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Connes’s Embedding Conjecture

[A. Connes; Classification of injective factors. Ann. of Math. 104 (1976)]

“We now construct an approximate imbedding of N in R. Apparently
such an imbedding ought to exist for all II; factors because it does for
the regular representation of free groups.”

Taka OZAWA (RIMS) QC & TP 2013.04.01 2 /18



Overview of today's talk

Operator Algebras
Kirchberg's Conjecture

Connes Embedding
onjecture
&

Positivstellen:

Quantum
easurement
Theory

Tsirelson's
Problem

Connes Embedding Conjecture (1976)
VM M — R¥?

Quantum
Information
Theory

Noncommutative Kirchberg's Conjecture (1993)
Real Algebraig C*Fg @max C*Fy
Geometry = C*Fy ®@min C"Fy?
Tsirelson’s Problem (1993, 2006)
Qc = Qs7?

Semidefinite
Programming

Taka OZAWA (RIMS) QC & TP 2013.04.01 3/18



Quantum information theory

Quantum information theory

EPR Paradox

A. Einstein B. Podolsky N. Rosen
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Quantum measurement (von Neumann measurement)

In probability theory, a trial with m outcomes is described by a probability
space (X, p) and a partition X = |_|"; X;. When one obtains i as an
outcome, the ambient probability space changes to (X, (X)) 1| x.).

~~ P; = 1x. are orthogonal projections on L2(X, ) with -7 P; = 1.

In quantum theory, a PVM (Projection Valued Measure) with m outcomes

is an m-tuple (P;)™; of orth projections on a Hilbert space H such that

> M, Pi=1, and the outcome of a m'ment of a (pure) state ¢ € H, a

unit vector, is probabilistic: ({1, Pj1)); € Prob([1,..., m]). When one

obtains i as an outcome, the state ¢ collapses to HPwH Lpip.

Suppose Alice and Bob have d-PVMs respectively and a shared state:
(Pf‘),”;l k=1,...,d and (QJ')J’":1 I=1,...,d, and 9.

Each of them conducts a m'ment of ¢ by using one of PVMs they have.

What are the possibilities?
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EPR Paradox and Bell Test (CHSH Bell inequality)

Suppose Alice and Bob have d-PVMs respectively and a shared state:
(PF)m ., k=1,...,d and (QJ')J’":1 I=1,...,d, and v.
Each of them conducts a m’'ment of ¢ by using one of PVMs they have.
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EPR Paradox and Bell Test (CHSH Bell inequality)

Suppose Alice and Bob have d-PVMs respectively and a shared state:
(Pf‘)f”zl k=1,...,d and (QJ')J’":1 I=1,...,d, and v.

Each of them conducts a m’'ment of ¢ by using one of PVMs they have.

W/

In the classical setting,
IE“®(AB) + E*% (AB')
+ E¥B(A'B) —EYF(A'B)|

<2
i 118 1) because ,
== |IAB + AB' + AB — A'B/|
a = {Apple, Grape} <|B+B|+|B-B| <2 B = {Hard, Soft}
A= Px—Pg 7 B=Qu-Q
o/ = {Red, Green} ' = {Big, Small}
A= Pr - Pg B'=Qp - Qs

Does Nature conform
this inequality?
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EPR Paradox and Bell Test (CHSH Bell inequality)

Suppose Alice and Bob have d-PVMs respectively and a shared state:
(PF)m ., k=1,...,d and (QJ')J’":1 I=1,...,d, and v.
Each of them conducts a m’'ment of ¢ by using one of PVMs they have.

Suppose we know

Red - Small,
Apple - Soft,
Green — Hard

never occurs. Is
Apple — Small

\\ possible?
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Tsirelson’s Problem on quantum correlations

We consider the convex sets C C Qs C Q. C © C M,4(R>0) of the
classical and quantum correlation matrices for two separated systems:

(X,u) a (finite) prob space
= {[/ PikQJ{ d#]k/ : (Pk), 1 k=1,...,d, partitions of 1x, },
i (Q )Ly, 1 =1,...,d, partitions of 1x
Y € H® K a state

Q. = clf [(w, (Pk& Qj)w} i (P )y k=1....d PWMson 7, },
ij (Q )J 1,/—1 .,d, PVMs on K

‘H a Hilbert space, ¢ € H a state
kym
_ kAl _(P), 1 k=1,...,d, PVMsonH,
_{W’P"wah&!' (@), 1=1,. d PVMs on H, g
[Pk,Q]—OforaII i,jand k, I

v,d >0, 0,71
> ’V/,J indep of k, Z fy,’J |ndep of /
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Tsirelson’s Problem on quantum correlations

We consider the convex sets C C Qs C Q. C © C M,4(R>0) of the
classical and quantum correlation matrices for two separated systems:

(X,p) a (finite) prob space

- {[/ PikQJ{ dﬂ]k/ : (Pk), 1 k=1,...,d, partitions of 1x, },
i (Q )Ly, 1 =1,...,d, partitions of 1x

Y € H® K a state
0, = cl{[(zp,(P,-k ® Qj)@b)}k’, : (P,.)  k=1,...,d, PVMson H, },
ij (Q ) 1,/—1 .,d, PVMs on K

‘H a Hilbert space. 1) € H a state
0. = {[@ C +# Q, by CHSH Bell inequality (1969) ; 3
|A1B1 4+ A1Bo + A2By — AxBo| <2 '
for commuting variables —1 < A;, B; < 1.

