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Fejér’s theorem

T = {z ∈ C : |z | = 1}.

Let f ∈ C (T) and f ∼
∞∑

k=−∞
ckzk be the Fourier expansion.

Does the partial sum sm :=
m∑

k=−m

ckzk converges to f ?

Not necessarily! But,

Theorem (Fejér)

The Cesáro mean
1

n

n∑
m=1

sm converges to f uniformly.

Note: For ϕn(k) = (1− |k|
n

) ∨ 0, one has
1

n

n∑
m=1

sm =
∞∑

k=−∞
ϕn(k)ckzk .
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(Reduced) Group C∗-algebra

Γ a countable discrete group
λ : Γ y `2Γ the left regular representation

(λsξ)(x) = ξ(s−1x),

λ(f )ξ = f ∗ ξ for f =
∑

f (s)δs ∈ CΓ

C ∗λΓ the C∗-algebra generated by λ(CΓ) ⊂ B(`2Γ)

For Γ = Z, Fourier transform `2Z ∼= L2T implements

C ∗λZ ∼= C (T), λ(f )↔
∑

k∈Z f (k)zk .

Fejér’s theorem means that multipliers

mϕn : λ(f ) 7→ λ(ϕnf )

converge to the identity on the group C∗-algebra C ∗λZ,

where ϕn(k) = (1− |k|n ) ∨ 0 has finite support and is positive definite.
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Amenability

Definition

An approximate identity on Γ is a sequence (ϕn) of finitely supported
functions such that ϕn → 1. A group Γ is amenable if there is an
approximate identity consisting of positive definite functions.

ϕ positive definite ⇔ mϕ is completely positive on C ∗λΓ

⇒ mϕ is completely bounded and ‖mϕ‖cb = ϕ(1).

A group Γ is weakly amenable (or has the Cowling–Haagerup property)
if there is an approximate identity (ϕn) such that sup ‖mϕn‖cb <∞.

Definition for locally compact groups is similar.

Fejér’s theorem implies that Z is amenable. In fact, all abelian groups and
finite groups are amenable. The class of amenable groups is closed under
subgroups, quotients, extensions, and limits.
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Cowling–Haagerup constant

Recall that a group Γ is weakly amenable if there is an approximate
identity (ϕn) such that C := sup ‖mϕn‖cb <∞. The optimal constant
C ≥ 1 is called the Cowling–Haagerup constant and denoted by Λcb(Γ).

Λcb(Γ) is equal to the CBAP constant for C ∗λΓ and the W∗CBAP
constant for the group von Neumann algebra LΓ:

Λcb(Γ) = Λcb(C ∗λΓ) = Λcb(LΓ).

If Λ ≤ Γ, then Λcb(Λ) ≤ Λcb(Γ).

If Γ is amenable, then Λcb(Γ) = 1.

F2 is not amenable, but is weakly amenable and Λcb(F2) = 1.

Λcb(Γ1 × Γ2) = Λcb(Γ1) Λcb(Γ2) (Cowling–Haagerup 1989).

If Λcb(Γi ) = 1, then Λcb(Γ1 ∗ Γ2) = 1 (Ricard–Xu 2006).

Λcb is invariant under measure equivalence.

OPEN: Is weak amenability preserved under free products?
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Herz–Schur multipliers

Theorem (Grothendieck, Haagerup, Bożejko–Fendler)

For a function ϕ on Γ and C ≥ 0, the following are equivalent.

The multiplier

mϕ : λ(f ) 7→ λ(ϕf )

is completely bounded on C ∗λΓ and ‖mϕ‖cb ≤ C .

The Schur multiplier

Mϕ : [Ax ,y ]x ,y∈Γ 7→ [ϕ(y−1x)Ax ,y ]x ,y∈Γ

is bounded on B(`2Γ) and ‖Mϕ‖ ≤ C .

