Talk on Global well-posedness and scattering for the defocusing, L^2 -critical, nonlinear Schrödinger equation when $d \ge 3$

Benjamin Dodson

July 9, 2010

1 Introduction

In this talk we are going to discuss the mass critical nonlinear Schrodinger initial value problem

$$iu_t + \Delta u = \mu |u|^{4/d} u,$$

 $u(0, x) = u_0.$ (1.1)

The case $\mu = 1$ is called the defocusing case, $\mu = -1$ is the focusing case. A solution to (1.1) in fact gives an entire family of solutions to (1.1) since if u(t, x) solves (1.1) on the interval $[0, T_0]$ with initial data u_0 , then

$$u_{\lambda}(t,x) = \frac{1}{\lambda^{d/2}}u(\frac{t}{\lambda^2},\frac{x}{\lambda})$$

is a solution to (1.1) on $[0, \lambda^2 T_0]$ with initial data $\frac{1}{\lambda^{d/2}} u_0(\frac{x}{\lambda})$.

$$\|u_0\|_{L^2_x(\mathbf{R}^d)} = \|\frac{1}{\lambda^{d/2}} u_0(\frac{x}{\lambda})\|_{L^2_x(\mathbf{R}^d)}.$$
(1.2)

We can also apply the Galilean transform. If u(t, x) solves (1.1), then

$$e^{ix\cdot\xi_0}e^{-it|\xi_0|^2}u(t,x-2t\xi_0)$$
(1.3)

solves (1.1). This transformation has the effect of shifting a solution in frequency by a fixed amount, and also shifting the solution in space by $x - 2t\xi_0$.

A solution to (1.1) conserves the quantities mass,

$$M(u(t)) = \int |u(t,x)|^2 dx,$$
 (1.4)

and energy,

$$E(u(t)) = \frac{1}{2} \int |\nabla u(t,x)|^2 dx + \frac{\mu d}{2(d+2)} \int |u(t,x)|^{\frac{2(d+2)}{d}} dx.$$
(1.5)

The solution to

$$iv_t + \Delta v = 0,$$

$$v(0, x) = v_0,$$
(1.6)

is given by

$$v(t,x) = e^{it\Delta}v_0. \tag{1.7}$$

Moreover, the solution to

$$iv_t + \Delta v = F(t),$$

$$v(0, x) = v_0,$$
(1.8)

is given by Duhamel's formula,

$$v(t,x) = e^{it\Delta}v_0 - i\int_0^t e^{i(t-\tau)\Delta}F(\tau)d\tau.$$
(1.9)

This talk is going to focus on $d \ge 3$. Taking the Fourier transform,

$$\mathcal{F}(e^{it\Delta}u_0)(\xi) = e^{-it|\xi|^2}\hat{u}_0(\xi).$$
(1.10)

The solution to the free Schrodinger equation,

$$e^{it\Delta}u_0 = \frac{C(d)}{t^{d/2}} \int e^{-i\frac{|x-y|^2}{4t}} u_0(y) dy, \qquad (1.11)$$

also obeys the dispersive estimate

$$\|e^{it\Delta}u_0\|_{L^{\infty}_x(\mathbf{R}^d)} \lesssim \|u_0\|_{L^1_x(\mathbf{R}^d)}.$$
 (1.12)

Therefore, by [17], (1.9), (1.10), and (1.12), when $d \geq 3$, a pair (p,q) is called an admissible pair if $\frac{2}{p} = d(\frac{1}{2} - \frac{1}{q})$ and $p \geq 2$. If (p,q), (\tilde{p},\tilde{q}) are also admissible pairs then a solution v to

$$iv_t + \Delta v = F,$$

$$v(0, x) = v_0,$$
(1.13)

obeys the Strichartz estimates

$$\|v\|_{L^{p}_{t}L^{q}_{x}(I\times\mathbf{R}^{d})} \lesssim \|v_{0}\|_{L^{2}_{x}(\mathbf{R}^{d})} + \|F\|_{L^{\tilde{p}'}_{t}L^{\tilde{q}'}_{x}(I\times\mathbf{R}^{d})}.$$
(1.14)

Therefore, if u is a solution to (1.1),

$$\|u\|_{L^{\frac{2(d+2)}{d}}_{t,x}(\mathbf{R}\times\mathbf{R}^d)} \lesssim \|u_0\|_{L^2_x(\mathbf{R}^d)} + \|u\|^{1+4/d}_{\frac{2(d+2)}{L_{t,x}^d}(\mathbf{R}\times\mathbf{R}^d)}.$$
 (1.15)

For $||u_0||_{L^2_x(\mathbf{R}^d)} \leq \epsilon_0$, ϵ_0 sufficiently small, this proves global well-posedness by Picard iteration. We also define scattering.