©= {{'Yk‘ kI
IJJ Z ’yI’J |ndep of k, Z ’y”J indep of/
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Tsirelson’s Problem on quantum correlations

We consider the convex sets C C Qs C Q. C © C M,4(R>0) of the
classical and quantum correlation matrices for two separated systems:

(X 1) a (finite) nrah enace

C= o, # © by Cirel'son’s Quantum Bell inequality (1980) g
|A1By + A1 By + AyBy — AxBo| < 2v/2
for operators —1 < A;, B; < 1 with [A;, Bj] = 0.
QS = - H' }7

i (Q)My, /=1,...,d, PVYMson K

‘H a Hilbert space, ¢ € H a state
k\ym
_ K Al , (P), L, k=1,...,d, PVMson H,
_{W’P"QJME!' (@), 1=1,. L d, PVMson#, 1
[Pk, ]—Oforalll,_/andkl

0= {[’yk I] 7’aJ 20, ZI,J 71,1 }
iJj kI Z 71u indep of k, Z ’y,’J |ndep of /
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Tsirelson’'s Problem on quantum correlations

We consider the convex sets C C Qs C Q. C © C M,,4(R>q) of the

clas
Note that Q. becomes same as Qs if we restrict the Hilbert
¢ spaces ‘H appearing in the definition of Q. to fin-dim ones.

=7 - ij \Ly{J)J:l, I = 1,...,d4, paruauons or 1x

Y € H® K a state
QS = Cl{ [<¢5(Plk ® Qj)¢>i| k,l : (PI )I 1 k = 1 d’ PVMS on H' }7
ij (Q )2y I=1,....,d, PVMson K

‘H a Hilbert space, v € H a state
_ kAl . (Pk), 1 k=1,...,d, PVMs on H,
_{W’P" QJ'M@" (@), I=1,. d, PVMson H, 1"
[Pk,Q]:OforaII i,jand k, I

Tsirelson's Problem:
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Quantum correlation and C*-algebras

Quantum correlation matrices are related to the C*-algebra

03 % - % (7 (d-fold unital full free product),
which is isomorphic to the full group C*-algebra C*(I') of ' = Z*¢.
Denote by p}‘ the standard basis of projections in the k-th copy of /7.
Also p¥ := p¥® 1 and qj =1® pj’- in C*(I') ® C*(I'). Then, one has

Qc = {|0(pla)] 1 @ a state on C*(1) @max C*(N)}
and Y
Qs = {[¢(p,kqj)} k| @ astateon C*(IN) @min C*(N)}.

i

Theorem (Kirchberg 1993, Fritz and Junge et al. 2010, Oz. 2013)

The following conjectures are equivalent.
@ Tsirelson’s problem has an affirmative answer: Q. = Qg for all m, d.

@ Kirchberg's Conjecture: C*(I') ®max C*(I') = C*(I') ®min C*(I) holds.
@ Connes's Embedding Conjecture: M — R for for every II; factor M.
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Slightly interacting systems

We consider the quantum correlation of slightly interacting systems.
When Alice and Bob conduct m'ment of a state 1) at the same time, the

probability of the outcome (i, j) is given by (1, (P; ® Q;)1), where
Pe Q= (PQP + QPQ)/2. Thus we consider

dimH < 400, ¥ € H a state
k
_ k - Al _(P), 1 k=1,...,d, PVMs on H,
0. =aif[(w.(Pf e @], (g L o
||[P QJ]H <e for all i,j and k, |
Surprisingly, it makes no difference if we allow the Hilbert spaces H to
be infinite-dimensional, thanks to the fact C*(I" x I') is quasi-diagonal.

Theorem (Oz. 2013)

ma>0 Qs Qc
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C*-algebras

C*-algebras
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Group C*-algebras

Recall ' = Z*9, where m,d € {2,3,...,00} s.t. m+d > 4, and
CH(I' x T) = C*(I) @max C*(F) = C* ()1, (9])11),

Q. = {[gﬁ(p,"qjl)} k1 @ astate on C*(I x T}
iJ
The group I, or C*(I'), is RFD (Residually Finite Dimensional), i.e.
every unitary rep is weakly contained in the closure of the finite-dim rep’s.
(NB!  Residually finite doesn't imply RFD in general, e.g., SL(3,Z).)

Kirchberg's conjecture <= I x I is RFD.

