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1 Introduction

In this talk we are going to discuss the mass critical nonlinear Schrodinger
initial value problem

iut + ∆u = µ|u|4/du,

u(0, x) = u0.
(1.1)

The case µ = 1 is called the defocusing case, µ = −1 is the focusing case.
A solution to (1.1) in fact gives an entire family of solutions to (1.1) since if
u(t, x) solves (1.1) on the interval [0, T0] with initial data u0, then

uλ(t, x) =
1

λd/2
u(

t

λ2
,
x

λ
)

is a solution to (1.1) on [0, λ2T0] with initial data 1
λd/2 u0(x

λ).

‖u0‖L2
x(Rd) = ‖ 1

λd/2
u0(

x

λ
)‖L2

x(Rd). (1.2)

We can also apply the Galilean transform. If u(t, x) solves (1.1), then

eix·ξ0e−it|ξ0|2u(t, x− 2tξ0) (1.3)

solves (1.1). This transformation has the effect of shifting a solution in
frequency by a fixed amount, and also shifting the solution in space by
x− 2tξ0.

A solution to (1.1) conserves the quantities mass,
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M(u(t)) =
∫
|u(t, x)|2dx, (1.4)

and energy,

E(u(t)) =
1
2

∫
|∇u(t, x)|2dx +

µd

2(d + 2)

∫
|u(t, x)|

2(d+2)
d dx. (1.5)

The solution to

ivt + ∆v = 0,

v(0, x) = v0,
(1.6)

is given by

v(t, x) = eit∆v0. (1.7)

Moreover, the solution to

ivt + ∆v = F (t),
v(0, x) = v0,

(1.8)

is given by Duhamel’s formula,

v(t, x) = eit∆v0 − i

∫ t

0
ei(t−τ)∆F (τ)dτ. (1.9)

This talk is going to focus on d ≥ 3. Taking the Fourier transform,

F(eit∆u0)(ξ) = e−it|ξ|2 û0(ξ). (1.10)

The solution to the free Schrodinger equation,

eit∆u0 =
C(d)
td/2

∫
e−i |x−y|2

4t u0(y)dy, (1.11)

also obeys the dispersive estimate

‖eit∆u0‖L∞x (Rd) ! ‖u0‖L1
x(Rd). (1.12)

Therefore, by [17], (1.9), (1.10), and (1.12), when d ≥ 3, a pair (p, q) is
called an admissible pair if 2

p = d(1
2 −

1
q ) and p ≥ 2. If (p, q), (p̃, q̃) are also

admissible pairs then a solution v to
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ivt + ∆v = F,

v(0, x) = v0,
(1.13)

obeys the Strichartz estimates

‖v‖Lp
t Lq

x(I×Rd) ! ‖v0‖L2
x(Rd) + ‖F‖

Lp̃′
t Lq̃′

x (I×Rd)
. (1.14)

Therefore, if u is a solution to (1.1),

‖u‖
L

2(d+2)
d

t,x (R×Rd)
! ‖u0‖L2

x(Rd) + ‖u‖1+4/d

L
2(d+2)

d
t,x (R×Rd)

. (1.15)

For ‖u0‖L2
x(Rd) ≤ ε0, ε0 sufficiently small, this proves global well-posedness

by Picard iteration. We also define scattering.

Definition 1.1 A solution to (1.1) is said to scatter to a free solution if
there exist u± ∈ L2(Rd) such that

lim
t→∞

‖u(t, x)− eit∆u+‖L2
x(Rd) = 0, (1.16)

and

lim
t→−∞

‖u(t, x)− eit∆u−‖L2
x(Rd) = 0. (1.17)

The solution to (1.1) is also scattering for small initial data. Since

‖u‖
L

2(d+2)
d

t,x (R×Rd)
! ‖u0‖L2

x(Rd)

when ‖u0‖L2
x(Rd) ≤ ε0, for any k > 0, there exists T (k) such that

‖u‖
L

2(d+2)
d

t,x ([T (k),∞))
≤ 2−k. (1.18)

‖e−iTk∆u(Tk)− e−iTk+1∆u(Tk+1)‖L2
x(Rd)

= ‖
∫ Tk+1

Tk

e−iτ∆|u(τ)|4/du(τ)‖L2
x(Rd) ! ‖u‖1+4/d

L
2(d+2)

d
t,x ([T (k),∞))

≤ 2−k.

