Survey on Weak Amenability

OZAWA, Narutaka

RIMS at Kyoto University

Conference on von Neumann Algebras and Related Topics January 2012

Research partially supported by JSPS

Fejér's theorem

$$\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$$

Let $f \in C(\mathbb{T})$ and $f \sim \sum_{k=-\infty}^{\infty} c_k z^k$ be the Fourier expansion.
Does the partial sum $s_m := \sum_{k=-m}^m c_k z^k$ converges to f ?

Not necessarily! But,

Theorem (Fejér)

The Cesáro mean
$$\frac{1}{n}\sum_{m=1}^{n}s_m$$
 converges to f uniformly.

Note: For
$$\varphi_n(k) = (1 - \frac{|k|}{n}) \lor 0$$
, one has $\frac{1}{n} \sum_{m=1}^n s_m = \sum_{k=-\infty}^\infty \varphi_n(k) c_k z^k$.

(Reduced) Group C*-algebra

 $\label{eq:linear} \begin{array}{ll} \mathsf{\Gamma} & \mbox{a countable discrete group} \\ \lambda\colon \mathsf{\Gamma} \curvearrowright \ell_2\mathsf{\Gamma} & \mbox{the left regular representation} \end{array}$

$$egin{aligned} & (\lambda_s\xi)(x) = \xi(s^{-1}x), \ & \lambda(f)\xi = f*\xi \quad ext{ for } f = \sum f(s)\delta_s \in \mathbb{C}\Gamma \end{aligned}$$

 $C^*_{\lambda}\Gamma$ the C*-algebra generated by $\lambda(\mathbb{C}\Gamma)\subset\mathbb{B}(\ell_2\Gamma)$

For $\Gamma = \mathbb{Z}$, Fourier transform $\ell_2 \mathbb{Z} \cong L^2 \mathbb{T}$ implements

$$C^*_\lambda \mathbb{Z} \cong C(\mathbb{T}), \qquad \lambda(f) \leftrightarrow \sum_{k \in \mathbb{Z}} f(k) z^k.$$

Fejér's theorem means that multipliers

$$m_{\varphi_n}: \lambda(f) \mapsto \lambda(\varphi_n f)$$

converge to the identity on the group C*-algebra $C_{\lambda}^*\mathbb{Z}$, where $\varphi_n(k) = (1 - \frac{|k|}{n}) \vee 0$ has finite support and is positive definite.

Amenability

Definition

An **approximate identity** on Γ is a sequence (φ_n) of finitely supported functions such that $\varphi_n \to \mathbf{1}$. A group Γ is **amenable** if there is an approximate identity consisting of positive definite functions.

arphi positive definite $\Leftrightarrow m_{arphi}$ is completely positive on $\mathcal{C}^*_\lambda \Gamma$

 $\Rightarrow m_{\varphi}$ is completely bounded and $\|m_{\varphi}\|_{\mathrm{cb}} = \varphi(1)$.

A group Γ is **weakly amenable** (or has the Cowling–Haagerup property) if there is an approximate identity (φ_n) such that $\sup ||m_{\varphi_n}||_{cb} < \infty$. Definition for locally compact groups is similar.

Fejér's theorem implies that \mathbb{Z} is amenable. In fact, all abelian groups and finite groups are amenable. The class of amenable groups is closed under subgroups, quotients, extensions, and limits.

Cowling-Haagerup constant

Recall that a group Γ is **weakly amenable** if there is an approximate identity (φ_n) such that $C := \sup ||m_{\varphi_n}||_{cb} < \infty$. The optimal constant $C \ge 1$ is called the Cowling–Haagerup constant and denoted by $\Lambda_{cb}(\Gamma)$.

Λ_{cb}(Γ) is equal to the CBAP constant for C^{*}_λΓ and the W*CBAP constant for the group von Neumann algebra LΓ:

$$\Lambda_{\rm cb}(\Gamma) = \Lambda_{\rm cb}(C_{\lambda}^*\Gamma) = \Lambda_{\rm cb}(\mathcal{L}\Gamma).$$

