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Abstract: | will talk about a simple functional analysis proof of
E. Lebetzky and Y. Peres’s theorem (2016) that the simple random
walk on a Ramanujan graph exhibits cutoff phenomenon.

Based on my preprint arXiv:2009.00837.



Random walks 1/8

G a finite d-regular conn. non-bipartite graph

Xt (Q,P) — G simple random walk (SRW) on G
starting at X =xp € G

P[X*=x] =3, P(x,y)P[ X! =y]

P(x,y) =1/d if x ~ y, = 0 otherwise :

pt(x) = P[ X' = x] the distribution of X* . I’ L,

put — 7 the uniform distribution on G s isstorscon/

Example (of the kind I'm most interested in)
[ = SL(3,Z) res. finite grp with a sym. gen. subset S = {/ £ E;j : i # j}
G, =SL(3,Z/nZ); x ~ xs for x € G, and s € S.

X' = s1--- s with s; indep. uniformly distributed on S; u' = (us)**

{Gp}n is an expander family of |S|-regular transitive graphs, |G,| — co

I — G, is injective on the ball of radius clogn (injectivity radius)

When do the random walkers X! notice they live in a finite worId?J




Expander graphs 2/8

Throughout: G a finite d-regular conn. non-bipartite graph, d fixed

1 is a simple eigenvalue of P with the eigenvector 1.

PG = |Pliaytneell <1 the reduced spectral radius

We say a family { G} of graphs is an expander family if

it has uniform spectral gap: sup¢ pg < 1.

Expander property (Dodziuk '84 and Alon—Milman '85)

For every A C G, [0A] > (1 - pc)|Al(1 — {3)). g
~ If 1% of the population are infected by Disease X — p;{“;“;:fc;AFA-m

and they spread it, 99% will be infected shortly.

@ Random d-regular graphs are expanders (Barzdin—Kolmogorov '67).

@ Finite quotients of a property (T) group are expanders (Margulis '74).

@ Finite quotients of an amenable group are never expanders.

A sample theorem on expanders (by Gillman '98)
Xt SRW on G with the initial distribution X° ~ 7 (NB! NOT X° = xo).
Then for any f € (oG with m = ﬁzx f(x) and ||f]|s < 1, one has

P[220, F(XE) — m| > e] < 2exp(—1522T).




Cutoff phenomena 3/8
When do the random walkers X! notice they live in a finite worId?J

drv(n,¢) = max{[n(A) = ¢(A)| : AC G} = 3[ln — ¢Jlx € [0,1]
T () := min{t : drv(p,7) < a} total variation mixing time

Do the random walkers X* notice it simuItaneoust?J
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We say a family {G} of graphs exhibits cutoff (Aldous-Diaconis '86) if
Va,a € (0,1) lim  Te™@) _
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Conjecture (Peres): Transitive expander graphs should exhibit cutofF.J




Cutoff on Ramanujan graphs

Theorem (Lubetzky—Peres GAFA '16)
Any family of asymptotically Ramanujan graphs exhibits cutoff.

@ Alternative proofs by Hermon '17 and by Bordenave—Lacoin '18.

Q. How good can expanders be? J

2\/3—1 _. pd'J

A. The Alon—-Boppana bound for any graphs: |g‘|ﬂﬁ”;£ G >

® pg4 is the spectral radius of the SRW on the d—regular tree (Kesten '59).

@ First examples were discovered by Lubotzky, Phillips, and Sarnak '88.
@ Random d-regular graphs are asymptotically Ramanujan (Friedman '08).

We say a family {G} is asymptotically Ramanujan |f

Q. How fast can random walks mix? )

A. Entropic bound: Vo r'Gf?;f;E Iogl(G? = o 1 with hy = % log(d — 1). J

@ hy is the asymptotic entropy of the SRW on the d-regular tree.



Cutoff at the entropic time

Q. How good can expanders be? J

A. The Alon—Boppana bound for any family: ,g_?_'}ﬂi pe > =L = p,. J

@ py is the spectral radius of the SRW on the d-regular tree (Kesten '59).