Then let
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u+ = lim
k→∞

u(Tk). (1.19)

We can similarly define u−.

Now define the quantity

A(m) = sup{‖u‖
L

2(d+2)
d

t,x (R×Rd)
: ‖u(t)‖L2

x(Rd) = m}. (1.20)

If A(m) = C(m) < ∞, then (1.1) is globally well-posed and scattering for
‖u0‖L2

x(Rd) = m. This is because we can partition R into ∼ C(m)
2(d+2)

d

subintervals with ‖u‖
L

2(d+2)
d

t,x (I×Rd)
≤ ε0 on each separate subinterval.

Now take one such subinterval [a, b]. By Duhamel’s principle, the solution
on [a, b] has the form

ei(t−a)∆u(a)− i

∫ t

a
ei(t−τ)∆|u(τ)|4/du(τ)dτ. (1.21)

Moreover,

‖
∫ t

a
ei(t−τ)∆|u(τ)|4/du(τ)dτ‖

L
2(d+2)

d
t,x ([a,b]×Rd)

! ε1+4/d
0 ,

so the linear solution ei(t−a)∆u(a) will dominate the solution to (1.1) over
the time interval [a, b]. This idea will be a very important notion at several
points throughout the argument.

Making a perturbative argument, we can prove A is a continuous function.
Therefore, {m : A(m) < ∞} is a nonempty open set and therefore the set
{m : A(m) = ∞} has a least element. We will define m0 to be this least
element. Then a solution u to (1.1) with

‖u‖
L

2(d+2)
d

t,x (R×Rd)
= ∞

and
‖u(t)‖L2

x(Rd) = m0

is called a minimal mass blowup solution. Such a solution must possess a
number of additional properties, in particular it must be concentrated in
both frequency and space.
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Lemma 1.1 If a minimal mass blowup solution u exists on a time interval
I, then there exist functions x(t), ξ(t) : I → Rd, N(t) : I → (0,∞), such
that for every η > 0 there exists C(η) such that

∫

|ξ−ξ(t)|≥C(η)N(t)
|û(t, ξ)|2dξ < η (1.22)

∫

|x−x(t)|≥C(η)
N(t)

|u(t, x)|2dx < η (1.23)

Proof: See [24].

Furthermore, to prove A(m) < ∞ for all m, it suffices to exclude the minimal
mass blowup scenarios

1. N(t) ∼ t−1/2, on (0,∞),

2. N(t) ≡ 1,

3. N(t) ≤ 1, lim inft→±∞N(t) = 0.

See [18] for details.

To prove

A(m) < ∞ (1.24)

for all m < ∞, it therefore suffices to exclude the three minimal mass blowup
scenarios (1) - (3). Because we are dealing with the nonradial case, we need
to understand how ξ(t) moves around on the maximum interval I.

Lemma 1.2 If J is an interval with ‖u‖
L

2(d+2)
d

t,x (J×Rd)
≤ ε0, then for t1, t2 ∈

J , |ξ(t1)− ξ(t2)| ! N(t1) + N(t2).

Proof: Recall that for the interval J = [a, b], the linear evolution ei(t−a)∆u(a)
dominates. Therefore, the balls

{|ξ − ξ(t1)| ≤ C(
m2

0

1000
)N(t1)} (1.25)

and
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{|ξ − ξ(t2)| ≤ C(
m2

0

1000
)N(t2)} (1.26)

must intersect. Therefore, |ξ(t1)− ξ(t2)| ! N(t1) + N(t2). "

Since the linear solution dominates over the interval J the scale cannot
change too rapidly, and thus we also have N(t1) ∼ N(t2).

