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Property Γ and Popa’s conjecture

Throughout the talk, M denotes a factor of any type with separable predual.
A central sequence means (un)n in U(M) s.t. ∀x [un, x ] → 0 in SOT.
It is trivial if ∃γn ∈ C s.t. un − γn1 → 0 in SOT.

Definition/Theorem (Murray–von Neumann, Connes, Marrakchi)

M has property Γ if ∃ non-trivial central sequences.
M does not have property Γ ⇐⇒ M ′ ∩Mω = C1.

⇐⇒ M is full.

Conjecture (Popa 1986)

For a co-amenable II1 subfactor N ⊂ M,
N has Γ ⇒ M has Γ

Theorem (Popa 1983, Bedos 1990, Bisch 1990)

True when M = N ⋊ Γ with Γ amenable and Γ ↷ N free.
Moreover, M ′ ∩ Nω ̸= C1. Q! Not nec. true even for finite index subfactors.

Partial converse by Marrakchi (2018).
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Popa’s conjecture (contrapositive)

Popa’s Conjecture (Contrapositive)

For a co-amenable II1 subfactor N ⊂ M,
M is full ⇒ N is full

Theorem (Pimsner–Popa 1986)

True when N ⊂ M has finite index.
Moreover, N ′ ∩Mω = N ′ ∩M.

Proof.

By the basic construction, it suffices to show: N full ⇒ M full.
E : M → N satisfies the Pimsner–Popa inequality E ≥ γ−1idM .
Eω : Mω → Nω satisfies the same inequality.

⊂ ⊂

N ′ ∩Mω → N ′ ∩ Nω = C1
⇝ dimN ′ ∩Mω < ∞ and N ′ ∩Mω = N ′ ∩M.

Hence M is full.
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Solution to Popa’s conjecture for any type

Popa’s Conjecture (Contrapositive)

For a co-amenable II1 subfactor N ⊂ M,
M is full ⇒ N is full

Theorem (Bannon–Marrakchi–O 2019)

Let M be full and N ⊂ M be a co-amenable subalgebra with a f.n.c.e.
Then ∃p ∈ N ′ ∩M non-zero projection s.t.

p(N ′ ∩Mω)p = Cp.
In particular, p is atomic in N ′ ∩M and pN is a full factor.

Corollary

Let G ↷ M be a free action of a compact group G on a full factor M.
Then MG ⊂ M is co-amenable, (MG )′ ∩Mω = C1 (i.e., minimal), and
MG and M ⋊ G are full factors.

This generalizes Tomatsu’s result (2018).
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Fullness via bimodules

MHM an M-M bimodule, λH × ρH : M ⊗alg M
op → B(H)

MHM ⪯ MKM
def⇔ ∀F ⋐ M ∀ξ ∈ H ∀ε > 0 ∃η1, . . . , ηk ∈ K

s.t. ⟨xξy , ξ⟩ ≈ε
∑

i ⟨xηiy , ηi ⟩ ∀x , y ∈ F
⇔ C∗(λK(M), ρK(M

op)) → C∗(λH(M), ρH(M
op)) cts

Observation

M full ⇐⇒ ∀MHM ∼ ML2MM one has H ⊃ L2M

This is reminiscent of property (T): ∀MHM ⪰ ML2MM one has H ⊃ L2M.

Proof.

(⇒) P1̂ ∈ K(L2M) ⊂
Marrakchi 2018

C∗(λL2M , ρL2M) ∼= C∗(λH, ρH)

(⇐) If σ ∈ Inn(M) \ Inn(M), then ML2Mσ(M) ∼ ML2MM but ̸⊃.
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Co-amenability (Popa, Anantharaman-Delaroche)

Λ ≤ Γ co-amenable
def⇔ Γ/Λ admits Γ-invariant mean
⇔ · · ·
⇔ LΛ ≤ LΓ co-amenable

Recall M amenable if
(Connes 1976)

injective: ∃ cond. exp. M ⊂ B(L2M)
E→ M

semi-discrete: ML2MM ⪯ ML2M ⊗̄ L2MM

N ⊂ M is co-injective

co-semi-discrete

def⇔ ∃ cond. exp. M ′ ⊂ N ′ E→ M ′

⇔ ∃E : ⟨M, eN⟩ → M in the presence of a f.n.c.e.
def⇔ ML2MM ⪯ ML2M ⊗̄N L2MM (= L2⟨M, eN⟩)

Theorem (Popa, A-D, Pisier, Haagerup, BMO 2019)

co-injectivity ⇔ co-semi-discreteness
Moreover for ∀N ⊂ M, ∃ cond. exp. ⇔ NL

2NN ⪯ NL
2MN .

Recall Takesaki’s theorem (1972): ∃ normal c.e. ⇔ NL
2NN ⊂ NL

2MN .

Corollary

N ⊂ M co-amenable and N ⊂ P ⊂ M ⇒ P ⊂ M co-amenable

Q! N ⊂ P may not! (Monod–Popa 2003)
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Proof of Theorem in case of type II1 modulo a lemma

Theorem (BMO 2019)

Let M be full and N ⊂ M be a co-amenable subalgebra with a f.n.c.e.
Then ∃p ∈ N ′ ∩M non-zero projection s.t.

p(N ′ ∩Mω)p = Cp.

Let M be a full factor of type II1 and N ⊂ M be a co-amenable subalgebra.

ML2MM ⪯ ML2M ⊗̄N L2MM by co-amenability
If ⪰ also, then ⊂ by fullness.

⇝
intertwining bimodule

∃p ∈ N ′ ∩M s.t. pN ⊂ pMp finite index irr. subfactor

⇝
Pimsner–Popa

p(N ′ ∩Mω)p = Cp

Q! Unfortunately, it isn’t clear when ⪰ holds.

Put P := (N ′ ∩Mω)′ ∩M. Then N ⊂ P ⊂ M and N ′ ∩Mω = P ′ ∩Mω.

Lemma (BMO 2019)

For P ⊂ M s.t. P = (P ′ ∩Mω)′ ∩M, one has ML2M ⊗̄P L2MM ⪯ ML2MM .
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Proof of Lemma

For simplicity, assume M is a factor of type II1.

Lemma (BMO 2019)

For P ⊂ M s.t. P = (P ′ ∩Mω)′ ∩M, one has ML2M ⊗̄P L2MM ⪯ ML2MM .

Proof.

It suffices to show ∀F ⋐ M ∀ε > 0 ∃u1, . . . , uk ∈ U(M) s.t.

EP(x) ≈ε
1
k

∑
i uixu

∗
i for ∀x ∈ F

which amounts to
⟨x(1⊗P 1)y , 1⊗P 1⟩L2M⊗̄PL2M = τ(EP(x)y) ≈ε

1
k

∑
i ⟨xûiy , ûi ⟩L2M .

Claim. conv∥ · ∥2{uxu∗ : u ∈ U(P ′ ∩Mω)} ∋ z = (z(n))n with min. norm
Then z(n) is ω-convergent and z = limω z(n) = EP(x).

∵ Observe that since z ∈ Mω ∩ (P ′ ∩Mω)′, it is left to show z ∈ M.

If z(n) not convergent, one can arrange
z(nl )+z(n′l )

2 has smaller 2-norm.
Hence, z(n) is convergent and z = limω z(n) ∈ M.
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