) proved vN(Z2) ⊂ vN(Z2
⋊ SL(2, Z)) is a unique

“Cartan subalgebra with the relative property (T).”
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Open problems

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

GP

Γ

vN

vN(Γ)

Problem

Is there vN which fully remembers GA?

Is there vN which fully remembers GP?

vN(Fr ) 6∼= vN(Fs) ?

Note: Popa (2004) proved vN([0, 1]Γ ⋊ Γ) ∼= vN(Y ⋊ Λ) implies
(Γ y [0, 1]Γ) ∼= (Λ y Y ) provided that Λ has the property (T).
Further results by Popa and Vaes.
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Commercial break

From vN to OE

NEW!
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Groups with the Haagerup property

Definition

A 1-cocycle of a loc. cpt group G consists of a conti. unitary rep (π,H)
and a conti. map b : G → H such that

∀g , h ∈ G , b(gh) = b(g) + πgb(h).

(i.e., θgξ = πgξ + b(g) defines an affine isometric action θ on H.

Schönberg: φt(g) = e−t‖b(g)‖2
is a semigroup of positive type functions.)

The 1-cocycle b is proper if ‖b(g)‖ → ∞ as g →∞.
A group G has the Haagerup property if it admits a proper 1-cocycle
(π,H, b). The group G has the property (HH) if in addition π can be
taken non-amenable (i.e., no Adπ-invariant state on B(H)).
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Groups with the property (HH)

Observation

A group G with the property (HH) is not inner-amenable.
In particular, (infinite amenable)× Γ does not have (HH).

Proof.

Let (π,H, b) be a proper 1-cocycle, and suppose that ∃ a singular
AdG -invariant state µ on Cb(G ). Define a u.c.p. map
B(H) ∋ x 7→ fx ∈ Cb(G ) by fx(g) = ‖b(g)‖−2〈xb(g), b(g)〉.
Let h ∈ G be fixed. Since limg ‖b(g)‖ =∞ and

‖b(h−1gh)− π−1
h b(g)‖ = ‖b(h−1) + πh−1gb(h)‖ ≤ 2‖b(h)‖,

one has (Adh)(fx)− fπhxπ∗

h
∈ C0(G ).

It follows that the state x 7→ µ(fx) is Adπ-invariant.
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Groups with the property (HH)

Observation

A group G with the property (HH) is not inner-amenable.
In particular, (infinite amenable)× Γ does not have (HH).

The converse...

Theorem (Haagerup 1978, De Cannière–H. 1985, Cowling 1983)

The connected simple Lie groups SO(n, 1) with n ≥ 2 and SU(n, 1) have
the property (HH). In particular, lattices of products of SO(n, 1) with
n ≥ 2 and SU(n, 1) have the property (HH).
Moreover, they have the complete metric approximation property.
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The Haagerup property and normal amenable subgroups

Proposition

Suppose Γ has (H) and CMAP, and ∃∆ ⊳ Γ infinite normal amenable.
Then ∃ a mean on ∆ which is both ∆- and Ad Γ-invariant.
In particular, Γ is inner amenable and does not have (HH).

Counterexample by de Cornulier, Stalder and Valette: (
⊕

F2
Z/2Z) ⋊ F2.

Proof.

Regard φt(g) = e−t‖b(g)‖2
as multipliers acting on C ∗

λ
(Γ) ⊂ B(ℓ2(Γ)).

Since φt → 1, one has ‖φt ◦Adλ(g) −Adλ(g) ◦ φt‖ → 0 for every g ∈ Γ.
Since ∆ is amenable, the trivial character τ0 : C ∗

λ
(∆)→ C is continuous.

Thus, states ωt = τ0 ◦ φt on C ∗
λ
(∆) satisfy ωt(λ(h))→ 1 for every h ∈ ∆

and ‖ωt ◦Adλ(g) − ωt‖ → 0 for every g ∈ Γ. Thanks to the CMAP,
∃ a finite approximation of φt and ωt(x) = 〈xηt , ηt〉 with ηt ∈ ℓ2(Γ)pos.
Then, |ηt |2 ∈ Prob(Γ) is approximately ∆- and Ad Γ-invariant.
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At Most One Cartan Subalgebra

The previous proposition says if Γ has the property (HH) and the CMAP,
then it does not admit an infinite normal amenable subgroup.

Theorem A (Oz–Popa 2008)

Let Γ be a countable group with the property (HH) and the CMAP. Then,
vN(Γ) has no Cartan subalgebra. Moreover, if Γ y X is profinite action,
then L∞(X ) is the unique Cartan subalgebra in vN(X ⋊ Γ).

