Is an irng singly generated as an ideal?
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Apologies
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The weight of a group

Throughout the talk, I is a countable discrete group.
We would like to estimate the weight (a.k.a. the killing number) of T,

w(l) := min{n : T is a normal closure of n elements }.

It is notoriously difficult to find an estimate from below, except for
w(l) > w(lap),
where [, = /[, T] is the abelianization of T.
e If Tgp =Zm @ (Z//qZ) @ o @ (Z/k/Z) with kq | ko | 00¢ | ki,
then w(l,p) = m+ 1.

E.g., (Fn)ap = 2" and w(F,) = n.
It is also clear if ['; # 1 for all i € N, then

w(lp x Ty x-+) = +o0.
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Scott—Wiegold conjecture

What can be said about the free product =11 %I, ?

If gi € ['; are finite order elements with ord(gy1) and ord(g>) coprime,
then one can kill both of g; and g» at once by killing g = g1g» € T.

Indeed, g1 = g, * = 1in T/{(g)). In particular
w(PSL2(Z)) = w((Z/2Z) « (Z/3Z)) = 1.

It seems there are no other tricks to reduce w(l1 * I'3).

Scott-Wiegold Conjecture (1976)
w((Z/pZ) * (Z/4Z) * (Z/rE)) > 1.

Confirmed by Howie (2002) by topological considerations on S, S? & S3.

Generalized Scott-Wiegold Conjecture

w(l1*Ta%---x[,)>n/2
for non-trivial (cyclic, finite, etc.) groups T’;.
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Wiegold problem

Recall that I is perfect if T4, = 1.

Wiegold “Conjecture” ('70s)

Every f.g. perfect group has weight 1. Equivalently,
w(lap) < w(lN) < w(lap) + 1.

Obviously, this is inconsistent with the previous conjecture that
w((Z/pZ) * - - - % (Z/psZ)) > 3.
It is also plausible that w(I'«[") > 1 for any torsion-free (perfect) group I'.
Still the Wiegold “conjecture” is verified for
o finite perfect groups (Wiegold),

@ compactly generated locally compact perfect groups with no infinite
discrete quotient (Monod-Eisenmann 2012).
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Proof of Wiegold's theorem for finite perfect groups

Observation: If I'; perfect and w(l';) =1, then w(l'; x ') = 1.

Indeed, suppose I'; = (g;)"/ and let g = (g1,8) € M1 x 2.
Then, Vx € Iy 3k such that (x, g&) € (g)*1.
It follows My x 1 = ['1,T1] x 1 C (g)"*}; and Iy x [, = (g)MxT2.

Theorem (Wiegold)
If I is a finite perfect group, then w(l') = 1.

By induction on |['|. If I is simple, we are done.

Otherwise, take a minimal normal subgroup 1 = N «aT.

By the induction hypothesis, w(I/N) =1 and 3g € T s.t. T = (g)" V.

If NC (g)' then T = (g)"; else NN (g)' =1and T = N x (g)'. O
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From a Group Problem to a R ng Problem

Let n > 3 be fixed and R be a rng (i.e., a possibly non-unital ring).
En(R) is the group generated by the elementary matrices

1
1 r
e,-j(r):< ) re Randi#j.

1
o ej(ey(s) = ejlr +3),
Steinberg relations: o [ej(r), ej(s)] = ei(rs) if i # k,
o [eji(r),en(s)) =1if i # [ andj # k.

For every f.g. idempotent rng R (i.e., R = span(R?)) and n > 3,
the group E,(R) is finitely generated and perfect.

idempotent rng = irng




Counterexample to Wiegold Conjecture?

Proposition (MOT)
For an irng R and n > 3, one has

%W(R) < w(En(R)) < [%W(R)—‘

Here w(R) is the weight of R:
w(R) := min{n : R is generated by n elements as an ideal }.
e w(R) > w(R/span(R?)).

Memo:
e If Risanirngs.t. R=((Z)), then R = span(RZR).

Proof of the first inequality.

