（Non－normal）Conditional expectations in von Neumann algebras

Narutaka Ozawa（小澤登高）

of RIMS，Kyoto University
Masamichifest
2021 August 26
Abstract：One of the best known theorem of Masamichi is the Con－ ditional Expectation Theorem proved in［M．Takesaki，Conditional expectations in von Neumann algebras．JFA 1972］about normal conditional expectations．We prove the analogue for non－normal conditional expectations．Based on a joint work with J．Bannon and A．Marrakchi in CMP 2020.

Happy 88 (米壽) to Masamichi!

Conditional Expectation

Let $N \subset M$ be von Neumann algebras.
Perhaps, we do not want to study the inclusion like $\mathbb{C} 1 \otimes N \subset M \otimes \mathbb{B}\left(\ell_{2}\right)$.

Definition (Umegaki 1954 (\& Nakamura, Turumaru,...))

A conditional expectation of M onto N is a unital completely positive map $E: M \rightarrow N$ which satisfies $E(a x b)=a E(x) b$ for $x \in M$ and $a, b \in N$.

Tomiyama '59: If $N \subset M$ admits a normal c.e., then Type($N) \leq \operatorname{Type}(M)$. Dixmier '53, Umegaki '54: Any $N \subset M$ with a faithful normal tracial state τ admits a normal c.e. In fact, it is given by $E: L^{2}(M, \tau) \rightarrow L^{2}(N, \tau \mid N)$.
! This is no longer true for a general f.n. state. Takesaki's theorem gives an appropriate generalization.

Theorem (Takesaki 1972)

$N \subset M$ admits a normal c.e. $\Longleftrightarrow{ }_{N} L^{2}(N)_{N} \subset{ }_{N} L^{2}(M)_{N}$

Tomita-Takesaki Theory (1967, 1970~)

ϕ a f.n. state (weight) on N
$\rightsquigarrow S_{\phi}: x \xi_{\phi} \mapsto x^{*} \xi_{\phi}$ has polar decomposition $\bar{S}_{\phi}=J_{\phi} \Delta_{\phi}$ on $L^{2}(N, \phi)$ modular conjugation J_{ϕ} satisfies $J_{\phi} N J_{\phi}=N^{\prime}$
Δ_{ϕ} defines modular automorphism $\sigma_{t}^{\phi}(x)=\Delta^{i t} x \Delta^{-i t}$ on N characterized by KMS condition

$$
\begin{aligned}
& \phi \circ \sigma_{t}^{\phi}=\phi \\
& \forall x, y \exists F \in A(\mathbb{S}) F(i t)=\phi\left(\sigma_{t}^{\phi}(x) y\right) \text { and } F(1+i t)=\phi\left(y \sigma_{t}^{\phi}(x)\right)
\end{aligned}
$$

Here $A(\mathbb{S})$ analytic functions on $\mathbb{S}=\{\operatorname{Re} z<1\}$ that are continuous on $\overline{\mathbb{S}}$
This gives the "right action" of N on $L^{2}(N, \phi)$;

$$
\pi_{\phi}^{\mathrm{op}}: N^{\mathrm{op}} \ni x^{\mathrm{op}} \mapsto J_{\phi} x^{*} J_{\phi} \in \mathbb{B}\left(L^{2}(N, \phi)\right)
$$

which makes $L^{2}(N, \phi)$ an $N-N$ bimodule;

$$
x \xi y:=\pi_{\phi}(x) \pi_{\phi}^{\mathrm{op}}\left(y^{\mathrm{op}}\right) \xi\left(=x a \sigma_{-i / 2}^{\phi}(y) \xi_{\phi} \text { for } \xi=a \xi_{\phi}\right)
$$

In fact the $N-N$ bimodule $L^{2}(N, \phi)$ is indep. of ϕ (Araki, Connes '74).
So, we simply denote it by $L^{2}(N)$ and call it the standard form,

$$
\pi_{N}: N \odot N^{\mathrm{op}} \rightarrow \mathbb{B}\left(L^{2}(N)\right) .
$$

Conditional expectation theorem

If $N \subset M$ admits a normal c.e., then Tomita-Takesaki theories for (N, ϕ) and $(M, \phi \circ E)$ are compatible.

Theorem (Takesaki 1972)

$N \subset M$ admits a normal c.e. $\Longleftrightarrow{ }_{N} L^{2}(N)_{N} \subset{ }_{N} L^{2}(M)_{N}$
Easy direction (\Leftarrow) : For the orthogonal projection e onto $L^{2}(N)$, put

$$
E(x):=\text { exe } \in \mathbb{B}\left(L^{2}(N)_{N}\right)=N .
$$

Hard direction $(\Rightarrow):{ }_{N} L^{2}(N, \phi)_{N} \subset{ }_{N} L^{2}(M, \phi \circ E)_{N}$.
What about the non-normal case?
E.g., If $G \curvearrowright M$ and G is amenable, then \exists c.e. of M onto M^{G}.

