Quasi-homomorphism Rigidity with Noncommutative Targets

OZAWA, Narutaka

RIMS at Kyoto University

Sendai Symposium, August 2011

Research partially supported by JSPS and HIM

Quasi-homomorphism Rigidity with Noncommutative Targets

OZAWA, Narutaka

RIMS at Kyoto University

Sendai Symposium, August 2011

Research partially supported by JSPS and HIM

Prologue: Zimmer's program

Prologue: Zimmer's program

A "large" group should not act on a "small" manifold

Problem

Let Γ be a lattice in $\mathrm{SL}(n,\mathbb{R})$.

Is every action of Γ on a (compact) mfld M of dimension < n-1 finite?

The known results are mostly for $M = S^1$ (a circle), or $M = \mathbb{R}$ (a line).

Theorem

- (Witte 1994) YES to the above Problem for finite index subgroups of $SL(n \ge 3, \mathbb{Z})$.
- (Ghys, Burger–Monod 1999) Let Γ be a lattice in $\mathrm{SL}(n \geq 3, \mathbb{R})$. Then, every action $\Gamma \curvearrowright S^1$ has at least one finite orbit, and every C^1 -action $\Gamma \curvearrowright S^1$ is finite.
- (Navas 2002) Let Γ be a property (T) group. Then, every $C^2\text{-action }\Gamma\curvearrowright S^1$ is finite.

Lattices of $SL(n \geq 3, \mathbb{R})$ have property (T) of Kazhdan.

Quasimorphisms

Let $\Gamma \curvearrowright S^1$. Each $g \in \Gamma$ has a lift $\tilde{g} \in \operatorname{Homeo}_{\mathbb{Z}}^+(\mathbb{R})$ with $\tilde{g}(0) \in [0,1)$. Then,

$$c(g,h)=(\tilde{gh})^{-1}\tilde{g}\tilde{h}\in\{0,1\}$$

defines the Euler class e in the bounded cohomology $H_b^2(\Gamma, \mathbb{Z})$.

Theorem (Ghys 1987)

The Euler class $e \in H^2_b(\Gamma, \mathbb{Z})$ determines $\Gamma \curvearrowright S^1$ up to semi-conjugacy.

Under certain assumption (e.g., $H^2(\Gamma, \mathbb{R}) = 0$), the Euler cocycle c is a coboundary of a not-necessarily bounded map $q \colon \Gamma \to \mathbb{R}$.

The map q is a quasimorphism:

$$\sup_{g,h\in\Gamma}|q(gh)-\big(q(g)+q(h)\big)|<+\infty.$$

 \leadsto Want to show every quasimorphism on $\Gamma \leq \mathrm{SL}(3,\mathbb{R})$ is bounded.

Property (T) and what it is good for

Property (T) and what it is good for

Kazhdan's property (T)

Definition/Theorem (Kazhdan '67, Delorme '77, Guichardet '72)

G has property (T) if it satisfies one of the following equiv conditions:

- ullet The trivial representation is isolated in the unitary dual of G.
- For every unitary representation $\pi \colon G \to \mathcal{U}(\mathcal{H})$, every cocycle $\mathfrak{b} \colon G \to \mathcal{H}$ is bounded. Here, a cocycle is a map \mathfrak{b} satisfying

$$\forall g, h \in G \quad b(gh) = b(g) + \pi(g)b(h).$$

Note: A cocycle b is bounded iff $\exists \xi \in \mathcal{H}$ s.t. $b(g) = \pi(g)\xi - \xi$.

Example

- Simple Lie groups of real rank ≥ 2 have property (T).
- A lattice Γ in G has property (T) iff G has property (T).
- $SL(n, \mathbb{Z})$ has property (T) iff $n \geq 3$.
- Many hyperbolic groups, e.g. lattices in Sp(n, 1), have property (T).

Some consequences of Kazhdan's property (T)

Theorem (Kazhdan)

For a discrete group Γ with property (T), the following hold true.

- Γ is finitely generated.
- Γ has finite abelianization.
- For each n, Γ has only finitely many n-dimensional unitary reps, up to unitary equivalence.

Sketchy proof of the last statement.