There are a Hilbert space H and ξ, η ∈ `∞(Γ,H) such that

ϕ(y−1x) = 〈ξ(x), η(y)〉
and ‖ξ‖∞‖η‖∞ ≤ C .

A function ϕ satisfying the above conditions is called a Herz–Schur
multiplier, and the optimal constant C ≥ 0 is denoted by ‖ϕ‖cb.
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An application to convolution operators on `pΓ

If ϕ is a Herz–Schur multiplier, then the Schur multiplier

Mϕ : [Ax ,y ]x ,y∈Γ 7→ [ϕ(y−1x)Ax ,y ]x ,y∈Γ

is bounded on B(`pΓ) for all p ∈ [1,∞]. Indeed, suppose

ϕ(y−1x) = 〈ξ(x), η(y)〉 for ξ, η ∈ `∞(Γ,H).

Then, using H ↪→ Lp and H ↪→ Lq, we define Vξ : `pΓ→ `pΓ⊗ Lp by
Vξδx = δx ⊗ ξ(x−1), and likewise Vη. One has V ∗η

(
A⊗ 1

)
Vξ = Mϕ(A).

Now we wonder

B(`pΓ) ∩ ρ(Γ)′ = {λ(f ) : λ(f ) is bounded on `pΓ}
=? SOT-cl{λ(f ) : f is finitely supported}.

No counterexample is known.

Theorem (von Neumann, Cowling)

It is true if p = 2 or Γ is weakly amenable (or has the weaker property AP).

Indeed, if Γ is weakly amenable, then mϕn(λ(f ))→ λ(f ) in SOT.
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Examples of Herz–Schur multipliers

Every coefficient of a uniformly bounded representation (π,H) of Γ is a
Herz–Schur multiplier: For every ξ, η ∈ H, the function

ϕ(s) = 〈π(s)ξ, η〉
on Γ has ‖ϕ‖cb ≤ sup ‖π(x)‖2‖ξ‖‖η‖. Indeed, one has

ϕ(y−1x) = 〈π(x)ξ, π(y−1)∗η〉.

Conversely, every Herz–Schur multiplier on an amenable group Γ is a
coefficient of some unitary representation. Indeed, if Γ is amenable,
then the unit character τ0 is continuous on C ∗λΓ and

‖ωϕ : C ∗λΓ 3 λ(f ) 7→
∑

ϕ(s)f (s) ∈ C‖ = ‖τ0 ◦mϕ‖ ≤ ‖mϕ‖.
For the GNS rep’n π : C ∗λΓ→ B(H), there are ξ, η ∈ H such that

〈π(λ(s))ξ, η〉 = ωϕ(λ(s)) = ϕ(s).
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Relation to Dixmier’s and Kadison’s problems

Thus, for any group Γ one has

B(Γ) ⊂ UB(Γ) ⊂ B2(Γ),

where
B(Γ) the space of coefficients of unitary representations

UB(Γ) the space of coefficients of uniformly bounded representations
B2(Γ) the space of Herz–Schur multipliers

Theorem

(Bożejko 1985) A group Γ is amenable iff B(Γ) = B2(Γ).

B(Γ) ( UB(Γ) if F2 ↪→ Γ. ¿Is this true for any non-amenable Γ?

(Haagerup 1985) A Herz–Schur multiplier need not be a coefficient of
a uniformly bounded representation, i.e., UB(F2) ( B2(F2).

A uniformly bounded representation π of Γ extends on the full group
C∗-algebra C ∗Γ if all of its coefficients belong to B(Γ).
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Examples of weakly amenable subgroups 1

Theorem (De Cannière–Haagerup, Cowling, Co.–Ha., Ha. 80s)

For a simple connected Lie group G , one has

Λcb(G ) =


1 if G = SO(1, n) or SU(1, n), Haagerup

2n − 1 if G = Sp(1, n),
}

property (T)
+∞ if rkR(G ) ≥ 2, e.g., SL(3,R)

.