Definition

An ergodic action Γ y X is profinite if X = lim←− Γ/Γn for some finite index
subgroups Γ ≥ Γ1 ≥ Γ2 ≥ · · · ; or equivalently ∃A1 ⊂ A2 ⊂ · · · ⊂ L∞(X )
finite-dim Γ-invariant vN subalgebras with dense union. (An = ℓ∞(Γ/Γn).)

vN(X ⋊ Γ) =
(

⋃

vN((Γ/Γn) ⋊ Γ)
)′′ ∼=

(

⋃

M[Γ:Γn](vN(Γn))
)′′

.
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Weak Compactness

The proof of Theorem A is in principle similar to the case of groups,
but requires a notion of weak compactness which substitutes inner
amenability, and spectral analysis of the quantum Markov semigroup
associated with a closable derivation (Sauvageot, et al. and Peterson).

Theorem (Oz–Popa 2007)

Suppose that M has CMAP and A is an amenable vN subalgebra.
Then, A ⊂ M is weakly compact in the following sense:
∃ ηn ∈ L2(A ⊗̄ Ā)+ such that

‖ηn − (u ⊗ ū)ηn‖2 → 0 for every u ∈ U(A);

‖ηn −Ad(u ⊗ ū)ηn‖2 → 0 for every u ∈ N (A);

〈(x ⊗ 1)ηn, ηn〉 = τ(x) = 〈ηn, (1⊗ x̄)ηn〉 for every x ∈ M.
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From OE to GA
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Orbit Equivalence Relation

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)

Theorem (Singer, Dye, Krieger, Feldman–Moore 1977)

Let Γ y X and Λ y Y be ess-free p.m.p. actions, and

θ : (X , µ)→ (Y , ν)

be an isomorphism. Then, the isomorphism

θ∗ : L∞(Y , ν) ∋ f 7→ f ◦ θ ∈ L∞(X , µ)

extends to a ∗-isomorphism

π : vN(Y ⋊ Λ)→ vN(X ⋊ Γ)

if and only if θ preserves the orbit equivalence relation:

θ(Γx) = Λθ(x) for µ-a.e. x.
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From OE to Cocycle (after Zimmer)

Suppose (Γ y X ) ∼=OE (Λ y Y ), i.e. ∃ θ : X
∼→ Y such that

θ(Γx) = Λθ(x) for µ-a.e. x .

Define α : Γ× X → Λ by

θ(gx) = α(g , x)θ(x).

Then, α satisfies the cocycle identity:

α(h, gx)α(g , x) = α(hg , x).

tx

t

gx

thgx
	

α(g , x)
9

α(h, gx)

α(hg , x)

A cocycle α is a homomorphism if ess. independent of the second variable.
Cocycles α and β are equivalent if ∃ φ : X → Λ such that

β(g , x) = φ(gx)α(g , x)φ(x)−1.

Theorem (Zimmer)

(Γ y X ) ∼= (Λ y Y ) if and only if α is equivalent to a homomorphism.
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From Cocycle to Group Action

Theorem (Cocycle Superrigidity)

With some assumption on Γ y X (and not on Λ), any cocycle

α : Γ× X → Λ

is equivalent to a homomorphism β.

Applied to the Zimmer cocycle, one obtains (virtual) isomorphism
(Γ y X ) ∼= (Λ y Y ) via the homomorphism β : Γ→ Λ.

Examples

Γ higher rank lattice + Λ simple Lie group (Zimmer)

Γ Kazhdan (T) / product + Γ y X Bernoulli (Popa)

Γ Kazhdan (T) + Γ y X profinite (Ioana)
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New von Neumann Rigidity

By adapting Ioana’s arguments, we obtain a cocycle superrigidity result for
some profinite actions of property (τ) groups with residually-finite targets.
There are groups with the property (HH) and the property (τ).

Corollary

Let Γi = PSL(2, Z[
√

2]) and p1 < p2 < · · · be prime numbers.
Let Γ = Γ1 × Γ2 act on X = lim←−PSL(2, (Z/p1 · · · pnZ)[

√
2]) by

the left-and-right translation.
Let Λ y Y be any (free ergodic prob.m.p.) action of a residually-finite
group Λ such that vN(X ⋊ Γ) ∼= vN(Y ⋊ Λ). Then, Γ y X and Λ y Y
are virtually isomorphic.

GA

Γ y (X , µ)

OE

L∞(X ) ⊂ vN(X ⋊ Γ)

vN

vN(X ⋊ Γ)
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