By property (T), \exists a finite subset $E \subset \Gamma$ and C > 0 such that

$$\forall b \text{ cocycle} \quad \sup_{g \in G} \|b(g)\| \leq C \max_{s \in E} \|b(s)\|.$$

For unitary reps $\pi, \sigma \colon \Gamma \to \mathcal{U}(n)$, consider the unitary rep $\pi \otimes \bar{\sigma}$ on HS_n defined by $X \mapsto \pi(g) X \sigma(g)^*$, and the cocycle $\theta(g) = \pi(g) \sigma(g)^* - I_n$.

 \rightsquigarrow If π and σ are close on E, then they are unitarily equivalent.

Property (TT) and what it is good for

Property (TT) and what it is good for

Beef up Kazhdan's property (T)

Definition (Kazhdan, Delorme, Guichardet, Burger-Monod,)

A group G has property (TT) if every quasi-cocycle on G is bounded. Here, a quasi-cocycle is a map $b \colon G \to \mathcal{H}$, together with $\pi \colon G \to \mathcal{U}(\mathcal{H})$, which satisfies

- \bullet π is a representation, and
- 6 satisfies the cocycle identity rough cocycle inequality

$$rac{b(gh)-b(g)+\pi(g)b(h).}{\sup_{g,h}\|b(gh)-\left(b(g)+\pi(g)b(h)
ight)\|<+\infty.}$$

A quasimorphism is a quasi-cocycle with the trivial representation.

Theorem (Buger-Monod 1999, 2002)

The group $\mathrm{SL}(n,\mathbb{R})$ and its lattices have property (TT) for $n\geq 3$.

Results of Burger and Monod

Theorem (Buger-Monod 1999, 2002)

The group $\mathrm{SL}(n,\mathbb{R})$ and its lattices have property (TT) for $n\geq 3$.

There are groups having property (T), but not (TT): Hyperbolic groups do not have property (TT), because they have proper quasi-cocycles. A cocycle $\delta \colon G \to \mathcal{H}$ is said to be proper if for any C>0, the subset $\{g \in G : \|\delta(g)\| \leq C\}$ is relatively compact.

Corollary

Every quasimorphism on a lattice Γ in $\mathrm{SL}(n \geq 3, \mathbb{R})$ is bounded.

Corollary (Ghys, Burger–Monod)

Every action $\Gamma \curvearrowright S^1$ has at least one finite orbit.

Property (TTT) and what it is good for

Property (TTT) and what it is good for

Beef up Kazhdan's property (T) further

Definition (Kazhdan, Delorme, Guichardet, Burger-Monod, Oz.)

A group G has property (TTT) if every wq-cocycle on G is bounded. Here, a wq-cocycle is a map $b: G \to \mathcal{H}$, together with $\pi: G \to \mathcal{U}(\mathcal{H})$, which satisfies

- π is a representation, and
- *b* satisfies the cocycle identity rough cocycle inequality

$$\frac{b(gh) - b(g) + \pi(g)b(h)}{\sup_{g,h} \|b(gh) - (b(g) + \pi(g)b(h))\| < +\infty.}$$

Theorem (Oz. 2009)

The group $SL(n, \mathbb{R})$ and its lattices have property (TTT) for $n \geq 3$.

Quasi-homomorphisms

Definition

A map $q: G \rightarrow H$ is called a *quasi-homomorphism* if

$$\{q(gh)^{-1}q(g)q(h):g,h\in G\}$$

is relatively compact in H.

If $b: H \to \mathcal{H}$ is a wq-cocycle and $q: G \to H$ is a quasi-homomorphism, then $b' = b \circ q$ is a wq-cocycle, because

$$b'(gh) = b(q(g)q(h) \square) \approx b'(g) + \pi'(g)b'(h).$$

 ξ Even if π is multiplicative, $\pi' = \pi \circ q$ is not.

Definition

A group H is called a-TTT-menable if there is a proper wq-cocycle on H.

Examples: Abelian groups, solvable groups, amenable groups, a-T-menable (a.k.a. Haagerup) groups, hyperbolic groups. . .

Quasi-homomorphisms

Definition

A map $q: G \rightarrow H$ is called a *quasi-homomorphism* if

$$\{q(gh)^{-1}q(g)q(h):g,h\in G\}$$

is relatively compact in H.