Q. How fast can random walks mix? )

A. Entropic bound: Vo |I|Gn|1—|>2£ |0g|éo“) > L ~ with hg = ;2 log(d — 1).

® hy is the asymptotic entropy of the SRW on the d-regular tree.

utis concentrated on the ball of radius = %t which has cardinality
at most d(d— 1) *t=1 which is proportional to |G| att= T&nix(a).

Theorem (Lubetzky—Peres GAFA '16)

i i i lim T8 _ 1
Asymptotically Ramanujan graphs satisfy Vo 16| e TogTCT I




Entropic interpretation of cutoff
Shannon entropy:  H(v) := =), v(x)log v(x) H(®)
Entropy growth H(t) := H(u*) (1og|G] if 6] < ox) log |G
Asymptotic entropy: h:=lim; 1H(t) (= 0if |G| < )
SRW on the d-regular tree: h = hy = ?2 log(d — 1)

t

Shannon-McMillan-Breiman theorem (Derriennic, Kaimanovich-Vershik):
1|~ log puf(Xt) — H(t)| = 0 as.

Theorem (Entropic characterization of cutoff)

An expander family {G} exhibits cutoff iff ¥ > 0 Ve > 0,
one has H(Tmix( —¢)) > (1—9)log |G| for G large enough.

S Vr vt < Tm'x( ) H(Pv)—H(v) > 3(1 - pg)drv(v,7)> >c O

Corollary (Quantitative SMB implies cutoff)
Suppose Vd > 0 Ve > 0 dTp s.t. VG Vt > Ty

1 (Nsiog|6)({x € G : —log u*(x) < H(t) +0t})) >1—e.
Then {G} exhibits cutoff.




One page proof of the Lubetzky—Peres theorem 7/8

By Theorem and the entropic bound for Tm'x, it suffices
to show H(t) — H(t — 1) = hy for t < Tcr;n'x(l —€). J

H(t) = — X, 1t (x) log(u*(x)) = — E[log 1*(X*)
H(t)—H(t—1) = —Ellog ], fi := u'(X")/ut~1(X""1)

(log |G])/hq

<P(ut71)l/2 1/2 Z Py, ptl x)( Lt (y) )1/ IE:[fl/zw

p(x)
Hence B[ /2] < || P(ut™)V2||2 < pg + d(¢) for £ < TOX(1 - ¢).
Xt SRW on the d-regular tree that covers Xt: f ~ B[ | Xt~1, X!]
By concavity of the square root, E[ fl/z] <E[ ftl/2] < pd +96(G,¢).
= Jd-1 with prob 1/d (when the step X; is toward the origin)
“T11/(d—1) with prob (d — 1)/d
—E[logf:] ~ —Llog(d — 1) + 972 log(d — 1) = 952 log(d — 1) = hy
71/2 — — Ty
BI7) = 3V 1+ %52 A = BT =, manigl

o BIFP~E[F?] ~ finfe ~ —E[logf]~ hq. O




Speculation 8/8

Kaimanovich and Vershik's proof of the Shannon—-McMillan—Breiman
theorem for the SRW on a (infinite) transitive graph:

Pt(Xt X0 ) pt— k(Xt Xk)
log 1u*(X*) = log Pt1(Xt, Xl) -+ log pt—k—1(Xt, XkT1) +-
= log gt 4+ 4+ log S (gt—k) 4+
where )
Pt(Xt, XO) 1/d Poisson boundary
8t =

PH1(Xt, XT) — P[X1| Xt]
and S is the time (Bernoulli) shift operator

n (Q,P)=1Ix({1,...,d}, pa).
By the MCT, g+ — g and

Ve >03mst. goo ~: E[8x | X1,y Xm].
Hence the CLT implies —% log uf(X') — has.

(Naive) Conjecture: For any transitive expander graph G, one has
gt%E[gt|Xl7"'aXm]With m:o(|0g|G|) J