Definition 1.1 A solution to (1.1) is said to scatter to a free solution if there exist $u_{\pm} \in L^2(\mathbf{R}^d)$ such that

$$\lim_{t \to \infty} \|u(t,x) - e^{it\Delta}u_+\|_{L^2_x(\mathbf{R}^d)} = 0,$$
(1.16)

and

$$\lim_{t \to -\infty} \|u(t,x) - e^{it\Delta}u_{-}\|_{L^{2}_{x}(\mathbf{R}^{d})} = 0.$$
(1.17)

The solution to (1.1) is also scattering for small initial data. Since

$$\|u\|_{L^{\frac{2(d+2)}{d}}_{t,x}(\mathbf{R}\times\mathbf{R}^d)}\lesssim \|u_0\|_{L^2_x(\mathbf{R}^d)}$$

when $||u_0||_{L^2_x(\mathbf{R}^d)} \leq \epsilon_0$, for any k > 0, there exists T(k) such that

$$\|u\|_{L^{\frac{2(d+2)}{d}}_{t,x}([T(k),\infty))} \le 2^{-k}.$$

$$\|e^{-iT_k\Delta}u(T_k) - e^{-iT_{k+1}\Delta}u(T_{k+1})\|_{L^2_x(\mathbf{R}^d)}$$
(1.18)

$$= \|\int_{T_k}^{T_{k+1}} e^{-i\tau\Delta} |u(\tau)|^{4/d} u(\tau)\|_{L^2_x(\mathbf{R}^d)} \lesssim \|u\|_{L^{\frac{2(d+2)}{d}}(T(k),\infty))}^{1+4/d} \le 2^{-k}.$$

Then let

$$u_{+} = \lim_{k \to \infty} u(T_k). \tag{1.19}$$

We can similarly define u_{-} .

Now define the quantity

$$A(m) = \sup\{\|u\|_{L^{2(d+2)}_{t,x^d}(\mathbf{R}\times\mathbf{R}^d)} : \|u(t)\|_{L^2_x(\mathbf{R}^d)} = m\}.$$
 (1.20)

If $A(m) = C(m) < \infty$, then (1.1) is globally well-posed and scattering for $||u_0||_{L^2_x(\mathbf{R}^d)} = m$. This is because we can partition \mathbf{R} into $\sim C(m)^{\frac{2(d+2)}{d}}$ subintervals with $||u||_{L^{\frac{2(d+2)}{d}}_{t,x}(I \times \mathbf{R}^d)} \leq \epsilon_0$ on each separate subinterval.

Now take one such subinterval [a, b]. By Duhamel's principle, the solution on [a, b] has the form

$$e^{i(t-a)\Delta}u(a) - i\int_{a}^{t} e^{i(t-\tau)\Delta}|u(\tau)|^{4/d}u(\tau)d\tau.$$
 (1.21)

Moreover,

$$\|\int_{a}^{t} e^{i(t-\tau)\Delta} |u(\tau)|^{4/d} u(\tau) d\tau\|_{L^{\frac{2(d+2)}{d}}_{t,x}([a,b]\times\mathbf{R}^{d})} \lesssim \epsilon_{0}^{1+4/d},$$

so the linear solution $e^{i(t-a)\Delta}u(a)$ will dominate the solution to (1.1) over the time interval [a, b]. This idea will be a very important notion at several points throughout the argument.