Definition

A group H is called a-TTT-menable if there is a proper wq-cocycle on H.

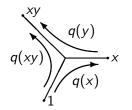
Examples: Abelian groups, solvable groups, amenable groups, a-T-menable (a.k.a. Haagerup) groups, hyperbolic groups. . .

Corollary

If G has property (TTT) and H is a-TTT-menable, then every quasi-homomorphism from G into H has relatively compact image.

Examples of quasi-homomorphisms. $q(gh)^{-1}q(g)q(h)$

- $\widetilde{\operatorname{Homeo}}(S^1) = \{ f \in \operatorname{Homeo}(\mathbb{R}) : f(x+1) = f(x) + 1 \}$ and $g : f \mapsto f(0) \in \mathbb{R}$. $\rightsquigarrow \operatorname{Application} \text{ to } \Gamma \curvearrowright S^1 \text{ (Burger-Monod, Ghys)}.$
- $q \colon \mathbb{F}_2 = \langle a, b \rangle \to \mathbb{Z}$, $q(w) = (\sharp \text{ of } ab \text{ occurs in } w) (\sharp \text{ of } b^{-1}a^{-1} \text{ occurs in } w)$



Generalizes to hyperbolic groups (Epstein–Fujiwara).

 \oint Defect usually occurs around the joining area: $q(g)^{-1}q(gh)q(h)^{-1}$. It's difficult to have quasi-homomorphisms with noncommutative targets.

ε -representations

Definition

For $\varepsilon>0$, a (unitary) ε -representation of a group G on a Hilbert space $\mathcal H$ is a map $\pi\colon G\to \mathcal U(\mathcal H)$ which satisfies

$$\sup_{g,h\in G}\|\pi(g)\pi(h)-\pi(gh)\|\leq \varepsilon.$$

Problem [S. M. Ulam, A collection of mathematical problems (1960).] Is an ε -representation π close to a unitary representation?

Kazhdan (1982): YES! for amenable groups, and NO! in general. \rightsquigarrow NO! for any group which contains \mathbb{F}_2 .

Example (From a quasimorphism to a quasi-character)

Let $q \colon \Gamma \to \mathbb{R}$ be a quasimorphism with $\sup |q(gh) - (q(g) + q(h))| \le 1$. Then $\pi(g) := \exp(i\varepsilon q(g))$ is an ε -character. For ε sufficiently small, π is close to a character iff q is a bounded distance from a homomorphism.

arepsilon-representations and property (TTT)

Definition

For $\varepsilon > 0$, a (unitary) ε -representation of a group G on a Hilbert space $\mathcal H$ is a map $\pi \colon G \to \mathcal U(\mathcal H)$ which satisfies

$$\sup_{g,h\in G}\|\pi(g)\pi(h)-\pi(gh)\|\leq \varepsilon.$$

An example of ε -representations (Rolli 2009)

Let $\mathbb{F}_2 = \langle a, b \rangle$ and $B(\varepsilon/3) = \{u \in \mathcal{U}(\mathcal{H}) : \|u - 1\| \le \varepsilon/3\}.$

Fix symmetric functions $\sigma_a, \sigma_b \colon \mathbb{Z} \to B(\varepsilon/3)$ and set

$$\pi(a^{m_1}b^{n_1}\cdots a^{m_k}b^{n_k})=\sigma_a(m_1)\sigma_b(n_1)\cdots\sigma_a(m_k)\sigma_b(n_k).$$

Theorem (B.O.T.; Dimension dependent Ulam stability)

Let Γ be a property (TTT) group. Then, any ε -representation $\pi \colon \Gamma \to \mathcal{U}(d)$ with $\varepsilon < \kappa(d)$ is close to a unitary representation.

