Full factors and co-amenable inclusions

Narutaka Ozawa
RIMS, Kyoto University
UCLA Functional Analysis Seminar 2020.06.17

Based on the joint work: J. Bannon, A. Marrakchi, and N. Ozawa; Full factors and co-amenable inclusions. To appear in CMP.

Property 「 and Popa's conjecture

Throughout the talk, M denotes a factor of any type with separable predual. A central sequence means $\left(u_{n}\right)_{n}$ in $\mathcal{U}(M)$ s.t. $\forall x\left[u_{n}, x\right] \rightarrow 0$ in SOT. It is trivial if $\exists \gamma_{n} \in \mathbb{C}$ s.t. $u_{n}-\gamma_{n} 1 \rightarrow 0$ in SOT.

Definition/Theorem (Murray-von Neumann, Connes, Marrakchi)

M has property Γ if \exists non-trivial central sequences.
M does not have property $\Gamma \Longleftrightarrow M^{\prime} \cap M^{\omega}=\mathbb{C} 1$.
$\Longleftrightarrow M$ is full.

Conjecture (Popa 1986)

For a co-amenable II_{1} subfactor $N \subset M$,

$$
N \text { has } \Gamma \Rightarrow M \text { has } \Gamma
$$

Theorem (Popa 1983, Bedos 1990, Bisch 1990)

True when $M=N \rtimes \Gamma$ with Γ amenable and $\Gamma \curvearrowright N$ free.
Moreover, $M^{\prime} \cap N^{\omega} \neq \mathbb{C} 1$. ! Not nec. true even for finite index subfactors.
Partial converse by Marrakchi (2018).

Popa's conjecture (contrapositive)

Popa's Conjecture (Contrapositive)

For a co-amenable II_{1} subfactor $N \subset M$,

```
M \text { is full } \Rightarrow N \text { is full}
```


Theorem (Pimsner-Popa 1986)

True when $N \subset M$ has finite index.
Moreover, $N^{\prime} \cap M^{\omega}=N^{\prime} \cap M$.

Proof.

By the basic construction, it suffices to show: N full $\Rightarrow M$ full. $E: M \rightarrow N$ satisfies the Pimsner-Popa inequality $E \geq \gamma^{-1} \mathrm{id}_{M}$. $E^{\omega}: M^{\omega} \quad \rightarrow \quad N^{\omega}$ satisfies the same inequality.
$N^{\prime} \cap M^{\omega} \rightarrow N^{\prime} \cap N^{\omega}=\mathbb{C} 1$
$\rightsquigarrow \operatorname{dim} N^{\prime} \cap M^{\omega}<\infty$ and $N^{\prime} \cap M^{\omega}=N^{\prime} \cap M$.

Hence M is full.

Solution to Popa's conjecture for any type

Popa's Conjecture (Contrapositive)

For a co-amenable II_{1} subfactor $N \subset M$, M is full $\Rightarrow N$ is full

Theorem (Bannon-Marrakchi-O 2019)

Let M be full and $N \subset M$ be a co-amenable subalgebra with a f.n.c.e. Then $\exists p \in N^{\prime} \cap M$ non-zero projection s.t.

$$
p\left(N^{\prime} \cap M^{\omega}\right) p=\mathbb{C} p .
$$

In particular, p is atomic in $N^{\prime} \cap M$ and $p N$ is a full factor.

Corollary

Let $G \curvearrowright M$ be a free action of a compact group G on a full factor M. Then $M^{G} \subset M$ is co-amenable, $\left(M^{G}\right)^{\prime} \cap M^{\omega}=\mathbb{C} 1$ (i.e., minimal), and M^{G} and $M \rtimes G$ are full factors.

This generalizes Tomatsu's result (2018).