Suppose E,(R) = ((A1,...,Ax), and let Z be the set of entries of A; — I.
Then, the canonical homomorphism E,(R) — E,(R/{Z))) kills all A;'s.

It follows R = ((Z)). O




iIRng Problem

iRng Problem
Find a f.g. irng R with w(R) > 9 (or just w(R) > 1).

Theorem (Kaplansky)

R commutative f.g. irng = R is unital and hence w(R) = 1.

Proof.

Suppose R = (x1,...,Xp), and let x = (x1,...,xp)".
Then, 3A € M,(R) such that Ax = x.
Let d = det(/ — A) (computed in the unitization of R).

—_—

By Cramer's formula, dx = (I — A) (I — A)x = 0.

|

This means dx; = 0 for all /, and 1 — d € R is a unit for R. O




Examples of irngs with weight 1

How about the free rng on n idempotents: (xq,..., Xy : x,-2 =x;) ?

Main Theorem (MOT)

If R={(x1,...,%n) and Ju; € ((x1,...,x) s.t. xi = ujx;, then w(R) = 1.
In particular, free rngs on finitely many idempotents have weight 1.

Proof

zp=1-(1—up)--(1—w3)1—-w)(l—u)€R.

Then, x1 = zox1 € (20)) and u1 € ((x1)) C {(z0)). It follows
z1:=1—(1—up) - (1 —w3)(l—w) € (20)

and xo = z1x2 € ((20)) and wp € ((x1,x2)) C ((20)). Now let
zp:=1—(1—up)- (1 —u3) € (z)

and repeat. []




More examples of irngs with weight 1

Theorem (MOT)

If R={(x1,...,%n) and Ju; € ((x1,...,x) s.t. xi = u;x;, then w(R) = 1.

R finite irng = w(R) = 1.

" Every finite irng is generated by idempotents as an ideal.

Theorem (A. Smoktunowicz and G. M. Bergman)

Let S be a f.g. idempotent semigroup. Then S is generated as an ideal
by a finite subset Xj such that every x € Xj satisfies x € SxSx.
In particular, w(kS) =1 for any unital commutative ring k.




Final remarks

Recall that the augmentation ideal of a group I is
Ir :=ker(e: ZI' — 7).
Denoting t; := g — 1 € Ir, one sees
teth=gh—g — h+1=tgh—ty — ty.
It follows that /i is a f.g. irng iff [ is a f.g. perfect group.
Moreover, ((tg : g € S)) = ker(Ir — Ir/¢sy) and hence w(/r) < w(T).

Theorem (MOT)

To generate Ir as a left ideal, it needs at least [b?)(r) + 1] elements.

One line proof.

| A\

() + 1 = dimp ZX(T, &) = dimp Homzr (Ir, £2T). 0




Conclusion

Wiegold Problem

Find a (f.g.) perfect group I' such that
1< w(l < +o0.

iRng Problem

Find a (f.g.) irng R such that
1 < w(R) < +o0.

Thank you for your attention!




“RNGS” (RINGS WITHOUT UNIT)

Nathan Jacobson, Basic Algebra I. W. H. Freeman & Co., 1974. p. 149.
217 “RNGS” (RINGS WITHOUT UNIT)

In most algebra books a ring is defined to be non-vacuous set R equipped with
two binary compositions + and - and an element 0 such that (R, +, 0) is an
abelian group, (R, -) is a semigroup (p. 28), and the distributive laws hold. In
other words, the existence of a unit for multiplication is not assumed. We shall
consider these systems briefly, and so as not to conflict with our old terminology
we adopt a different term: rngs® for the structures which are not assumed to
have units. We remark first that the elementary properties of rings which we
noted in section 2.1 (generalized associativity, generalized distributivity, rules
for multiples, etc.) carry over to rngs. The verification of this is left to the reader.
We shall now show that any rng can be imbedded in a ring. This fact permits the
reduction of most questions on rngs to the case of rings.

% Suggested pronunciation: riing. This term was suggested to me by Louis Rowen.
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