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Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryWhat do we lassify?� ountable disrete group(X ; �) standard probability measure spae�y (X ; �) measure preserving ationWe only onsider either� (X ; �) �= ([0; 1℄; Lebesgue) and�y X is essentially-free i.e. �(fx : sx = xg) = 0 8s 2 � n f1g;or� X = fptg.In passing, reall that �y X is ergodi ifA � X and �A = A ) �(A) = 0; 1.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryHow do we lassify?GA�y (X ; �) OEL1(X ) � vN(X o �) vNvN(X o �)GP� vNvN(�)To what extent do vN/OEremember OE/GA/GP?Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryGroup measure spae onstrutions�y (X ; �) p.m.p. � : �y L1(X ; �)�s(f )(x) = f (s�1x)R �s(f ) d� = R f d�We enode the information of �y X into a single �-algebraA(X o �) := f�niteXs2� fs s : fs 2 L1(X ; �)g;whih is generated by the group algebra C � and the funtionalgebra L1(X ) with the relationships f s�1 = �s(f ):Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryGroup measure spae onstrutionsHene, (Xs fs s)(Xt gt t) =Xs;t fs�s(gt) st.A(X o �) is a pre-Hilbertian algebra:kXs fs sk2 =sXs kfsk22:Denote H = A(X o �)k k2 �= L2(X ; �)
2 `2(�) and de�nevN(X o �) := WOT-l�A(X o �)� � B (H):vN(X o �) is often written as L1(X )o � and has a �nite trae � ,given by �(x) = hx 1; 1i. (It follows �(xy) = �(yx).)Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryGroup measure spae onstrutionsL1(X ) � vN(X o �)= vN�(u 
 �)(�); L1(X )
 C 1�� B (L2 (X ; �)
 `2(�))and L1(X ) is a Cartan subalgebra of vN(X o �).De�nitionA von Neumann subalgebra A � M is alled a Cartan subalgebraif it is a maximal abelian subalgebra suh that the normalizerN (A) = fu 2 M : unitary uAu� = Aggenerates M. Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryOrbit Equivalene RelationTheorem (Singer, Dye, Krieger, Feldman-Moore 1977)Let �y X and �y Y be ess-free p.m.p. ations, and� : (X ; �)! (Y ; �)be an isomorphism. Then, the isomorphism�� : L1(Y ; �) 3 f 7! f Æ � 2 L1(X ; �)extends to a �-isomorphism� : vN(Y o �)! vN(X o �)if and only if � preserves the orbit equivalene relation:�(�x) = ��(x) for �-a.e. x.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryLak of rigidityGA�y (X ; �) OEL1(X ) � vN(X o �) vNvN(X o �)Theorem (Connes 1974, Ornstein-Weiss, C-Feldman-W 1981)Amenable vN and OE are unique modulo enter.Theorem (Connes-Jones 1982)OE vN is not one-to-one,i.e. 9 a II1-fator with non-onjugate Cartan subalgebras.Theorem (Dykema 1993)vN(�1 � �2) �= vN(F2) for any in�nite amenable groups �1 and �2.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryLak of rigidityGA�y (X ; �) OEL1(X ) � vN(X o �) vNvN(X o �)GP� vNvN(�)Theorem (Connes 1975)9 a II1-fator whih is not �-isomorphi to its omplex onjugate.Theorem (Voiulesu 1994)vN(Fr ) does not have a Cartan subalgebra.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryRigidityGA�y (X ; �) OEL1(X ) � vN(X o �) vNvN(X o �)Theorem (Furman 1999, (Monod-Shalom,) Popa, Kida, Ioana)Some OE fully remembers GA.Theorem (Oz-Popa)Some vN fully remembers OE, i.e.9 a (non-amenable) II1-fator with a unique Cartan subalgebra,unique up to unitary onjugay.
Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Classi�ation ProblemProdution ProessBrief HistoryOpen problemsGA�y (X ; �) OEL1(X ) � vN(X o �) vNvN(X o �)GP� vNvN(�)ProblemIs there vN whih fully remembers GA?Is there vN whih fully remembers GP?vN(F2) 6�= vN(F3) ?
Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Coyle SuperrigidityOE to Coyle (after Zimmer)Suppose (�y X ) �=OE (�y Y ), i.e. 9 � : X �! Y suh that�(�x) = ��(x) for �-a.e. x .De�ne � : X � �! � by�(x) = �(x ; s)�(s�1x):Then, � satis�es the oyle identity:�(x ; s)�(s�1x ; t) = �(x ; st):Coyles � and � are equivalent if 9 � : X ! � suh that�(x ; s) = �(x)�(x ; s)�(s�1x)�1:Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Coyle SuperrigidityCoyle SuperrigidityOne an reover GA from OE if one hasTheorem (Coyle Superrigidity)With some assumption on �y X (and not on �), any oyle� : �� X ! �is equivalent to a oyle � whih is independent on x 2 X.Examples� higher rank lattie + � simple Lie group (Zimmer)� Kazhdan (T) / produt + �y X malleable (Popa)� Kazhdan (T) + �y X pro�nite (Ioana)Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Coyle SuperrigidityPopa's formulation�y X � : �y L1(X )� : X � �! � � : �! L1(X ; vN(�))�= L1(X ) �
 N�s(x) = �(x ; s)�(x ; s)�(s�1x ; t) = �(x ; st) �s �s(�t) = �stSine �s(f ) = s f s�1 in vN(X o �),� 3 s 7! �s s 2 vN(X o �) �
 Nis a group homomorphism whih extends to an inlusion�: vN(�) ,! vN(X o �) �
 N:Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN Coyle SuperrigidityPro�nite AtionDe�nitionAn ergodi ation �y X is pro�nite if X = lim � �=�n for some�nite index subgroups � � �1 � �2 � � � � ;or equivalently 9A1 � A2 � � � � � L1(X ) �nite dimensional�-invariant vN-subalgebras with dense union. (An = `1(�=�n).)vN(X o �) = �S vN((�=�n)o �)�00 �= �SM [�:�n ℄(vN(�n))�00:What's behind Ioana's Coyle Superrigidity�: vN(�) ,! vN(X o �) �
N = �S�vN((�=�n)o �) �
 N� �00Beause of the Kazhdan property (T), for a large n,�(vN(�)) is almost ontained in vN((�=�n)o�) �
N.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsComplete Metri Approximation PropertyDe�nitionA group � has the CMAP if 9 fn suh thatfn : �! C �nitely supported,fn ! 1 pointwise,kmfnkb � 1.The multiplier mf : vN(�)! vN(�) is de�ned by mf (s) = f (s) s.Besides amenable groups, the following groups have the CMAP.Theorem (De Canni�ere-Haagerup 1985, Cowling-Haagerup 1989)Free groups Fr have the CMAP.Disrete subgroups of SO(n; 1) and SU(n; 1) have the CMAP.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsGroups with CMAPTheorem A (Oz-Popa)Suppose � CMAP and 9 � / � in�nite normal amenable subgroup.Then, � has an invariant mean whih is Ad(�)-invariant.In partiular, � is inner-amenable.Proof (Assuming � is abelian).Reall vN(�) �= L1(b�) via the Fourier transform `2(�) �= L2(b�).Let �0 : C (b�)! C be the evaluation at the trivial harater 1.f : �! C �n. supp. ) �0 Æmf �= bf 2 L1(b�) and kbf k1 = kmf kb.Take (fn) as in De�nition. Then 8s kmfn �mfn Æ Adskb ! 0.Hene, if `2(�) 3 �n Fourier ! ��dfnj���1=2 2 L2(b�), then j�j2 2 `1(�) isapproximately �-invariant and approximately Ad(�)-invariant.
Theorem (de Cornulier-Stalder-Valette)The lamplighter group (Z=2Z) o Fr has the Haagerup property.

Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsGroups with CMAPTheorem A (Oz-Popa)Suppose � CMAP and 9 � / � in�nite normal amenable subgroup.Then, � has an invariant mean whih is Ad(�)-invariant.In partiular, � is inner-amenable.CorollaryThe lamplighter group(Z=2Z) o Fr = �LFr (Z=2Z)�o Frdoes not have the CMAP.Theorem (de Cornulier-Stalder-Valette)The lamplighter group (Z=2Z) o Fr has the Haagerup property.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain Resultsvon Neumann algebra with CMAPDe�nitionA �nite vN-algebra M has the CMAP if 9 �n suh that�n : M ! M �nite rank,�n ! idM pointwise-ultraweak,k�nkb � 1.Examples� has CMAP , vN(�) has CMAP (Haagerup)CMAP inherits to a vN-subalgebra (assuming �niteness).� has CMAP and �y X pro�nite ) vN(X o �) has CMAP.(Note: vN(X o �) an be non-(�).)Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsUpgrading Theorem AUse � : P 
 �P 3P ak 
 �bk 7! �(P akb�k) 2 C instead of �0.Theorem A+ (Oz-Popa)Suppose that M has CMAP and P is an amenable vN-subalgebra.Then, 9 �n 2 L2(P �
 �P)+ suh thatk�n � (u 
 �u)�nk2 ! 0 for every u 2 U(P);k�n �Ad(u 
 �u)�nk2 ! 0 for every u 2 N (P);h(x 
 1)�n; �ni = �(x) = h�n; (1
 �x)�ni for every x 2 M.We say P � M is weakly pro�nite if the above onlusion holds.If M = P o � and 9 P1 � P2 � � � � � P �nite dim. �-invariantvN-subalgebras with dense union, then P � M is weakly pro�nitewith �n = �1=2n 2 L2(Pn �
 �Pn)+.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsMain ResultsTheorem B (Oz-Popa)Suppose that M = Q o Fr and that P � M is weakly pro�nite.Then, either one of the following oursa nonzero orner of P is unitarily onjugated into Q;N (P)00 is amenable relative to Q.CorollaryP � vN(Fr ) di�use amenable ) N (P)00 amenable.Q CMAP ) Q �
 vN(Fr ) has no Cartan subalgebra.Fr y X pro�nite ) L1(X ) � vN(X o Fr ) is the uniqueCartan subalgebra.Narutaka OZAWA II1 fators with at most one Cartan subalgebra



Outline of the Classi�ation ProblemReovering GA from OEReovering OE from vN CMAPWeakly pro�nite ationMain ResultsProof in the ase of P � vN(F r ) di�use amenableLet a1; : : : ; ar 2M = vN(Fr ) be the standard unitary generators,and M1 = hb1; : : : ; br i be a opy of vN(Fr ).For t 2 R, de�ne a �-homomorphism �t : M ! M �M1 by�t(ak) = ak exp(t log bk):Observe that EM Æ �t is the Haagerup multiplier on M assoiatedwith Fr 3 s 7! jsjt 2 R, where t = �(exp(t log bk)) = sin(�t)�t .For a given �nite subset F � N (P), hoose t > 0 small enoughso that � = �t satis�es �(u) � u for all u 2 F.Sine �n 2 L2(P �
 �P) are \almost supported on diagonal,"((E?M Æ �)
 1)�n is a non-null sequene, almost Ad(F)-invariant.But L2(M �M1)	 L2(M) �=L L2(M) �
 L2(M) as an M-bimodule,this implies amenability of N (P)00.Narutaka OZAWA II1 fators with at most one Cartan subalgebra
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