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1 Introduction

In this talk we are going to discuss the mass critical nonlinear Schrodinger
initial value problem

iy + Au = plu*%u, (11)
u(0, ) = up. '

The case u = 1 is called the defocusing case, u = —1 is the focusing case.
A solution to (1.1) in fact gives an entire family of solutions to (1.1) since if
u(t, z) solves (1.1) on the interval [0, Tp] with initial data ug, then

1 t x

u(t,x) = Wu(ﬁa X)

is a solution to (1.1) on [0, \?Tp] with initial data ﬁuo(f).
1 T
luoll 2 may = I3z u0 ()l L2 ma)- (1.2)
We can also apply the Galilean transform. If u(t,z) solves (1.1), then

em'goe*itKO‘Qu(t,x — 2t&) (1.3)

solves (1.1). This transformation has the effect of shifting a solution in
frequency by a fixed amount, and also shifting the solution in space by
Tr — 2t§0.

A solution to (1.1) conserves the quantities mass,



M(u(t)) = / u(t, @) 2dz,

and energy,

2(d+2)

E(u(t)) = ;/|Vu(t,x)|2d:c+Q(C;Jﬁm/m(t,xﬂ 2 4.

The solution to
g + Av = 0,
v(0,x) = vy,
is given by
o(t,z) = ePuyg.
Moreover, the solution to
v + Av = F(t),
v(0,x) = vy,

is given by Duhamel’s formula,
v(t, x) = ePug — z/ AR (1) dr.
0
This talk is going to focus on d > 3. Taking the Fourier transform,

F(e*Bug)(€) = e P g (¢).

The solution to the free Schrodinger equation,

: C d _Z'|9”_. ‘2
etBuy = td(/2> /e @ uo(y)dy,

also obeys the dispersive estimate

itA
”6” UOHLgo(Rd) S HUOHL;(Rd)-

(1.5)

(1.10)

(1.11)

(1.12)

Therefore, by [17], (1.9), (1.10), and (1.12), when d > 3, a pair (p,q) is
called an admissible pair if % = d(% — %) and p > 2. If (p,q), (p,q) are also

admissible pairs then a solution v to



vy +Av=0F,

1.13
U(O, '1") = o, ( )
obeys the Strichartz estimates

lollerarxray < llvoll Lz ey + HFHLf’Lg’(Ide)- (1.14)

Therefore, if u is a solution to (1.1),

1+4/d
lll swen  Slwollzmey + ull bty - (115)
L,,* (RxR?) L,,7 (RxRd)

For ||ug]| [2(R4) < €0, €o sufficiently small, this proves global well-posedness
by Picard iteration. We also define scattering.

Definition 1.1 A solution to (1.1) is said to scatter to a free solution if
there exist u+ € L?(R?) such that

lim ||u(t,z) — eitAu+||L2(Rd) =0, (1.16)
t—o0 z
and
lim [ju(t,z) — e u_|| 2 (r4) = 0. (1.17)
t——o00 z

The solution to (1.1) is also scattering for small initial data. Since

lull 2z S lluoll 2 (mey

. (RxR4)

when [[uo| 12 (ra) < €0, for any k > 0, there exists T'(k) such that

[ull 2wt <27" (1.18)
d

([T (k),20))

t,x

e~ TeAu(Ty,) — e_iT’“+1AU(Tk+1)||L§(Rd)

Thy1
= H/ eiZTA|u(T)|4/du(T)||L%(Rd) 5 ”qu—‘gzld/fQ) S 271{:.
’ Lt,md ([T'(k),0))

Then let



Ugp = klirgo u(Ty). (1.19)

We can similarly define u_.

Now define the quantity

A(m) = sup{lull zw+2) w2 ey = m}- (1.20)

t,ccd (RXRd)
If A(m) = C'(m) < oo, then (1.1) is globally well-posed and scattering for
|uoll 2(ray = m. This is because we can partition R into ~ C(m)w«i“)

subintervals with [|u|| 2(at2) < €p on each separate subinterval.
2(d+2)

L, (IxR?)

Now take one such subinterval [a,b]. By Duhamel’s principle, the solution
on [a,b] has the form

t
et= 2y (a) — Z/ DR u(r)| Y u(T)dr. (1.21)

Moreover,

t
| / DAy ()| Y () dr || agasn St
a d ([a,b] xR4)

t,x

so the linear solution ¢*~%4(a) will dominate the solution to (1.1) over
the time interval [a, b]. This idea will be a very important notion at several
points throughout the argument.

Making a perturbative argument, we can prove A is a continuous function.
Therefore, {m : A(m) < oo} is a nonempty open set and therefore the set
{m : A(m) = oo} has a least element. We will define mg to be this least
element. Then a solution u to (1.1) with

lull 26as2) =00
4  (RxRY)

b
and

[u(®)ll L2 (ray = mo
is called a minimal mass blowup solution. Such a solution must possess a

number of additional properties, in particular it must be concentrated in
both frequency and space.