Ulam stability

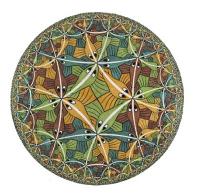
Theorem (Kazhdan and Burger-Oz.-Thom)

- If Γ is amenable, then every ε -repn is 2ε -close to a unitary repn.
- If $\mathbb{F}_2 \hookrightarrow \Gamma$, then for each $\varepsilon > 0$, $\exists \varepsilon$ -repn which is not close to any unitary repn.
- If Γ has property (TT), then every 1-dim ε -repn is $\delta(\varepsilon)$ -close to a unitary repn.
- If Γ has property (TTT), then every d-dim ε -repn is $\delta_d(\varepsilon)$ -close to a unitary repn.
- If $\Gamma = \mathrm{SL}(n \geq 3, \mathbb{Z})$, then every finite-dim ε -repn is $\delta(\varepsilon)$ -close to a unitary repn. The same thing for certain $\mathrm{SL}(2, A)$.

Are two ε -close unitary repns of Γ necessarily unitarily equivalent? YES if Γ amenable (or unitarizable), and NO if $\mathbb{F}_2 \hookrightarrow \Gamma$.

Proof of Property (TTT) for $\mathrm{SL}(n,\mathbb{K})$ and their lattices

Proof of Property (TTT)



Proof of Property (TTT) for $SL(n, \mathbb{K})$ and their lattices

Proof of Property (TTT)

Relative property (TTT)

Definition

A subgroup $A \leq G$ has relative property (TTT) if every wq-cocycle on G is bounded on A.

Theorem

Let A be abelian and $G = G_0 \ltimes A$. Then, for $A \leq G$, relative property (TTT) \iff relative property (T)

The proof is à la Burger, but goes with positive definite kernels

$$\theta_t(g,h) = \exp(-t\|b(g) - b(h)\|^2)$$

instead of positive type functions.

Bounded generation and property (TTT) for $\mathrm{SL}(n,\mathbb{K})$

Theorem

Let A be abelian and $G = G_0 \ltimes A$. Then, for $A \leq G$, relative property (TTT) \iff relative property (T)

Corollary

For $n \geq 3$, the group $\mathrm{SL}(n, \mathbb{K})$ has property (TTT).

Proof for n = 3.

By relative property (T) for $\mathbb{K}^2 \leq \mathrm{SL}(2,\mathbb{K}) \ltimes \mathbb{K}^2$, every wq-cocycle $\mathfrak b$ on $\mathrm{SL}(3,\mathbb{K})$ is bounded on $\begin{pmatrix} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$, and on any other elementary matrices. Since every element of $\mathrm{SL}(3,\mathbb{K})$ is a product of at most 10 elementary matrices, the wq-cocycle $\mathfrak b$ is bounded on $\mathrm{SL}(3,\mathbb{K})$.

$$\sup_{g,h} \|b(gh) - (b(g) + \pi(g)b(h))\| < +\infty.$$

Lattices

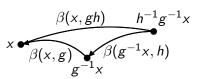
Let G be a property (TTT) group and $\Gamma \leq G$ be a *cocompact* lattice. Let $X = G/\Gamma$ and choose a section $\sigma \colon X \to G$.

Define the Borel cocycle
$$\beta: X \times G \to \Gamma$$
 by

$$\beta(x,g) = \sigma(x)^{-1}g\sigma(g^{-1}x).$$

It satisfies the cocycle identity:

$$\beta(x,gh) = \beta(x,g)\beta(g^{-1}x,h).$$



To prove that Γ has property (TTT), let a wq-cocycle $\theta\colon \Gamma\to \mathcal{H}$ be given, and $\tilde{\theta}\colon G\to L^2(X,\mathcal{H})$ be the induced wq-cocycle on G defined by

$$\tilde{b}(g)(x) = b(\beta(x,g)),$$

together with $\tilde{\pi}\colon G \to \mathcal{U}(L^2(X,\mathcal{H})), \quad (\tilde{\pi}(g)\xi)(x) = \pi(\beta(x,g))\xi(g^{-1}x).$

Problem

If we know \tilde{b} is bounded on G, does it follow b is bounded on Γ ?

Lattices and semi-length functions

Problem

If we know \tilde{b} is bounded on G, does it follow b is bounded on Γ ?

Burger-Monod: The answer is YES! if θ is a quasi-cocycle, because the L^2 -induction $H^2_{\rm b}(\Gamma,\mathcal{H})\to H^2_{\rm cb}(G,L^2(X,\mathcal{H}))$ is injective.