Making a perturbative argument, we can prove A is a continuous function. Therefore, $\{m : A(m) < \infty\}$ is a nonempty open set and therefore the set $\{m : A(m) = \infty\}$ has a least element. We will define m_0 to be this least element. Then a solution u to (1.1) with

$$\|u\|_{L^{\frac{2(d+2)}{d}}_{t,x}(\mathbf{R}\times\mathbf{R}^d)} = \infty$$

and

$$||u(t)||_{L^2_x(\mathbf{R}^d)} = m_0$$

is called a minimal mass blowup solution. Such a solution must possess a number of additional properties, in particular it must be concentrated in both frequency and space. **Lemma 1.1** If a minimal mass blowup solution u exists on a time interval I, then there exist functions $x(t), \xi(t) : I \to \mathbf{R}^d$, $N(t) : I \to (0, \infty)$, such that for every $\eta > 0$ there exists $C(\eta)$ such that

$$\int_{|\xi - \xi(t)| \ge C(\eta) N(t)} |\hat{u}(t,\xi)|^2 d\xi < \eta$$
(1.22)

$$\int_{|x-x(t)| \ge \frac{C(\eta)}{N(t)}} |u(t,x)|^2 dx < \eta$$
(1.23)

Proof: See [24].

Furthermore, to prove $A(m) < \infty$ for all m, it suffices to exclude the minimal mass blowup scenarios

- 1. $N(t) \sim t^{-1/2}$, on $(0, \infty)$, 2. $N(t) \equiv 1$,
- 3. $N(t) \le 1$, $\liminf_{t \to \pm \infty} N(t) = 0$.

See [18] for details.

To prove

$$A(m) < \infty \tag{1.24}$$

for all $m < \infty$, it therefore suffices to exclude the three minimal mass blowup scenarios (1) - (3). Because we are dealing with the nonradial case, we need to understand how $\xi(t)$ moves around on the maximum interval I.

Lemma 1.2 If J is an interval with $||u||_{L^{\frac{2(d+2)}{d}}_{t,x}(J \times \mathbf{R}^d)} \leq \epsilon_0$, then for $t_1, t_2 \in J$, $|\xi(t_1) - \xi(t_2)| \leq N(t_1) + N(t_2)$.

Proof: Recall that for the interval J = [a, b], the linear evolution $e^{i(t-a)\Delta}u(a)$ dominates. Therefore, the balls

$$\{|\xi - \xi(t_1)| \le C(\frac{m_0^2}{1000})N(t_1)\}$$
(1.25)

and

$$\{|\xi - \xi(t_2)| \le C(\frac{m_0^2}{1000})N(t_2)\}$$
(1.26)

must intersect. Therefore, $|\xi(t_1) - \xi(t_2)| \leq N(t_1) + N(t_2)$. \Box

Since the linear solution dominates over the interval J the scale cannot change too rapidly, and thus we also have $N(t_1) \sim N(t_2)$.

2 Scenario 1:

To deal with this scenario, we will adopt the arguments from [19] in the radial case. There are two additional complications that arise from the nonradial case. The first complication is that in the radial case $\xi(t) \equiv 0$, while in the nonradial case this might not be so. We quote the theorem

Theorem 2.1 If u(t, x) is a minimal mass blowup solution to (1.1), then

$$\int_{T_1}^{T_2} N(t)^2 dt \lesssim \|u\|_{L^{\frac{2(d+2)}{d}}_{t,x^d}([T_1,T_2] \times \mathbf{R}^d)}^{\frac{2(d+2)}{d}} \lesssim 1 + \int_{T_1}^{T_2} N(t)^2 dt.$$
(2.1)

Proof: See [19]. \Box

This implies that for any k,

$$\|u\|_{L^{\frac{2(d+2)}{d}}_{t,x}([2^k, 2^{k+1}] \times \mathbf{R}^d)} \lesssim 1.$$
(2.2)

This in turn implies $|\xi(2^k) - \xi(2^{k+1})| \leq 2^{-k/2}$. Thus the limit

$$\lim_{k \to \infty} \xi(2^k) = \xi_{\infty} \tag{2.3}$$

exists, and moreover $|\xi(2^k) - \xi_{\infty}| \leq 2^{-k/2}$. Now make a Galilean transformation that maps ξ_{∞} to the origin. This implies that after making a Galilean transformation and modifying $C(\eta)$ by a fixed constant,

$$\int_{|\xi| \ge C(\eta)N(t)} |\hat{u}(t,\xi)|^2 d\xi < \eta.$$
(2.4)

The arguments in [19] then prove a minimal mass self-similar solution $u(t) \in H_x^{1+4/d-}(\mathbf{R}^d)$, which in the defocusing case $N(t) \to \infty$ contradicts conservation of energy (1.5). This is accomplished via proving additional regularity

by induction on H_x^s , starting with H_x^{ϵ} for some $\epsilon > 0$. In order to put $u(t) \in H_x^{\epsilon}$, [19] used a restriction estimate specialized to the radial case. This estimate is obviously not available in the nonradial case.