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)
$N \subset M$ admits a c.e. $\quad \Longleftrightarrow{ }_{N} L^{2}(N)_{N} \preceq{ }_{N} L^{2}(M)_{N}$
The proof relies on complex interpolation theory (à la Pisier) and Tomita-Takesaki theory (à la Haagerup).

Weak containment and (relative) injectivity

A von Neumann algebra $N \subset \mathbb{B}\left(\ell_{2}\right)$ is injective if \exists c.e. of $\mathbb{B}\left(\ell_{2}\right)$ onto N. Hakeda-Tomiyama, Sakai '67: $L(\Gamma)$ is injective $\Longleftrightarrow \Gamma$ is amenable. Connes '76, Wassermann '77: N is injective $\Longleftrightarrow N$ is semi-discrete.
A von Neumann algebra N is semi-discrete if

$$
\mathbb{B}\left(L^{2}(N) \bar{\otimes} L^{2}(N)\right) \supset N \otimes N^{\circ \mathrm{p}} \xrightarrow{\pi_{N}} \mathbb{B}\left(L^{2}(N)\right)
$$

is continuous. In other words, $N^{2} L^{2}(N)_{N} \preceq{ }_{N} L^{2}(N) \bar{\otimes} L^{2}(N)_{N}$.
Note: $N^{\mathrm{OP}} \ni x^{\mathrm{OP}} \leftrightarrow \bar{x}^{*} \in \bar{N} \subset \mathbb{B}(\overline{\mathcal{H}})$.
${ }_{N} \mathcal{H}_{N}$ an $N-N$ bimodule, $\quad \pi_{\mathcal{H}}: N \odot N^{\mathrm{op}} \rightarrow \mathbb{B}(\mathcal{H}), \quad x \xi y:=\pi_{\mathcal{H}}\left(x \otimes y^{\circ \mathrm{p}}\right) \xi$
${ }_{N} \mathcal{H}_{N} \preceq{ }_{N} \mathcal{K}_{N} \stackrel{\text { def }}{\Leftrightarrow} \forall F \Subset N \forall \xi \in \mathcal{H} \forall \varepsilon>0 \exists \eta_{1}, \ldots, \eta_{k} \in \mathcal{K}$
s.t. $\langle x \xi y, \xi\rangle \approx_{\varepsilon} \sum_{i}\left\langle x \eta_{i} y, \eta_{i}\right\rangle \forall x, y \in F$
$\Leftrightarrow \mathrm{C}^{*}\left(\pi_{\mathcal{K}}\left(N \odot N^{\mathrm{op}}\right)\right) \rightarrow \mathrm{C}^{*}\left(\pi_{\mathcal{H}}\left(N \odot N^{\mathrm{op}}\right)\right)$ continuous

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

$N \subset M$ admits a c.e. $\Longleftrightarrow{ }_{N} L^{2}(N)_{N} \preceq{ }_{N} L^{2}(M)_{N}$
i.e., relative injectivity is equivalent to relative semi-discreteness

Corollaries

$\Lambda \leq \Gamma$ co-amenable $\stackrel{\text { def }}{\Leftrightarrow} \Gamma / \Lambda$ admits Γ-invariant mean

$$
\stackrel{\Leftrightarrow}{\Leftrightarrow} L \Lambda \underset{\leq}{\infty} L \Gamma \text { co-amenable }
$$

$N \subset M$ is co-injective $\stackrel{\text { def }}{\Leftrightarrow} M^{\prime} \subset N^{\prime}$ admits a c.e.
$\Leftrightarrow M \subset\left\langle M, e_{N}\right\rangle$ admits a c.e. (provided $\exists e_{N}$)
co-semi-discrete $\stackrel{\text { def }}{\Leftrightarrow} M L^{2} M_{M} \preceq M L^{2} M \bar{\otimes}_{N} L^{2} M_{M}\left(=L^{2}\left\langle M, e_{N}\right\rangle\right)$

Corollary (Popa 1986, Anantharaman-Delaroche 1995, BMO 2020)

co-injectivity \Leftrightarrow co-semi-discreteness

We say it co-amenable.

Corollary

$N \subset M$ co-amenable and $N \subset P \subset M \Rightarrow P \subset M$ co-amenable
! $N \subset P$ may not! (Monod-Popa 2003)

Operator space theory and the operator Hilbert space

Row $_{k}:=\mathbb{M}_{1, k}$ the row Hilbert operator space
$\left\|\sum_{i=1}^{k} x_{i} \otimes r_{i}\right\|_{\mathbb{B}\left(\ell_{2}\right) \otimes \operatorname{Row}_{k}}=\left\|\left[x_{1} \cdots x_{k}\right]\right\|_{\mathbb{M}_{1, k}\left(\mathbb{B}\left(\ell_{2}\right)\right)}=\left\|\sum_{i=1}^{k} x_{i} x_{i}^{*}\right\|^{1 / 2}$
$\mathrm{Col}_{k}:=\mathbb{M}_{k, 1}$ the column Hilbert operator space

$$
\left\|\sum_{i=1}^{k} x_{i} \otimes c_{i}\right\|_{\mathbb{B}\left(\ell_{2}\right) \otimes \operatorname{Col}_{k}}=\quad \cdots \quad=\left\|\sum_{i=1}^{k} x_{i}^{*} x_{i}\right\|^{1 / 2}
$$