2 Scenario 1:

To deal with this scenario, we will adopt the arguments from [19] in the
radial case. There are two additional complications that arise from the
nonradial case. The first complication is that in the radial case ξ(t) ≡ 0,
while in the nonradial case this might not be so. We quote the theorem

Theorem 2.1 If u(t, x) is a minimal mass blowup solution to (1.1), then
∫ T2

T1

N(t)2dt ! ‖u‖
2(d+2)

d

L
2(d+2)

d
t,x ([T1,T2]×Rd)

! 1 +
∫ T2

T1

N(t)2dt. (2.1)

Proof: See [19]. "

This implies that for any k,

‖u‖
L

2(d+2)
d

t,x ([2k,2k+1]×Rd)
! 1. (2.2)

This in turn implies |ξ(2k)− ξ(2k+1)| ! 2−k/2. Thus the limit

lim
k→∞

ξ(2k) = ξ∞ (2.3)

exists, and moreover |ξ(2k)−ξ∞| ! 2−k/2. Now make a Galilean transforma-
tion that maps ξ∞ to the origin. This implies that after making a Galilean
transformation and modifying C(η) by a fixed constant,

∫

|ξ|≥C(η)N(t)
|û(t, ξ)|2dξ < η. (2.4)

The arguments in [19] then prove a minimal mass self-similar solution u(t) ∈
H1+4/d−

x (Rd), which in the defocusing case N(t) →∞ contradicts conserva-
tion of energy (1.5). This is accomplished via proving additional regularity
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by induction on Hs
x, starting with Hε

x for some ε > 0. In order to put
u(t) ∈ Hε

x, [19] used a restriction estimate specialized to the radial case.
This estimate is obviously not available in the nonradial case.

In point of fact, in order to start the induction in [19], it is enough to show

ak = sup
t∈(0,∞)

‖P>t−1/22ku(t)‖L2
x(Rd) (2.5)

is rapidly decreasing in k. The solution to (1.1) can be split, u = v + w,
where v and w solve the coupled equations

ivt + ∆v = 0,
v(1, x) = P>Nu(1),

(2.6)

iwt + ∆w = |u|4/du,

w(1, x) = P≤Nu(1).
(2.7)

We must have
∫ 1

0
| d
dt
〈w, w〉|dt ≥ ‖P>Nu(1)‖2L2

x(Rd), (2.8)

or some of the mass will stick to low frequencies as N(t) ↗∞, which gives
a contradiction.

d

dt
〈w, w〉 = −2〈i|u|4/dv, w〉.

Now let

M(A) = sup
T∈(0,∞)

‖P>AT−1/2u(T )‖L2
x(Rd). (2.9)

We prove that for some σ(d) > 0,

M(2k) ! M(2
k
2d )2+2/d + 2−kσ. (2.10)

Thus we prove M(2k) is rapidly decreasing. By interpolation, for

S(A) = sup
T>0

‖P>AT−1/2u‖
L

2(d+2)
d

t,x ([T,2T ]×Rd)
, (2.11)

and
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N (A) = sup
T>0

‖P>AT−1/2(|u|4/du)‖
L

2(d+2)
d+4

t,x ([T,2T ]×Rd)

, (2.12)

S(2k) and N (2k) are rapidly decreasing in k. Then following the arguments
in [19] we can prove u(t) ∈ H1+4/d−

x (Rd). This excludes the N(t) ∼ t−1/2

case.