In point of fact, in order to start the induction in [19], it is enough to show

$$a_k = \sup_{t \in (0,\infty)} \|P_{>t^{-1/2}2^k} u(t)\|_{L^2_x(\mathbf{R}^d)}$$
(2.5)

is rapidly decreasing in k. The solution to (1.1) can be split, u = v + w, where v and w solve the coupled equations

$$iv_t + \Delta v = 0,$$

 $v(1, x) = P_{>N}u(1),$
(2.6)

$$v(1, x) = P_{>N}u(1),$$

$$iw_t + \Delta w = |u|^{4/d}u,$$

$$w(1, x) = P_{\leq N}u(1).$$
(2.7)

We must have

$$\int_{0}^{1} \left| \frac{d}{dt} \langle w, w \rangle \right| dt \ge \| P_{>N} u(1) \|_{L^{2}_{x}(\mathbf{R}^{d})}^{2}, \tag{2.8}$$

or some of the mass will stick to low frequencies as $N(t) \nearrow \infty$, which gives a contradiction.

$$\frac{d}{dt} \langle w, w \rangle = -2 \langle i | u |^{4/d} v, w \rangle.$$

Now let

$$\mathcal{M}(A) = \sup_{T \in (0,\infty)} \|P_{>AT^{-1/2}}u(T)\|_{L^2_x(\mathbf{R}^d)}.$$
(2.9)

We prove that for some $\sigma(d) > 0$,

$$\mathcal{M}(2^k) \lesssim \mathcal{M}(2^{\frac{k}{2d}})^{2+2/d} + 2^{-k\sigma}.$$
 (2.10)

Thus we prove $\mathcal{M}(2^k)$ is rapidly decreasing. By interpolation, for

$$\mathcal{S}(A) = \sup_{T>0} \|P_{>AT^{-1/2}}u\|_{L^{\frac{2(d+2)}{d}}_{t,x}([T,2T]\times\mathbf{R}^d)},$$
(2.11)

and

$$\mathcal{N}(A) = \sup_{T>0} \|P_{>AT^{-1/2}}(|u|^{4/d}u)\|_{L^{\frac{2(d+2)}{d+4}}_{t,x}([T,2T]\times\mathbf{R}^d)},$$
(2.12)

 $\mathcal{S}(2^k)$ and $\mathcal{N}(2^k)$ are rapidly decreasing in k. Then following the arguments in [19] we can prove $u(t) \in H_x^{1+4/d-}(\mathbf{R}^d)$. This excludes the $N(t) \sim t^{-1/2}$ case.

3 $N(t) \equiv 1$:

In this talk we are going to exclude the $N(t) \equiv 1$ case. To simplify the talk, we will deal with the case $\xi(t) \equiv 0$ only. In dealing with the case $N(t) \equiv 1$, $d \geq 3$, we make use of the interaction Morawetz estimate proved in [8], [23],

$$\int_{-T}^{T} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} (-\Delta \Delta a(x, y)) |u(t, x)|^{2} |u(t, y)|^{2} dx dy dt$$

$$\lesssim \|u\|_{L_{t}^{\infty} \dot{H}_{x}^{1}([-T, T] \times \mathbf{R}^{d})} \|u\|_{L_{t}^{\infty} L_{x}^{2}([-T, T] \times \mathbf{R}^{d})}^{3}.$$
(3.1)

With a(x, y) = |x - y|. When d = 3, $(-\Delta \Delta a(x, y)) = C\delta(|x - y|)$, and when $d \ge 4$,

$$(-\Delta\Delta a(x,y)) = \frac{C(d)}{|x-y|^3}$$

For all $d \geq 3$,

$$\int_{-T}^{T} N(t)^{3} dt \lesssim \int_{-T}^{T} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} (-\Delta \Delta a(x, y)) |u(t, x)|^{2} |u(t, y)|^{2} dx dy dt.$$

This can be seen more clearly for $d \ge 4$ since most of the mass is concentrated around $|x - x(t)| \le \frac{C(\frac{m_0^2}{1000})}{N(t)}$ and $\frac{1}{|x-y|^3} \gtrsim N(t)^3$ when $|x - x(t)| \le \frac{C(\frac{m_0^2}{1000})}{N(t)}$ and $|y - x(t)| \le \frac{C(\frac{m_0^2}{1000})}{N(t)}$.