Operator space duality (Effros-Ruan \& Blecher-Paulsen): $\mathrm{Col}_{k}=\overline{\text { Row }_{k}^{*}}$ OH_{k} the operator Hilbert space (Pisier 1993)

$$
\left\|\sum_{i=1}^{k} x_{i} \otimes e_{i}\right\|_{\mathbb{B}\left(\ell_{2}\right) \otimes \mathrm{OH}_{k}}=\left\|\sum_{i=1}^{k} x_{i} \otimes \bar{x}_{i}\right\|_{\mathbb{B}\left(\ell_{2} \otimes \overline{\ell_{2}}\right)}^{1 / 2}
$$

Unique o.s. such that $\mathrm{OH}_{k} \cong \ell_{2}^{k}$ (isometric) and $\mathrm{OH}_{k} \cong \overline{\mathrm{OH}_{k}^{*}}$ (c.i.) \rightsquigarrow complex interpolation formula $\mathrm{OH}_{k}=\left(\operatorname{Row}_{k}, \operatorname{Col}_{k}\right)_{1 / 2}$.
For $\left(x_{1}, \ldots, x_{k}\right) \in N^{k}$, define $\Phi: T \mapsto \sum_{i=1}^{k} x_{i} T x_{i}^{*}$.

$$
\|\Phi\|_{\mathbb{B}(N)}^{1 / 2}=\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{N \otimes \operatorname{Row}_{k}} \text { and }\|\Phi\|_{\mathbb{B}\left(L^{1}(N)\right)}^{1 / 2}=\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{N \otimes \operatorname{Col}_{k}}
$$

Theorem (Pisier 1995 and Haagerup)

$$
\left\|\pi_{N}\left(\sum x_{i} \otimes \bar{x}_{i}\right)\right\|_{\mathbb{B}\left(L^{2}(N)\right)}^{1 / 2}=\|\Phi\|_{\mathbb{B}\left(L^{2}(N)\right)}^{1 / 2}=\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{1 / 2}
$$

\because Factorization thm for vN algebra valued analytic functions and so on. $\mathbf{7 / 8}$

Theorem (BMO 2020 based on Pisier 1995 and Haagerup)

$N \subset M$ admits a c.e. $\Longleftrightarrow{ }_{N} L^{2}(N)_{N} \preceq{ }_{N} L^{2}(M)_{N}$
(\Leftarrow) : Extend the $*$-hom $C^{*}\left(\pi_{M}\left(N \odot N^{\circ p}\right)\right) \rightarrow C^{*}\left(\pi_{N}\left(N \odot N^{\circ \mathrm{op}}\right)\right)$ to a u.c.p. map $\Phi: C^{*}\left(\pi_{M}\left(M \odot N^{\circ p}\right)\right) \rightarrow \mathbb{B}\left(L^{2}(N)\right)$ and $E:=\left.\Phi\right|_{M}$.
(\Rightarrow) : Since $N \subset M$ admits a c.e., the corresp. contraction $\left(N \otimes \operatorname{Row}_{k}, N \otimes \mathrm{Col}_{k}\right)_{1 / 2} \subset\left(M \otimes \mathrm{Row}_{k}, M \otimes \mathrm{Col}_{k}\right)_{1 / 2}$ is isometric, i.e., for any $x_{i} \in N \subset M$,

$$
\left\|\pi_{N}\left(\sum x_{i} \otimes \bar{x}_{i}\right)\right\|_{\mathbb{B}\left(L^{2}(N)\right)}=\left\|\pi_{M}\left(\sum x_{i} \otimes \bar{x}_{i}\right)\right\|_{\mathbb{B}\left(L^{2}(M)\right)}
$$

By HB , for any unit vector ξ in $L^{2}(N)_{+}, \exists$ a state ψ_{ξ} on $\mathbb{B}\left(L^{2}(M)\right)$ s.t.

$$
\forall x \in N \quad\left\langle x \xi x^{*}, \xi\right\rangle \leq \psi_{\xi}\left(\pi_{M}(x \otimes \bar{x})\right)
$$

They must be equal by maximality of the self-polar form (Connes, Woronowicz '74). Moreover, $\left\langle x \xi y^{*}, \xi\right\rangle=\psi_{\xi}\left(\pi_{M}(x \otimes \bar{y})\right)$ by polarization. This implies ${ }_{N} L^{2}(N)_{N} \preceq{ }_{N} L^{2}(M)_{N}$.