3 N(t) ≡ 1:

In this talk we are going to exclude the N(t) ≡ 1 case. To simplify the talk,
we will deal with the case ξ(t) ≡ 0 only. In dealing with the case N(t) ≡ 1,
d ≥ 3, we make use of the interaction Morawetz estimate proved in [8], [23],

∫ T

−T

∫

Rd×Rd
(−∆∆a(x, y))|u(t, x)|2|u(t, y)|2dxdydt

! ‖u‖L∞t Ḣ1
x([−T,T ]×Rd)‖u‖

3
L∞t L2

x([−T,T ]×Rd).

(3.1)

With a(x, y) = |x−y|. When d = 3, (−∆∆a(x, y)) = Cδ(|x−y|), and when
d ≥ 4,

(−∆∆a(x, y)) =
C(d)
|x− y|3 .

For all d ≥ 3,

∫ T

−T
N(t)3dt !

∫ T

−T

∫

Rd×Rd
(−∆∆a(x, y))|u(t, x)|2|u(t, y)|2dxdydt.

This can be seen more clearly for d ≥ 4 since most of the mass is concentrated

around |x − x(t)| ≤ C(
m2

0
1000 )

N(t) and 1
|x−y|3 # N(t)3 when |x − x(t)| ≤ C(

m2
0

1000 )
N(t)

and |y − x(t)| ≤ C(
m2

0
1000 )

N(t) .

If we had u0 ∈ H1
x(Rd), then by conservation of energy and (3.1) this would

imply
∫ T

−T
N(t)3dt ! 1, (3.2)

giving a contradiction for T sufficiently large when N(t) ≡ 1. Instead of
proving u(t) ∈ H1

x(Rd) for any t, we will localize the solution u to low
frequencies. Let I be the Fourier multiplier
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Îf(ξ) = φ(
ξ

CN
)f̂(ξ), (3.3)

with φ ∈ C∞0 (Rd), φ radial, and

φ =
{

1, |ξ| ≤ 1;
0, |ξ| > 2. (3.4)

Make a Galilean transformation so that ξ(0) = 0 and choose C sufficiently
large so that |ξ(t)| << CN when t ∈ [−N, N ]. By (1.22), this implies

‖Iu‖L∞t Ḣ1
x([−T,T ]×Rd) ! o(N). (3.5)

So if
∂t(Iu) = i∆(Iu)− i|Iu|4/d(Iu),

then we could apply the exact same arguments as found in [10], [23], and
prove

∫ N

−N

∫

Rd×Rd
(−∆∆a(x, y))|Iu(t, x)|2|Iu(t, y)|2dxdydt

! ‖Iu‖L∞t Ḣ1
x([−N,N ]×Rd)‖Iu‖3L∞t L2

x([−N,N ]×Rd) ! o(N),
(3.6)

giving a contradiction for N sufficiently large. But because I(|u|4/du) .=
|Iu|4/dIu,

∂t(Iu) = i∆(Iu)− i|Iu|4/d(Iu) + i|Iu|4/d(Iu)− iI(|u|4/du), (3.7)

and
∫ N

−N

∫

Rd×Rd
(−∆∆a(x, y))|Iu(t, x)|2|Iu(t, y)|2dxdydt

! ‖Iu‖L∞t Ḣ1
x([−N,N ]×Rd)‖Iu‖3L∞t L2

x([−N,N ]×Rd) + E ,

(3.8)

E is an error term. It suffices to prove E ! o(N). To prove this, it suffices
to prove that for any Nj ≤ N ,

‖P>Nju‖
L2

t L
2d

d−2
x ([−N,N ]×Rd)

! N1/2

N1/2
j

. (3.9)

We prove (3.9) by induction. When N(t) ≡ 1, ‖u‖
2(d+2)

d ([−N,N ]×Rd)

L
2(d+2)

d
t,x

∼

N . Therefore we can partition [−N, N ] into ∼ N subintervals Jl with
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‖u‖
L

2(d+2)/d
t,x

= ε0. By Strichartz estimates and conservation of mass, this
proves

‖u‖
L2

t L
2d

d−2
x ([−N,N ]×Rd)

! N1/2,

which takes care of Nj ≤ 1.