In fact, for I D Iy —» A, the unitary rep of I x I on lo(MxT) is weakly
contained in the closure of the finite-dim rep’s iff the group vN algebra
vN(A) satisfies the Connes Embedding Conjecture: vN(A) — RY.
Note: If Ais sofic, then VN(A) — R“.

" Is the converse possibly true...???
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Quasi-diagonality

Recall I = Z*?, where m,d € {2,3,...,00} s.t. md > 4, and

Kirchberg's conjecture <= C*(I" x I') is RFD.

Theorem (Brown—0z. 2008)
The group C*-algebra C*(I' x ') is QD (quasi-diagonal).

A C*-algebra Ais QD if there are unital completely positive maps
0n: A — My(n)(C) such that [|0,(a)0n(b) — 04(ab)|| — 0 and
10,(a)|| — |lal| for all a,b € A.

Proof for an easier case [ = [Fy.

Every unitary rep 7 of Fy is homotopic inside m(F4)” to the trivial rep.

~~ Every unitary rep of Fy x F4 is homotopic to the trivial rep.
The theorem now follows from homotopy invariance of quasi-diagonality
(Voiculescu 1991). The proof does not provide explicit finite-dimensional
approximants. [
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Noncommutative real algebraic geometry

Noncommutative real algebraic geometry

Taka OZAWA (RIMS) 2013.04.01 13 /18



Positivstellensatze

A linear functional ¢: C[l] — C is called a state if ¢(f = f*) > 0 and
(1) = 1. It is tracial if it moreover satisfies 7(f * g) = 7(g * f).

Theorem (Hahn-Banach + GNS)

Let ' be a discrete group and f € C[[]. Then, @ < @ = @ < Q.
Q@ f>0inC*IN), i.e. w(f) > 0 for every unitary rep 7.
Q@ f+ele{d  gixg’: g €Cll} for every e > 0.
@ ¢(f) > 0 for every tracial state ¢ on C[I7].
Q f+ele{d gixg’: g €C[l}+ commutators, for every € > 0.

v

When I =Ty, C*(I) is RFD and it's enough to consider fin-dim 7's in @.

Theorem (Klep—Schweighofer/Juschenko—Popovych 2008)

Tsirelson's Problem has an affirmative answer iff @ for I = [Fy is equiv to
@ Tr(w(f)) > 0 for every finite-dimensional unitary rep m of Fy.
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Strict Positivstellensatze

Theorem (Hahn—-Banach + GNS)

Let ' be a discrete group and f € C[[]. Then, @ & @.
@ f>0in C*T), i.e. w(f) > 0 for every unitary rep .
Q@ f+ele{d  gixg’: g €Cll} for every e > 0.

Theorem (Riesz—Fejér, Schmiidgen, Bakonyi—Timotin 2007)

Let f € C[F4] be s.t. supp f C EE~! for a conn. subset 1 € E C Fy.
Then, TFAE.
o f>0in C*(Fy), i.e. w(f) > 0 for every finite (dim) unitary rep 7.
o fe{dgixg 5 €C[l suppgi C E}.

Deeper results from real algebraic geometry:
Scheiderer (2006): “+&1" isn't necessary for I = Z2, but it’s instable.
Scheiderer (2009): “+c1” is necessary for I O Z3.

How about Fy x Fy ?
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Operator System Tensor Product

Consider the operator system
S =span{pf i, k} =0T + -+ 0T C LT x0T
A map ¢ from S into B(H) is completely positive iff its restriction ¢y to
each copy of £ is c.p. and ¢1(1) = --- = Pq(1).
It follows that the operator system dual S9 of S is given by

d d
St ={(fR)i_, € @Eg’o : Z fi (i) indep of k} C @eg’;
k=1 i

k=1
and hence

Qs = {[(l)(p,k ® pjl)} k¢ astate on S @min S}
iy

= {¢ € (8! Omax SY) 11 : evaluated at {pf @ pjl}}
Here ®max denotes the maximal op sys tensor product (Farenick—Paulsen).
A simple calculation shows that ¢ can be realized by finite-dimensional
system if it is strictly positive (i.e. faithful on S ®min S).
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Semidefinite programming

The convex sets Qs C Q. are determined by infinitely many explicit
inequalities. Also, theory of operator systems can describe what is

0, = ({UJt[(w: (Pl @ Q)ud ], v € B 13 a state}).
n 1)

It is unknown whether the closure is necessary, but generic (open dense)
elements of Q, are realizable by finite-dimensional systems. While,

Q. = {[gb(p,kqjl)} Ky 1 ¢ a state on C[Zy x Zi]},
iJj

where ¢: C[A] — C is a state (positive type) iff [¢(xy 1)]xye£ is positive
semidefinite for every finite subset E C A.

Instability of ' x I probably means infinitely many inequality are necessary,
i.e. Qs and Q. are very likely not semi-algebraic, except for (m, d) # (2,2).

Also, T infinitely many Bell type inequalities.
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