- If $\Lambda \leq \Gamma$, then $\Lambda_{\rm cb}(\Lambda) \leq \Lambda_{\rm cb}(\Gamma)$.
- If Γ is amenable, then $\Lambda_{\rm cb}(\Gamma)=1.$
- \mathbb{F}_2 is not amenable, but is weakly amenable and $\Lambda_{\mathrm{cb}}(\mathbb{F}_2) = 1$.
- $\Lambda_{\rm cb}(\Gamma_1 \times \Gamma_2) = \Lambda_{\rm cb}(\Gamma_1) \Lambda_{\rm cb}(\Gamma_2)$ (Cowling–Haagerup 1989).
- If $\Lambda_{\rm cb}(\Gamma_i) = 1$, then $\Lambda_{\rm cb}(\Gamma_1 * \Gamma_2) = 1$ (Ricard–Xu 2006).
- $\Lambda_{\rm cb}$ is invariant under measure equivalence.
- OPEN: Is weak amenability preserved under free products?

Herz-Schur multipliers

Theorem (Grothendieck, Haagerup, Bożejko-Fendler)

For a function φ on Γ and $C \ge 0$, the following are equivalent.

The multiplier

 $m_{\varphi} \colon \lambda(f) \mapsto \lambda(\varphi f)$

is completely bounded on $C^*_{\lambda}\Gamma$ and $\|m_{\varphi}\|_{\mathrm{cb}} \leq C$.

The Schur multiplier

$$M_{\varphi} \colon [A_{x,y}]_{x,y \in \Gamma} \mapsto [\varphi(y^{-1}x)A_{x,y}]_{x,y \in \Gamma}$$

is bounded on $\mathbb{B}(\ell_2\Gamma)$ and $\|M_{\varphi}\| \leq C$.

• There are a Hilbert space \mathcal{H} and $\xi, \eta \in \ell_{\infty}(\Gamma, \mathcal{H})$ such that $\varphi(y^{-1}x) = \langle \xi(x), \eta(y) \rangle$ and $\|\xi\|_{\infty} \|\eta\|_{\infty} \leq C$.

A function φ satisfying the above conditions is called a Herz–Schur multiplier, and the optimal constant $C \ge 0$ is denoted by $\|\varphi\|_{cb}$.

An application to convolution operators on $\ell_p\Gamma$

If φ is a Herz–Schur multiplier, then the Schur multiplier

$$M_{\varphi} \colon [A_{x,y}]_{x,y \in \Gamma} \mapsto [\varphi(y^{-1}x)A_{x,y}]_{x,y \in \Gamma}$$

is bounded on $\mathbb{B}(\ell_{\rho}\Gamma)$ for all $\rho \in [1,\infty]$. Indeed, suppose

$$arphi(y^{-1}x) = \langle \xi(x), \eta(y)
angle$$
 for $\xi, \eta \in \ell_\infty(\Gamma, \mathcal{H}).$

Then, using $\mathcal{H} \hookrightarrow L_p$ and $\mathcal{H} \hookrightarrow L_q$, we define $V_{\xi} \colon \ell_p \Gamma \to \ell_p \Gamma \otimes L_p$ by $V_{\xi} \delta_x = \delta_x \otimes \xi(x^{-1})$, and likewise V_{η} . One has $V_{\eta}^* (A \otimes 1) V_{\xi} = M_{\varphi}(A)$. Now we wonder

$$\mathbb{B}(\ell_{\rho}\Gamma) \cap \rho(\Gamma)' = \{\lambda(f) : \lambda(f) \text{ is bounded on } \ell_{\rho}\Gamma\}$$

$$\stackrel{?}{\neq} \text{SOT-cl}\{\lambda(f) : f \text{ is finitely supported}\}.$$

No counterexample is known.

Theorem (von Neumann, Cowling)

It is true if p = 2 or Γ is weakly amenable (or has the weaker property **AP**).

Indeed, if Γ is weakly amenable, then $m_{\varphi_n}(\lambda(f)) \rightarrow \lambda(f)$ in SOT.

Examples of Herz–Schur multipliers

Every **coefficient** of a uniformly bounded representation (π, \mathcal{H}) of Γ is a Herz–Schur multiplier: For every $\xi, \eta \in \mathcal{H}$, the function

$$\varphi(s) = \langle \pi(s)\xi, \eta \rangle$$

on Γ has $\|\varphi\|_{cb} \leq \sup \|\pi(x)\|^2 \|\xi\| \|\eta\|$. Indeed, one has $\varphi(y^{-1}x) = \langle \pi(x)\xi, \pi(y^{-1})^*\eta \rangle.$