Lemma 1.1 If a minimal mass blowup solution u exists on a time interval
I, then there exist functions x(t),£(t) : I — R, N(t) : I — (0,00), such
that for every n > 0 there exists C(n) such that

/ (e, ©)de < n (1.22)
|E=£(t)|>C(n)N(t)

/|x—:c(t>|><(,z

c
N(t)

lu(t, z)|?dx < n (1.23)

<

Proof: See [24].

Furthermore, to prove A(m) < oo for all m, it suffices to exclude the minimal
mass blowup scenarios

1. N(t) ~t='/2, on (0, c0),

2. N(t) =1,

3. N(t) < 1, liminfy—.00 N(t) = 0.
See [18] for details.
To prove

A(m) < oo (1.24)

for all m < oo, it therefore suffices to exclude the three minimal mass blowup
scenarios (1) - (3). Because we are dealing with the nonradial case, we need
to understand how £(¢) moves around on the maximum interval I.

Lemma 1.2 If J is an interval with ||ul| 2a+2) < €9, then forti, ty €
4 (JxR9)
J, [€(t1) = &(t2)| S N(t1) + N(t2).

Proof: Recall that for the interval J = [a, b], the linear evolution e?*~®%(q)
dominates. Therefore, the balls

t,x

2

{l§ - £(t)] < C({5)N (1) (1.25)

and



2

{l§ - £(t2)] < C({5 N (t2) (1:26)

must intersect. Therefore, |£(t1) — &(t2)] < N(t1) + N(t2). O

Since the linear solution dominates over the interval J the scale cannot
change too rapidly, and thus we also have N(t1) ~ N(t2).

2 Scenario 1:

To deal with this scenario, we will adopt the arguments from [19] in the
radial case. There are two additional complications that arise from the
nonradial case. The first complication is that in the radial case £(t) = 0,
while in the nonradial case this might not be so. We quote the theorem

Theorem 2.1 If u(t,z) is a minimal mass blowup solution to (1.1), then

Ts 2(d+2) Ts
N2 dt S flull 5l S1+ [ N@?Zdt. (21
Ty Lt,zd ([TlaTQ]XRd) Ty

Proof: See [19]. O
This implies that for any k,
Jull sgase, <1 (2.2
Ly, % ([2k2F+1]xRY)

This in turn implies |£(2¥) — £(25+1)| < 27%/2. Thus the limit

lim £(2%) = €oo (2.3)

k—o0

exists, and moreover |€(2F) — €4 < 27%/2. Now make a Galilean transforma-
tion that maps &, to the origin. This implies that after making a Galilean
transformation and modifying C(n) by a fixed constant,

/ ja(t, €)[2de < 1. (2.4)
[€]>C(n)N(t)

The arguments in [19] then prove a minimal mass self-similar solution u(t) €

Hie (R%), which in the defocusing case N(t) — oo contradicts conserva-
tion of energy (1.5). This is accomplished via proving additional regularity



by induction on Hj3, starting with HS for some € > 0. In order to put
u(t) € HE, [19] used a restriction estimate specialized to the radial case.
This estimate is obviously not available in the nonradial case.

In point of fact, in order to start the induction in [19], it is enough to show
ap = sup [Py -1/2geu(t)|| 22 (ray (2.5)
te(0,00)

is rapidly decreasing in k. The solution to (1.1) can be split, u = v + w,
where v and w solve the coupled equations

ivt + Av = 0,
(2.6)
v(l,z) = Psyu(l),
. Aw = 4/d
iwg + Aw = |u|* u, (2.7)
We must have
1 d )
|—(w, w)|dt > [[P>nu(1)]|72 gays (2.8)
o dt z(R%)

or some of the mass will stick to low frequencies as N(t) oo, which gives
a contradiction.

d

et — _9(; 4/d
g (w, w) 2(i|u|* v, w).
Now let
Te(0,00)

We prove that for some o(d) > 0,
M(2F) < M(23a)2+2/d 4 9o (2.10)
Thus we prove M (2*) is rapidly decreasing. By interpolation, for

S(A) = sup ”P>AT—1/2UH 2(d+2) , (2.11)
T>0 L, . ¢ ([T2T]xR49)

t,x

and



N (A) = sup [P, gp-1/2([ul )| aqaro , (2.12)
T>0 L, 7% ([T2T)xR4)

t,x

S(2F) and NV (2%) are rapidly decreasing in k. Then following the arguments
in [19] we can prove u(t) € HiT A (R9Y). This excludes the N(t) ~ t~1/2
case.

3 N()=1:

In this talk we are going to exclude the N(t) = 1 case. To simplify the talk,
we will deal with the case {(t) = 0 only. In dealing with the case N(t) =1,
d > 3, we make use of the interaction Morawetz estimate proved in [8], [23],

T
2 2
/_T /Rded(—AAa(x,y))!u(t, o) ?u(t, y)|2dzdydt -

S Mellge s oy 19l e 2 -7y o).
With a(x,y) = |z —y|. When d =3, (—AAa(z,y)) = Cé(|]z —y|), and when
d> 4,

()
(_AAQ($ay)) - |$ - y‘g'