Fullness via bimodules

$M \mathcal{H}_{M}$ an $M-M$ bimodule, $\quad \lambda_{\mathcal{H}} \times \rho_{\mathcal{H}}: M \otimes_{\text {alg }} M^{\mathrm{op}} \rightarrow \mathbb{B}(\mathcal{H})$

$$
\begin{aligned}
M \mathcal{H}_{M} \preceq M \mathcal{K}_{M} \stackrel{\text { def }}{\Leftrightarrow} & \forall F \Subset M \forall \xi \in \mathcal{H} \forall \varepsilon>0 \exists \eta_{1}, \ldots, \eta_{k} \in \mathcal{K} \\
& \text { s.t. }\langle x \xi y, \xi\rangle \approx_{\varepsilon} \sum_{i}\left\langle x \eta_{i} y, \eta_{i}\right\rangle \forall x, y \in F \\
\Leftrightarrow & \mathrm{C}^{*}\left(\lambda_{\mathcal{K}}(M), \rho_{\mathcal{K}}\left(M^{\mathrm{op}}\right)\right) \rightarrow \mathrm{C}^{*}\left(\lambda_{\mathcal{H}}(M), \rho_{\mathcal{H}}\left(M^{\mathrm{op}}\right)\right) \mathrm{cts}
\end{aligned}
$$

Observation

M full $\Longleftrightarrow \forall_{M} \mathcal{H}_{M} \sim{ }_{M} L^{2} M_{M}$ one has $\mathcal{H} \supset L^{2} M$
This is reminiscent of property $(T): \forall_{M} \mathcal{H}_{M} \succeq M L^{2} M_{M}$ one has $\mathcal{H} \supset L^{2} M$.

Proof.

$(\Rightarrow) \quad P_{\hat{1}} \in \mathbb{K}\left(L^{2} M\right) \underset{\text { Marrakchi } 2018}{\subset} \mathrm{C}^{*}\left(\lambda_{L^{2} M}, \rho_{L^{2} M}\right) \cong \mathrm{C}^{*}\left(\lambda_{\mathcal{H}}, \rho_{\mathcal{H}}\right)$ (\Leftarrow) If $\sigma \in \overline{\operatorname{Inn}}(M) \backslash \operatorname{Inn}(M)$, then $M L^{2} M_{\sigma(M)} \sim M L^{2} M_{M}$ but $\not \supset$.

Co-amenability (Popa, Anantharaman-Delaroche)

$\Lambda \leq \Gamma$ co-amenable $\stackrel{\text { def }}{\Leftrightarrow} \Gamma / \Lambda$ admits Γ-invariant mean

$$
\begin{aligned}
& \Leftrightarrow \\
& \Leftrightarrow \\
& \Leftrightarrow
\end{aligned} \leq L \Gamma \text { co-amenable }
$$

Recall M amenable if \bullet injective: \exists cond. exp. $M \subset \mathbb{B}\left(L^{2} M\right) \xrightarrow{E} M$
(Connes 1976) - semi-discrete: $M L^{2} M_{M} \preceq M^{2} M \bar{\otimes} L^{2} M_{M}$
$N \subset M$ is co-injective $\stackrel{\text { def }}{\Leftrightarrow} \exists$ cond. exp. $M^{\prime} \subset N^{\prime} \xrightarrow{E} M^{\prime}$
$\Leftrightarrow \exists E:\left\langle M, e_{N}\right\rangle \rightarrow M$ in the presence of a f.n.c.e.
co-semi-discrete $\stackrel{\text { def }}{\Leftrightarrow}{ }_{M} L^{2} M_{M} \preceq M L^{2} M \bar{\otimes}_{N} L^{2} M_{M}\left(=L^{2}\left\langle M, e_{N}\right\rangle\right)$

Theorem (Popa, A-D, Pisier, Haagerup, BMO 2019)

$$
\text { co-injectivity } \Leftrightarrow \text { co-semi-discreteness }
$$

Moreover for $\forall N \subset M, \exists$ cond. exp. $\Leftrightarrow{ }_{N} L^{2} N_{N} \preceq{ }_{N} L^{2} M_{N}$.
Recall Takesaki's theorem (1972): \exists normal c.e. $\Leftrightarrow{ }_{N} L^{2} N_{N} \subset{ }_{N} L^{2} M_{N}$.