Conversely, every Herz–Schur multiplier on an **amenable** group Γ is a coefficient of some unitary representation. Indeed, if Γ is amenable, then the unit character τ_0 is continuous on $C^*_{\lambda}\Gamma$ and

$$\begin{split} \|\omega_{\varphi} \colon C_{\lambda}^{*}\Gamma \ni \lambda(f) \mapsto \sum \varphi(s)f(s) \in \mathbb{C}\| &= \|\tau_{0} \circ m_{\varphi}\| \leq \|m_{\varphi}\|. \\ \text{For the GNS rep'n } \pi \colon C_{\lambda}^{*}\Gamma \to \mathbb{B}(\mathcal{H}) \text{, there are } \xi, \eta \in \mathcal{H} \text{ such that} \\ &\langle \pi(\lambda(s))\xi, \eta \rangle = \omega_{\varphi}(\lambda(s)) = \varphi(s). \end{split}$$

Relation to Dixmier's and Kadison's problems

Thus, for any group Γ one has

 $B(\Gamma) \subset UB(\Gamma) \subset B_2(\Gamma)$,

where

 $B(\Gamma)$ the space of coefficients of unitary representations

- $UB(\Gamma)$ the space of coefficients of uniformly bounded representations
- $B_2(\Gamma)$ the space of Herz–Schur multipliers

Theorem

- (Bożejko 1985) A group Γ is amenable iff $B(\Gamma) = B_2(\Gamma)$.
- $B(\Gamma) \subsetneq UB(\Gamma)$ if $\mathbb{F}_2 \hookrightarrow \Gamma$. ¿Is this true for any non-amenable Γ ?
- (Haagerup 1985) A Herz–Schur multiplier need not be a coefficient of a uniformly bounded representation, i.e., $UB(\mathbb{F}_2) \subsetneq B_2(\mathbb{F}_2)$.
- A uniformly bounded representation π of Γ extends on the full group C*-algebra $C^*\Gamma$ if all of its coefficients belong to $B(\Gamma)$.

Examples of weakly amenable subgroups 1

Theorem (De Cannière-Haagerup, Cowling, Co.-Ha., Ha. 80s)

For a simple connected Lie group G, one has

$$\Lambda_{\rm cb}(G) = \left\{ \begin{array}{ll} 1 & \text{if } G = \mathrm{SO}(1,n) \text{ or } \mathrm{SU}(1,n), & \text{Haagerup} \\ 2n-1 & \text{if } G = \mathrm{Sp}(1,n), \\ +\infty & \text{if } \operatorname{rk}_{\mathbb{R}}(G) \ge 2, \text{ e.g., } \operatorname{SL}(3,\mathbb{R}) \end{array} \right\} \text{ property (T)}$$

For a lattice $\Gamma \leq G$, one has $\Lambda_{\rm cb}(\Gamma) = \Lambda_{\rm cb}(G)$.

The idea of the proof: If G = PK with P amenable and K compact, then for any bi-K-invariant function φ on G, one has

$$\|\varphi\|_{\mathrm{cb}} = \|\varphi|_{P}\|_{\mathrm{cb}} = \|\mathcal{C}^{*}(P) \ni \lambda(f) \mapsto \int f\varphi \, d\mu \in \mathbb{C}\|_{\mathcal{C}^{*}(P)^{*}}.$$

Further results: If $\operatorname{rk}_{\mathbb{R}}(G) \ge 2$, then G and its lattices even fail the AP. (Lafforgue-de la Salle 2010 and Haagerup-de Laat 2012).

Examples of weakly amenable subgroups 2

Theorem (Oz. 2007, Oz.–Popa 2007, Oz. 2010)

- Hyperbolic groups are weakly amenable.
- If G is weakly amenable and $N \triangleleft G$ is an amenable closed normal subgroup, then there is an Ad(G)-invariant N-invariant states on $L^{\infty}(N)$, or equivalently G is co-amenable in $G \ltimes N$.

 \rightsquigarrow SL(2, \mathbb{R}) $\ltimes \mathbb{R}^2$ and SL(2, \mathbb{Z}) $\ltimes \mathbb{Z}^2$ are not w.a. (Haagerup 1988), nor any wreath product $\Delta \wr \Gamma$ with $\Delta \neq \mathbf{1}$ and Γ non-amenable.

Proof of Corollary (non weak amenability of $SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$).