Next, divide [−N, N ] into ∼ N
Nj

subintervals, with |ξ(t1) − ξ(t2)| ≤ Njη
1000 ,

η > 0 is a small constant to be chosen later. For simplicity, for the rest of
the talk we will concentrate on d = 3. Take one such interval, [a, b]. By
Duhamel’s formula,

u(t) = ei(t−a)∆u(a)− i

∫ t

a
ei(t−τ)∆|u(τ)|4/3u(τ)dτ. (3.10)

‖P|ξ−ξ(t)|>Nj
u‖L2

t L6
x([a,b]×R3) ≤ ‖P|ξ−ξ(a)|>

Nj
2

u‖L2
t L6

x([a,b]×R3)

! 1 + ‖P
|ξ−ξ(a)|>

Nj
2

(|u|4/3u)‖
L2

t L
6/5
x ([a,b]×R3)

.

Without loss of generality suppose ξ(a) = 0.

(|u|4/du) = (|u≤ηNj |4/d(u≤ηNj ))

+O(|u>ηNj ||u|ξ−ξ(t)|>C0
|4/d) + O(|u>ηNj ||u|ξ−ξ(t)|≤C0

|4/d).

Using [28] and induction we can prove

‖P>Nj (|u≤ηNj |4/du≤ηNj )‖
L2

t L
2d

d+2
x

≤ Cη1/2 N1/2

N1/2
j

. (3.11)

Next, choose C0(ε) sufficiently large so that

‖u>C0‖L∞t L2
x
≤ ε(η).

‖|u>ηNj ||u>C0 |4/d‖
L2

t L
2d

d+2
x

≤ Cη−1/2N−1/2
j N1/2ε(η)4/d. (3.12)

Similarly, choose a cutoff function χ(x− x(t)), χ ≡ 1 for |x− x(t)| ≤ C0.

‖|u>ηNj ||u≤C0 |4/d(1− χ(t))‖
L2

t L
2d

d+2
x

≤ Cη−1/2N−1/2
j N1/2ε(η)4/d. (3.13)
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Finally, we use a bilinear estimate to attack

‖|u>ηNj ||u≤C0 |4/dχ(t))‖
L2

t L
2d

d+2
x

. (3.14)

This term is the ”main term”, since the mass is concentrated in both space
and frequency. If û0 is supported on |ξ| ≤ M and v̂0 is supported on |ξ| ≥ N ,
M << N ,

‖(eit∆u0)(eit∆v0)‖L2
t,x(R×Rd) ! M (d−1)/2

N1/2
‖u0‖L2

x(Rd)‖v0‖L2
x(Rd). (3.15)

We partition [a, b] into ∼ Nj small intervals with ‖u‖
L

10/3
t,x (Jl×R3)

≤ ε0. Then
the linear solution dominates over each small interval.

‖|u>ηNj ||u≤C0 |4/3χ(t)‖
L2

t L
2d

d+2
x (Jl×R3)

! ‖(u≤C0)(u>ηNj )‖L2
t,x(Jl×R3)‖χ(t)‖L∞t L6

x(Jl×Rd)‖u‖L∞t L2
x(Jl×R3)

! C3/2
0

N1/2

η1/2N1/2
j

.

Therefore, by induction, when d = 3,

‖u>Nj‖L2
t L6

x([−N,N ]×R3)

≤ C(d)Cη1/2(
N

Nj
)1/2 + C(d)Cε(η)4/3η−1/2(

N

Nj
)1/2 + C(d)C0(ε)3/2(

N

Nj
)1/2.

(3.16)
We choose η sufficiently small so that C(d)η1/2 << 1. Then we choose
ε(η) sufficiently small so that C(d)η−1/2ε(η)4/3 << 1. Finally, choose C
such that C(d)C0(ε)3/2 << C to close the induction. We make a similar
argument for d ≥ 4.
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