In general,

$$\mathsf{let}\ C := \mathsf{sup}\, \| \mathit{b}(\mathit{gh}) - \big(\mathit{b}(\mathit{g}) + \pi(\mathit{g})\mathit{b}(\mathit{h})\big) \| \ \mathsf{and}\ \ell(\mathit{g}) := \| \mathit{b}(\mathit{g}) \| + C.$$

Then, ℓ is a semi-length function: $\ell(gh) \leq \ell(g) + \ell(h)$.

The induced semi-length function $L: G \to \mathbb{R}_{>0}$ is given by

$$L(g) = \int_X \ell(\beta(x,g)) dx.$$

The above problem generalizes to

Problem

If we know L is bounded on G, does it follow ℓ is bounded on Γ ?

Lattices and semi-length functions

Problem

If we know \tilde{b} is bounded on G, does it follow b is bounded on Γ ?

Burger–Monod: The answer is YES! if θ is a quasi-cocycle, because the L^2 -induction $\mathrm{H}^2_\mathrm{b}(\Gamma,\mathcal{H}) \to \mathrm{H}^2_\mathrm{cb}(\mathcal{G},L^2(X,\mathcal{H}))$ is injective.

In general,

$$\mathsf{let}\ C := \mathsf{sup}\, \| \mathit{b}(\mathit{gh}) - \big(\mathit{b}(\mathit{g}) + \pi(\mathit{g})\mathit{b}(\mathit{h})\big) \| \ \mathsf{and}\ \ell(\mathit{g}) := \| \mathit{b}(\mathit{g}) \| + C.$$

Then, ℓ is a semi-length function: $\ell(gh) \leq \ell(g) + \ell(h)$.

The induced semi-length function $L\colon G\to \mathbb{R}_{>0}$ is given by

$$L(g) = \int_X \ell(\beta(x,g)) dx.$$

The above problem generalizes to

Problem

If we know L is bounded on G, does it follow ℓ is bounded on Γ ?

Semi-length functions and nonlinear cohomology?

Theorem

Let $G \curvearrowright X$ be a probability measure preserving action, and $\ell \colon X \times G \to \mathbb{R}_{\geq 0}$ be a groupoid semi-length function:

$$\ell(x,gh) \leq \ell(x,g) + \ell(g^{-1}x,h)$$
 a.e.

If ess-sup
$$\int_X \ell(x,g) \, dx < +\infty$$
, then $\exists h \in L^1(X)$ such that
$$\ell(x,g) \leq h(x) + h(g^{-1}x) \text{ a.e.}$$

This theorem acts for the injectivity of $\mathrm{H}^2_\mathrm{b}(\Gamma,\mathcal{H}) \to \mathrm{H}^2_\mathrm{cb}(G,L^2(X,\mathcal{H})).$

Corollary

Let $\ell \colon \Gamma \to \mathbb{R}_{\geq 0}$ be a semi-length function and $L \colon G \to \mathbb{R}_{\geq 0}$ be the induced semi-length function. If L is bounded, then so is ℓ . In particular, property (TTT) passes to a cocompact lattice.

Semi-length functions and nonlinear cohomology?

Theorem

Let $G \curvearrowright X$ be a probability measure preserving action, and $\ell \colon X \times G \to \mathbb{R}_{\geq 0}$ be a groupoid semi-length function:

$$\ell(x,gh) \leq \ell(x,g) + \ell(g^{-1}x,h)$$
 a.e.

If ess-sup
$$\int_X \ell(x,g) \, dx < +\infty$$
, then $\exists h \in L^1(X)$ such that
$$\ell(x,g) \leq h(x) + h(g^{-1}x) \text{ a.e.}$$

This theorem acts for the injectivity of $\mathrm{H}^2_\mathrm{b}(\Gamma,\mathcal{H}) \to \mathrm{H}^2_\mathrm{cb}(G,L^2(X,\mathcal{H})).$

Corollary

Let $\ell \colon \Gamma \to \mathbb{R}_{\geq 0}$ be a semi-length function and $L \colon G \to \mathbb{R}_{\geq 0}$ be the induced semi-length function. If L is bounded, then so is ℓ . In particular, property (TTT) passes to a cocompact lattice.