Consider $\Gamma = \operatorname{SL}(2, \mathbb{Z}) \curvearrowright \mathbb{Z}^2$. Then, the stabilizer of every non-neutral element is amenable. (The stabilizer of $\begin{bmatrix} m \\ 0 \end{bmatrix} \in \mathbb{Z}^2$, $m \neq 0$, is $\{\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}\}$.) If P is amenable, then $\Gamma \curvearrowright \ell_2(\Gamma/P)$ is weakly contained in $\Gamma \curvearrowright \ell_2(\Gamma)$. Hence, any Γ -invariant mean on \mathbb{Z}^2 has to be concentrated on $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. \rightsquigarrow No mean on \mathbb{Z}^2 is at the same time Γ -invariant and \mathbb{Z}^2 -invariant.

Applications to von Neumann algebras

For a vN subalgebra $M \le N$ which is a range of a conditional expectation, $\Lambda_{
m cb}(M) \le \Lambda_{
m cb}(N).$

In particular, any non-weakly amenable von Neumann algebra, e.g. $\mathcal{L}(\mathrm{SL}(2,\mathbb{Z})\ltimes\mathbb{Z}^2)$, does not embed into an weakly amenable II₁-factor.

Theorem (Oz.–Popa 2007, Oz. 2010)

Let M be an weakly amenable finite von Neumann algebra and $P \leq M$ be an amenable von Neumann subalgebra. Then P is weakly compact in M, or equivalently, there is a state ω on $\mathbb{B}(L^2(P))$ such that $\omega \circ \mathrm{Ad}_u = \omega$ for every $u \in \mathcal{U}(P) \cup \sigma(\mathcal{N}_M(P))$, where

$$\mathcal{N}_{\mathcal{M}}(\mathcal{P}) = \{ u \in \mathcal{U}(\mathcal{M}) : u\mathcal{P}u^* = \mathcal{P} \}$$

is the normalizer of P, acting on $L^2(P)$ by conjugation.

Applications to strong solidity and uniqueness of Cartan subalgebras by Oz.–Popa (2007), Chifan–Sinclair (2011) and Popa–Vaes (2011-12).

Theorem

The following groups have the Cowling-Haagerup constant 1.

- Amenable groups, SO(n, 1), SU(n, 1) (Haagerup and his friends).
- Free products of groups with $\Lambda_{\rm cb}=1$ (Ricard–Xu).
- Finite-dim CAT(0) cube complex groups (Guentner-Higson, Mizuta).
- SL(2, K) as a discrete group (Guentner–Higson–Weinberger); in particular, limit groups.
- Baumslag–Solitar groups (Gal).

Counterexample:

$$\mathrm{SL}(2,\mathbb{Z})\ltimes\mathbb{Z}^2\cong (\mathbb{Z}/4\mathbb{Z}\ltimes\mathbb{Z}^2)*_{\mathbb{Z}^2}(\mathbb{Z}/6\mathbb{Z}\ltimes\mathbb{Z}^2)$$

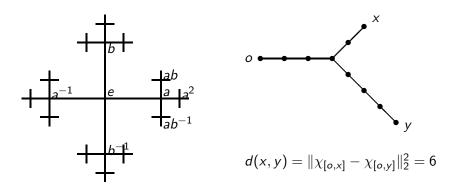
is not weakly amenable.

OPEN: relatively hyperbolic groups, mapping class groups, \tilde{A}_2 -groups, ...

Proofs of (non-)weak amenability

Cayley graph of \mathbb{F}_2

The Cayley graph of $\mathbb{F}_2 = \langle a, a^{-1}, b, b^{-1} \rangle$ is a tree with the metric *d*.



Theorem (Haagerup 1978)

 \sqrt{d} is a Hilbert space metric, and r^d is positive definite for $r \in [0, 1]$.

Weak amenability of hyperbolic groups

Theorem (Pytlik–Szwarc 1986 and Oz. 2007)

For any hyperbolic graph **K** of bounded degree, there is $C \ge 1$ satisfying: For every $z \in \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, the function

$$\theta_z \colon \mathbf{K} \times \mathbf{K} \ni (x, y) \longmapsto z^{d(x, y)} \in \mathbb{C}$$

is a bounded Schur multiplier on $\mathbb{B}(\ell_2 \textbf{K})$ with

$$\|\theta_z\|_{\rm cb} \leq C \, \frac{|1-z|}{1-|z|}.$$

Moreover $z \mapsto \theta_z$ is holomorphic.