For a lattice Γ ≤ G , one has Λcb(Γ) = Λcb(G ).

The idea of the proof: If G = PK with P amenable and K compact, then
for any bi-K -invariant function ϕ on G , one has

‖ϕ‖cb = ‖ϕ|P‖cb = ‖C ∗(P) 3 λ(f ) 7→
∫

f ϕ dµ ∈ C‖C∗(P)∗ .

Further results: If rkR(G ) ≥ 2, then G and its lattices even fail the AP.
(Lafforgue–de la Salle 2010 and Haagerup–de Laat 2012).
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Examples of weakly amenable subgroups 2

Theorem (Oz. 2007, Oz.–Popa 2007, Oz. 2010)

Hyperbolic groups are weakly amenable.

If G is weakly amenable and N / G is an amenable closed normal
subgroup, then there is an Ad(G )-invariant N-invariant states on
L∞(N), or equivalently G is co-amenable in G n N.

 SL(2,R) n R2 and SL(2,Z) n Z2 are not w.a. (Haagerup 1988),
nor any wreath product ∆ o Γ with ∆ 6= 1 and Γ non-amenable.

Proof of Corollary (non weak amenability of SL(2, Z) n Z2).

Consider Γ = SL(2,Z) y Z2. Then, the stabilizer of every non-neutral
element is amenable. (The stabilizer of [ m

0 ] ∈ Z2, m 6= 0, is {[ 1 ∗
0 1 ]}.)

If P is amenable, then Γ y `2(Γ/P) is weakly contained in Γ y `2(Γ).
Hence, any Γ-invariant mean on Z2 has to be concentrated on [ 0

0 ].
 No mean on Z2 is at the same time Γ-invariant and Z2-invariant.
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Applications to von Neumann algebras

For a vN subalgebra M ≤ N which is a range of a conditional expectation,

Λcb(M) ≤ Λcb(N).

In particular, any non-weakly amenable von Neumann algebra, e.g.
L(SL(2,Z) n Z2), does not embed into an weakly amenable II1-factor.

Theorem (Oz.–Popa 2007, Oz. 2010)

Let M be an weakly amenable finite von Neumann algebra and P ≤ M be
an amenable von Neumann subalgebra. Then P is weakly compact in M,
or equivalently, there is a state ω on B(L2(P)) such that ω ◦Adu = ω for
every u ∈ U(P) ∪ σ(NM(P)), where

NM(P) = {u ∈ U(M) : uPu∗ = P}
is the normalizer of P, acting on L2(P) by conjugation.

Applications to strong solidity and uniqueness of Cartan subalgebras by
Oz.–Popa (2007), Chifan–Sinclair (2011) and Popa–Vaes (2011-12).
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Some more examples

Theorem

The following groups have the Cowling–Haagerup constant 1.

Amenable groups, SO(n, 1), SU(n, 1) (Haagerup and his friends).

Free products of groups with Λcb = 1 (Ricard–Xu).

Finite-dim CAT(0) cube complex groups (Guentner–Higson, Mizuta).

SL(2,K ) as a discrete group (Guentner–Higson–Weinberger);
in particular, limit groups.

Baumslag–Solitar groups (Gal).

Counterexample:
SL(2,Z) n Z2 ∼= (Z/4Z n Z2) ∗Z2 (Z/6Z n Z2)

is not weakly amenable.

