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The problem and the answer

Problem (..., popularized in Lubotzky's book 1994, ...)

Does Aut(F,) have Kazhdan's property (T)?

o Aut(F,) is the noncommutative analogue of GL,(Z).
F, — Z" abelianization ~~» Aut(F,) — Aut(Z") = GL,(Z).
@ Property (T) inherits to finite-index subgroups and quotient groups.
Any property (T) group that is abelian (amenable) is finite.
~» Any f.i. subgroup with property (T) has finite abelianization.
® GL,(Z) has property (T) iff n > 3. ~» Aut(F2) fails property (T).
o Aut(F3) also fails property (T) (McCool 1989).

Thm (KNO 17 for n =5, KKN 18 for n > 5, Nitsche '20 for n = 4)
Aut(F,) has Kazhdan's property (T) for n > 4.

@ This is proved by a computer (but it’s rigorous!).

@ Prior works by Netzer—Thom, Fujiwara—Kabaya, and Kaluba—Nowak.
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Some reaction

Thm (KNO '17 for n =5, KKN '18 for n > 5, Nitsche '20 for n = 4)

Aut(F,) has Kazhdan's property (T) for n > 4.

@ This is proved by a computer. s{?fe %\ﬁ %

@ Prior works by Netzer—Thom, Fujiwara—Kabaya, and Kaluba—Nowak.

“But they (= computers) are useless.
They can only give you answers.”
Pablo Picasso, 1968.

.

Revista Vea y Lea, January 1962
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Kazhdan's property (T)

Theorem (Kazhdan 1967)

Any simple Lie group G of real rank > 2 (e.g., G = SL,(R), n > 3) and
its lattice [' (e.g., [ = SL,(Z), n > 3) have property (T).
~> [ is finitely generated and has finite abelianization.

Definition (for a discrete group I')

[ has (T) L4 35 T finite 3k > 0 s.t. V(m, ) unitary rep'n and Vv € H

d(v,H") < k™' maxses [|v — v

< lisfg & VS CT generating 3x = k(I,S) >0s.t. ---
The optimal (I, S) is called the Kazhdan constant for (I, S).

@ Property (T) inherits to finite-index subgroups and quotient groups.
@ Z (or any infinite abelian group) does not have property (T).
\/2I<TI[ kK] € (2(Z) is asymp. Z-invariant, but (2(Z)* = {0}.
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An application of property (T): Expander graphs

Explicit construction of expanders (Margulis 1973)

= (S), X afinite set, and I ~ X transitively
~» Schreier graph: Vertices = X and Edges = {{x,sx} : x € X, s € S}
isa (S|, ;-;(FTSF) expander. Namely, for VA C X one has
0A] > R~ I5).
~» Random walk on X has mixing time O(Iog IX]).

Product Replacement Algorithm (Celler et al., Lubotzky—Pak 2001)
Aut™(F,) = (Ri LE) <index 2 Aut(F,), where F,, = (g1,...,g,) and

ijo i
(g1, 8n) = (81, 811, i85 Bit1s - - &n),
L?f,-: (81, +8n) > (81,1 8i-1,8 &ir&it1- - 8n)-
PRA is a practical algorithm to obtain “random” elements in a given finite
group A of rank < n via the PRA random walk

Aut™(Fo) ~ {(h1, ... k) €A A= (hy, ... b)Y},

v
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Noncommutative real algebraic geometry of property (T)

Hilbert's 17th Pb: f € R(x,...,xy), f > 0 on RY

(E. Artin 1927) = f =Y g% for some g1,...,8« € R(x1,...,xq).

R[] real group algebra with the involution (3, ast)* = >, art™ 1.
DR[N] = {32 f*fi} = {2, PxyX 'y - P € M{} positive cone
Here MF“ finitely supported positive semidefinite matrices.
e B(H)T :={A=A":(Av,v) >0 Vv € H} = L2B(H) psd operators.
o Y(m, H) unitary rep'n, w(>_; £*f;) = >, n(fi)*n(f;) > 0 in B(H).
@ C*[I'] the universal enveloping C*-algebra of R[I].
Laplacian: For I = (S) with S = S~ finite,
A:=33 s(l—5)(1—5)=|S] - .css € T°R[r].
[has (T) <= A >0 ¥Y(m,H) Sp(m(A)) C {0} U\, o0) /
= IS0 V(mH) (A2 AA)>0in B(H) 2
<= 3A >0 suchthat A?—)\A>0in C*[l] ,
w K([.8) = s C T
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Algebraic characterization of property (T)

Let I = (S) with S = S~ finite.
R[] real group algebra with the involution (3, at)* = >, art™ L.
T2R[M = {3, i} = {3, Peyx "ty - P EM]}
Here M? finitely supported positive semidefinite matrices.
A:=33  s(1—5)(1—s)=|S|—D.cq5 € T2R[M].
C*[[] the universal enveloping C*-algebra of R[I].