Corollary

$N \subset M$ co-amenable and $N \subset P \subset M \Rightarrow P \subset M$ co-amenable
! $N \subset P$ may not! (Monod-Popa 2003)

Proof of Theorem in case of type II_{1} modulo a lemma

Theorem (BMO 2019)

Let M be full and $N \subset M$ be a co-amenable subalgebra with a f.n.c.e. Then $\exists p \in N^{\prime} \cap M$ non-zero projection s.t.

$$
p\left(N^{\prime} \cap M^{\omega}\right) p=\mathbb{C} p
$$

Let M be a full factor of type II_{1} and $N \subset M$ be a co-amenable subalgebra.

$$
M L^{2} M_{M} \preceq M L^{2} M \bar{\otimes}_{N} L^{2} M_{M} \quad \text { by co-amenability }
$$

If \succeq also, then \subset by fullness.
$\underset{\text { intertwining bimodule }}{\rightsquigarrow} \exists p \in N^{\prime} \cap M$ s.t. $p N \subset p M p$ finite index irr. subfactor

$$
\underset{\text { Pimsner-Popa }}{\curvearrowleft} p\left(N^{\prime} \cap M^{\omega}\right) p=\mathbb{C} p
$$

! Unfortunately, it isn't clear when \succeq holds.
Put $P:=\left(N^{\prime} \cap M^{\omega}\right)^{\prime} \cap M$. Then $N \subset P \subset M$ and $N^{\prime} \cap M^{\omega}=P^{\prime} \cap M^{\omega}$.

Lemma (BMO 2019)

For $P \subset M$ s.t. $P=\left(P^{\prime} \cap M^{\omega}\right)^{\prime} \cap M$, one has $M L^{2} M \bar{\otimes}_{P} L^{2} M_{M} \preceq M L^{2} M_{M}$.

Proof of Lemma

For simplicity, assume M is a factor of type II_{1}.

Lemma (BMO 2019)

For $P \subset M$ s.t. $P=\left(P^{\prime} \cap M^{\omega}\right)^{\prime} \cap M$, one has ${ }_{M} L^{2} M \bar{\otimes}_{P} L^{2} M_{M} \preceq{ }_{M} L^{2} M_{M}$.

Proof.

It suffices to show $\forall F \Subset M \forall \varepsilon>0 \exists u_{1}, \ldots, u_{k} \in \mathcal{U}(M)$ s.t.

$$
E_{P}(x) \approx_{\varepsilon} \frac{1}{k} \sum_{i} u_{i} x u_{i}^{*} \text { for } \forall x \in F
$$

which amounts to

$$
\left\langle x\left(1 \otimes_{P} 1\right) y, 1 \otimes_{P} 1\right\rangle_{L^{2} M \bar{\otimes}_{P} L^{2} M}=\tau\left(E_{P}(x) y\right) \approx_{\varepsilon} \frac{1}{k} \sum_{i}\left\langle x \hat{u}_{i} y, \hat{u}_{i}\right\rangle_{L^{2} M} .
$$

Claim. $\overline{\text { conv }}\|\cdot\|_{2}\left\{u x u^{*}: u \in \mathcal{U}\left(P^{\prime} \cap M^{\omega}\right)\right\} \ni z=(z(n))_{n}$ with min. norm Then $z(n)$ is ω-convergent and $z=\lim _{\omega} z(n)=E_{P}(x)$.
\because Observe that since $z \in M^{\omega} \cap\left(P^{\prime} \cap M^{\omega}\right)^{\prime}$, it is left to show $z \in M$. If $z(n)$ not convergent, one can arrange $\frac{z\left(n_{l}\right)+z\left(n_{l}^{\prime}\right)}{2}$ has smaller 2-norm. Hence, $z(n)$ is convergent and $z=\lim _{\omega} z(n) \in M$.