For all d > 3,

T T
2 2
[ ox@ras [ ] (-asa )t ut)Pdedyt

This can be seen more clearly for d > 4 since most of the mass is concentrated
2

2
around |z — z(t)] < Cgvﬁ) and ‘mjy|3 > N(t)? when |z — z(t)| < 705\,?%])

oy
ORE

and |y — o (t)] <

If we had ug € H!(R?), then by conservation of energy and (3.1) this would
imply

T
/ N(@t)3dt <1, (3.2)
-T

giving a contradiction for T' sufficiently large when N(t) = 1. Instead of
proving u(t) € HL(RY) for any ¢, we will localize the solution u to low
frequencies. Let I be the Fourier multiplier



T(6) = () F(©), (33
with ¢ € C5°(R?), ¢ radial, and
_J L K<y
= { 0, |¢]> 2. (3.4)

Make a Galilean transformation so that £(0) = 0 and choose C sufficiently
large so that |{(t)| << CN when t € [-N, N]. By (1.22), this implies

HI“”LgOH%([fT,T}XRd) S o(N). (3.5)
So if
A, (Iu) = iA(Tu) — i Tu|"*(Tu),

then we could apply the exact same arguments as found in [10], [23], and
prove

N
[ [ (adag)itutt. o) Tutt. )P dsdyds
—N JRIxRA

3
S Ml pe fry - v vixrey LUl e 22 - v vy ety S 0N,

giving a contradiction for N sufficiently large. But because I(|u|*/%u) #
| Tu|* T,
Oy (Iu) = iA(Tu) — il Tu|Y?(Tu) 4 i|Tu| Y4 (Tu) — il (ju|Y %), (3.7)

and
N
[ [ (adaGg)imute o Tutt. ) Pdsdyds
—N JR4xR4
S ull e s - wpreay Ul e 12 v vy + €

€ is an error term. It suffices to prove £ < o(N). To prove this, it suffices
to prove that for any N; < N,

N1/2
1Pyl | S

L2032 (- N,N)xRd) le/2 .

(3.9)

2(d+2) (1 d
We prove (3.9) by induction. When N(t) = 1, ||ul| 2‘@”()[ NNDRD -

L, d

t,z

N. Therefore we can partition [-N, N] into ~ N subintervals J; with



||uH 2a+2)/d = €0- By Strichartz estimates and conservation of mass, this
proves

Jull 2 SN2
L2872 ([-N,N]xR4)

which takes care of N; < 1.

Next, divide [~N, N] into ~ & subintervals, with [¢(t;) — £(t2)| <~k
J

n > 0 is a small constant to be chosen later. For simplicity, for the rest of
the talk we will concentrate on d = 3. Take one such interval, [a,b]. By
Duhamel’s formula,

t
u(t) = D2 (a) — i / DA (7)Y 3u(r)dr. (3.10)

1Pe—e>n; ull2rgamxrs) < IF, 015 N-UHLng([a,b]xRS)

S1+I0F v, ()

E—€(a)> 3 ||L2L6/5([a,b]><R3)'

Without loss of generality suppose &(a) =
([ul*"u) = (Jucqn, Y (u<qn;,))

FO(Jusnn; |uje—e(o)>c0 %) + O(usnn, e —ewi<co %)

Using [28] and induction we can prove

4/d
1P v, (o, [/ uson)ll , e, < O (3.11)

tHT

Next, choose Cy(€) sufficiently large so that

luscollpeerz < €(n)-

_ —1/2
s, lfuscol Y4 20 < Op 2NN 2e() e, (3.12)

2rd+2

t T

Similarly, choose a cutoff function x(x — z(t)), x = 1 for | — z(t)| < Cp.

s, llusco Y41 = XN 20 < O Y2NTVENY2e(n)¥d. (3.13)

d+2
L2L4T

10



Finally, we use a bilinear estimate to attack

H\U>an\\Ugco!4/dx(t))\\L2 2 . (3.14)

T
This term is the "main term”, since the mass is concentrated in both space

and frequency. If 4o is supported on |{| < M and ¥y is supported on |{| > N,
M << N,

[[(e"Zuo) (e UO)Hng(Rde)NiNl/Q HUOHLg(Rd)HUOHLg(Rd)- (3.15)

We partition [a, b] into ~ N small intervals with [[u||, 10/s < €. Then
t,x

(JixR3)
the linear solution dominates over each small interval.

4/3
UspN;: || U<C x(t 2d
[[lusnn; [ lu<c| ()HLgLﬁ?(Jlxm)

S H(USCO)(U>T]NJ')HL?@(JZXR:‘})||X(t)||Lf°Lg(Jl><Rd)Hu‘|Lt°°L§(Jl><R3)
1/2
32 N
S G

/2
771/2Nj/

Therefore, by induction, when d = 3,

lusn; 1208 (- v, N xR?)

12, N 172 c(md/3-1/2¢ N 172 32 N2
< C(d)Cn (Nj) + C(d)Ce(n)™*n (Nj) + C(d)Co(e) (N](g .

We choose 7 sufficiently small so that C(d)n'/? << 1. Then we choose
e(n) sufficiently small so that C(d)n~2e(n)*? << 1. Finally, choose C
such that C(d)Cy(e)*/? << C to close the induction. We make a similar
argument for d > 4.
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