OPEN: relatively hyperbolic groups, mapping class groups, Ã2-groups, . . .
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Proofs of (non-)weak amenability

Proofs of (non-)weak amenability
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Cayley graph of F2

The Cayley graph of F2 = 〈a, a−1, b, b−1〉 is a tree with the metric d .

q qa−1 qe qa qa2

q qab

q q
ab−1

q q
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q

q qb−1q

q
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@
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s s s s s s
s s s s

o

x

y

d(x , y) = ‖χ[o,x] − χ[o,y ]‖2
2 = 6

Theorem (Haagerup 1978)
√

d is a Hilbert space metric, and rd is positive definite for r ∈ [0, 1].
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Weak amenability of hyperbolic groups

Theorem (Pytlik–Szwarc 1986 and Oz. 2007)

For any hyperbolic graph K of bounded degree, there is C ≥ 1 satisfying:
For every z ∈ D = {z ∈ C : |z | < 1}, the function

θz : K×K 3 (x , y) 7−→ zd(x ,y) ∈ C
is a bounded Schur multiplier on B(`2K) with

‖θz‖cb ≤ C
|1− z |
1− |z |

.

Moreover z 7→ θz is holomorphic.

If Γ y K properly, then ϕr (g) = rd(go,o) is an approximate identity on Γ,
and Γ is weakly amenable.

OPEN: Is ϕz a coefficient of a uniformly bounded representation?

To prove Theorem, one needs to factorize zd as
zd(x ,y) = 〈ξz(x), ηz(y)〉, ξz , ηz ∈ `∞(K,H).
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Proof for trees

Let K be a tree and fix an infinite geodesic ω in K.

For every x ∈ K, let ωx be the unique
geodesic that starts at x and eventually
flows into ω.

�
�

ω

ωx

qx = ωx(0)

For z ∈ D and x , y ∈ K, define

ξz(x) =
√

1− z2

∞∑
k=0

zkδωx (k) ∈ `2K, and ηz(y) = ξz(y).

Then, one has

‖ξz(x)‖2
2 = ‖ηz(y)‖2

2 = |1− z2|
∑
k≥0

|z |2k =
|1− z2|
1− |z |2

≤ |1− z |
1− |z |

.
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Proof for trees, cont’d

�
�

ω

ωx

qx = ωx(0)

�
��qy

A
Aqx
�
�
�rωx(k) = ωy (l)
�

�
�m

ξz(x) =
√

1− z2

∞∑
k=0

zkδωx (k) ∈ `2K, and ηz(y) = ξz(y).

For x , y ∈ K, one has

〈ξz(x), ηz(y)〉 = (1− z2)
∑
k,l≥0

zk+l〈δωx (k), δωy (l)〉

= (1− z2)
∑
m≥0

zd(x ,y)+2m = zd(x ,y).
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Non weakly amenable groups

Theorem (Oz.–Popa 2007, Oz. 2010)

If G is weakly amenable and N / G is an amenable closed normal
subgroup, then there is an Ad(G )-invariant N-invariant states on L∞(N).

Proof (Assuming Γ = G is discrete, N is abelian and Λcb(Γ) = 1.)

Let ϕn be fin. supp. functions on Γ s.t. ϕn → 1 and sup ‖mϕn‖ = 1.
Then, for every s ∈ Γ, one has lim ‖mϕn −mϕn ◦Ad(s)‖ = 0.

Indeed, if ϕn(y−1x) = 〈ξn(x), ηn(y)〉 for ξ, η : Γ→ H of norm 1,
then ξn(x) ≈ ηn(x) ≈ ξn(xs) uniformly for x , and likewise for η.

Let τ0 : C ∗λN → C be the unit character and ωn = τ0 ◦mϕn : C ∗λN → C.

Recall C ∗λN ∼= C (N̂) via the Fourier transform `2N ∼= L2(N̂).

Then, ωn ∈ (C ∗λN)∗ is nothing but ϕ̂n|N ∈ L1(N̂) and ‖ϕ̂n|N‖1 = ‖ωn‖.
Thus, (ϕ̂n|N) is an approximately Γ-invariant approximate unit for L1(N̂).

Consequently, for ζn ∈ `2N that corresponds to
∣∣ϕ̂n|N

∣∣1/2 ∈ L2(N̂),
|ζn|2 ∈ `1N is approximately Ad(Γ)- and N-invariant.
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