If $\Gamma \curvearrowright \mathbf{K}$ properly, then $\varphi_r(g) = r^{d(go,o)}$ is an approximate identity on Γ , and Γ is weakly amenable.

OPEN: Is φ_z a coefficient of a uniformly bounded representation?

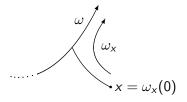
To prove Theorem, one needs to factorize z^d as

$$z^{d(x,y)} = \langle \xi_z(x), \eta_z(y) \rangle, \quad \xi_z, \eta_z \in \ell_\infty(\mathbf{K}, \mathcal{H}).$$

Proof for trees

Let **K** be a tree and fix an infinite geodesic ω in **K**.

For every $x \in \mathbf{K}$, let ω_x be the unique geodesic that starts at x and eventually flows into ω .

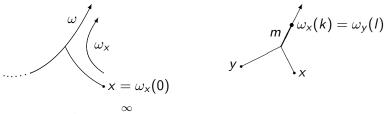


For $z \in \mathbb{D}$ and $x, y \in \mathbf{K}$, define $\xi_z(x) = \sqrt{1-z^2} \sum_{k=0}^{\infty} z^k \delta_{\omega_x(k)} \in \ell_2 \mathbf{K}$, and $\eta_z(y) = \overline{\xi_z(y)}$.

Then, one has

$$\|\xi_z(x)\|_2^2 = \|\eta_z(y)\|_2^2 = |1-z^2|\sum_{k\geq 0}|z|^{2k} = rac{|1-z^2|}{1-|z|^2} \leq rac{|1-z|}{1-|z|}.$$

Proof for trees, cont'd



$$\xi_z(x) = \sqrt{1-z^2} \sum_{k=0} z^k \delta_{\omega_x(k)} \in \ell_2 \mathbf{K}, \text{ and } \eta_z(y) = \overline{\xi_z(y)}.$$

For $x, y \in \mathbf{K}$, one has

$$egin{aligned} &\langle \xi_z(x),\eta_z(y)
angle = (1-z^2)\sum_{k,l\geq 0} z^{k+l}\langle \delta_{\omega_x(k)},\delta_{\omega_y(l)}
angle \ &= (1-z^2)\sum_{m\geq 0} z^{d(x,y)+2m} = z^{d(x,y)}. \end{aligned}$$

Theorem (Oz.–Popa 2007, Oz. 2010)

If G is weakly amenable and $N \triangleleft G$ is an amenable closed normal subgroup, then there is an Ad(G)-invariant N-invariant states on $L^{\infty}(N)$.

Proof (Assuming $\Gamma = G$ is discrete, N is abelian and $\Lambda_{cb}(\Gamma) = 1$.)

Let φ_n be fin. supp. functions on Γ s.t. $\varphi_n \to 1$ and sup $||m_{\varphi_n}|| = 1$. Then, for every $s \in \Gamma$, one has $\lim ||m_{\omega_n} - m_{\omega_n} \circ \operatorname{Ad}(s)|| = 0$. Indeed, if $\varphi_n(y^{-1}x) = \langle \xi_n(x), \eta_n(y) \rangle$ for $\xi, \eta \colon \Gamma \to \mathcal{H}$ of norm 1, then $\xi_n(x) \approx \eta_n(x) \approx \xi_n(xs)$ uniformly for x, and likewise for η . Let $\tau_0: C^*_{\lambda} N \to \mathbb{C}$ be the unit character and $\omega_n = \tau_0 \circ m_{\varphi_n}: C^*_{\lambda} N \to \mathbb{C}$. Recall $C_{\lambda}^*N \cong C(\widehat{N})$ via the Fourier transform $\ell_2 N \cong L^2(\widehat{N})$. Then, $\omega_n \in (C^*_{\lambda}N)^*$ is nothing but $\varphi_n|_N \in L^1(\widehat{N})$ and $\|\varphi_n|_N\|_1 = \|\omega_n\|$. Thus, $(\varphi_n|_N)$ is an approximately Γ -invariant approximate unit for $L^1(\widehat{N})$. Consequently, for $\zeta_n \in \ell_2 N$ that corresponds to $|\widehat{\varphi_n}|_N^{1/2} \in L^2(\widehat{N})$, $|\zeta_n|^2 \in \ell_1 N$ is approximately $\operatorname{Ad}(\Gamma)$ - and N-invariant.