Then,
[ has (T) <= 3\ > 0 such that A? — A\A >0 in C*[[]

~ k([ S) > +/2)\/|S|
Theorem (O 2013)
[ has (T) <= 3 > 0 such that A2 — AA > 0 in R[l]

Stability (Netzer—Thom): It suffices if I\ > 0 3@ € L2R[l] such that
A2 — XA - O|1 < A
.~ A'is an order unit for /[[] := ker(R[['] — R).
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Semidefinite Programming (SDP)

[ has (T) <= 3\ > 0 such that A% — \A € Z2R[]
<= 3EETM3N>0st. A2=NA e (Y, Peyxly:PeMf}
By fixing a finite subset E € I', we arrive at the SDP:

minimize  —A
subject to AZ—-)A =) yeE Peyxty, PeMf

@ Due to computer capacity limitation, we almost always take
E := Ball(2) = {e} US U S? = supp A Usupp A2
~~ Size of SDP: dimension |E|? and constraints |[E~1E| = | Ball(4)|.
Certification Procedure:
Suppose (Ao, Po) is a hypothetical solution obtained by a computer.
Find Py =~ QT Q@ (with Q1 = 0) and calculate with guaranteed accuracy
ri= 1A% =2l = 35, (QTQ)xy(1 = x)* (1= y)l1 < o
~» [ has (T) with A =Xg —2r (in the case of E = Ball(2)).

@ Solving SDP is computationally hard, but certifying (T) is relatively easy.
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Previous implementation results

Netzer—Thom 2014, Fujiwara—Kabaya 2017, Kaluba—Nowak 2017
e =SL,(Z)and S={I £ Ej:i#j}.

n 314|516
|IS|=2n(n—1) | 12 | 24 | 40 | 60
AT, S) > 27 13(26| O
o I'=Aut®(F,) and S = {L;;, R}.
n 3[4]5] 6

1S[=4n(n—1) | 24 | 48| 80 | 120
AT, S) > ololo] o

@ A few more groups that are known to have property (T).

So, we needed (1) some speed-up of the algorithm and (2) an infinite
ladder to climb up the sequence n = 3,4,5,....
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Speed-up by Invariant SDP

Y ={oceAut(l):0(5)=S}
=~ &(n) x (Z/2)®" for I = Aut™t(F,).
When ¥ is large, we can exploit it and arrive at the X-invariant SDP:

minimize -\

subject to (A% —\A),= Py, Vt € E-'E/Y, Pec (ME)Jr
x,yeE
x"ly=t

@ For n =5, one has dim Mpg,(2) = 46412 and | Ball(4)| = 11154301,
while dim M’éa”(z) = 13232 with 36 blocks and | Ball(4)/X| = 7229.

Results (KNO 2017):

o Aut™(F4): ®® () Noresult.  ~ Probably no solution in Ball(2).

o Aut™(Fs5): I©OAGA! YESI with A > 1.2.
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Climbing up the sequence n =5,6,7,..

. (KKN 2018)
Mh= AUt+(Fn)v Sp = Ri? Li ’.7&./.}1 Ep:= {{’7./} L 7&./}

Want to show A, = EseSn 1 —s satisfies A2 — X\,A, > 0.
An = ZeEEn Ae'

=: Sq, + Adj, + Op,.

@ Sq, and Op,, are positive, but Adj, may not.
For n > m,

> oee(n)0(Bm) =m(m—1)-(n—2)!- A,

deg(n) o(Adj,,) = m(m—1)(m—2)-(n—3)!- Adj,

> oee(n) 7(0Py) = m(m —1)(m —2)(m—3) - (n—4)!- Op,
Trial and error on the computer has confirmed

Adjs +a Ops —cAs > OJ

with a =2 and ¢ = 0. 13 It follows that
0 < 60(n—3)!(Adj, +-
provided 2a/(n — 3) < 1.

)S ( )(A2—”_25A)

wAt+F5>2)\n5> 6
KA (Fa), S0) = /20 /15,1 = Ve fon




Simplifying SDP by duality (Nitsche 2020)

Recall A = |S] — > . cs5s € I[l] = ker(R[] — R).
If I does not have (T), (RA%2 — A)NX?/[] = 0, then by the HB theorem,
3 a positive linear functional ¢ on I['] with p(A) = 1 and p(A2) = 0.
To prove I has (T), it suffices to show —A € ¥2/[I] + RA? + ker .
~> If one finds many elements in ker ¢, it makes SDP easier.
(f,g) := ¢(f*g) makes I[I'] a (pre-)Hilbert space H on which I' acts unitary.
One has ||1 — x||? = ¢(2 — x + x*) = 2¢(1 — x) and ||A|]> = p(A2) = 0.
~~ This amounts to that the 1-cocycle x — 1 — x € H is harmonic.
Observation (Nitsche):
Assume that I has finite abelianization (~~ =0).
For any t € T with tSt=! = S, one has x(1 — t) € ker ¢ for Vx.

A(l—t)=(1—-t)A=0inH, which implies1 —t =0 in H.
Eg, t=LiL; R = (g g g+ g ") in Aut(F,).
Theorem (Nitsche 2020)
Aut™(F4) has property (T).
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