If we had $u_0 \in H^1_x(\mathbf{R}^d)$, then by conservation of energy and (3.1) this would imply

$$\int_{-T}^{T} N(t)^3 dt \lesssim 1, \qquad (3.2)$$

giving a contradiction for T sufficiently large when $N(t) \equiv 1$. Instead of proving $u(t) \in H^1_x(\mathbf{R}^d)$ for any t, we will localize the solution u to low frequencies. Let I be the Fourier multiplier

$$\widehat{If}(\xi) = \phi(\frac{\xi}{CN})\widehat{f}(\xi), \qquad (3.3)$$

with $\phi \in C_0^{\infty}(\mathbf{R}^d)$, ϕ radial, and

$$\phi = \begin{cases} 1, & |\xi| \le 1; \\ 0, & |\xi| > 2. \end{cases}$$
(3.4)

Make a Galilean transformation so that $\xi(0) = 0$ and choose C sufficiently large so that $|\xi(t)| \ll CN$ when $t \in [-N, N]$. By (1.22), this implies

$$\|Iu\|_{L^{\infty}_{t}\dot{H}^{1}_{x}([-T,T]\times\mathbf{R}^{d})} \lesssim o(N).$$
(3.5)

So if

$$\partial_t(Iu) = i\Delta(Iu) - i|Iu|^{4/d}(Iu),$$

then we could apply the exact same arguments as found in [10], [23], and prove

$$\int_{-N}^{N} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} (-\Delta \Delta a(x, y)) |Iu(t, x)|^{2} |Iu(t, y)|^{2} dx dy dt
\lesssim \|Iu\|_{L_{t}^{\infty} \dot{H}_{x}^{1}([-N,N] \times \mathbf{R}^{d})} \|Iu\|_{L_{t}^{\infty} L_{x}^{2}([-N,N] \times \mathbf{R}^{d})}^{3} \lesssim o(N),$$
(3.6)

giving a contradiction for N sufficiently large. But because $I(|u|^{4/d}u) \neq |Iu|^{4/d}Iu$,

$$\partial_t(Iu) = i\Delta(Iu) - i|Iu|^{4/d}(Iu) + i|Iu|^{4/d}(Iu) - iI(|u|^{4/d}u),$$
(3.7)

and

$$\int_{-N}^{N} \int_{\mathbf{R}^{d} \times \mathbf{R}^{d}} (-\Delta \Delta a(x, y)) |Iu(t, x)|^{2} |Iu(t, y)|^{2} dx dy dt
\lesssim \|Iu\|_{L_{t}^{\infty} \dot{H}_{x}^{1}([-N, N] \times \mathbf{R}^{d})} \|Iu\|_{L_{t}^{\infty} L_{x}^{2}([-N, N] \times \mathbf{R}^{d})}^{3} + \mathcal{E},$$
(3.8)

 \mathcal{E} is an error term. It suffices to prove $\mathcal{E} \leq o(N)$. To prove this, it suffices to prove that for any $N_j \leq N$,

$$\|P_{>N_j}u\|_{L^2_t L^{\frac{2d}{d-2}}_x([-N,N]\times\mathbf{R}^d)} \lesssim \frac{N^{1/2}}{N_j^{1/2}}.$$
(3.9)

We prove (3.9) by induction. When $N(t) \equiv 1$, $\|u\|_{L^{\frac{2(d+2)}{d}}([-N,N]\times \mathbf{R}^d)}^{\frac{2(d+2)}{d}([-N,N]\times \mathbf{R}^d)} \sim N$. Therefore we can partition [-N,N] into $\sim N$ subintervals J_l with

 $\|u\|_{L^{2(d+2)/d}_{t,x}}=\epsilon_0.$ By Strichartz estimates and conservation of mass, this proves

$$\|u\|_{L^2_t L^{\frac{2d}{d-2}}_x([-N,N] \times \mathbf{R}^d)} \lesssim N^{1/2},$$

which takes care of $N_j \leq 1$.

Next, divide [-N, N] into $\sim \frac{N}{N_j}$ subintervals, with $|\xi(t_1) - \xi(t_2)| \leq \frac{N_j \eta}{1000}$, $\eta > 0$ is a small constant to be chosen later. For simplicity, for the rest of the talk we will concentrate on d = 3. Take one such interval, [a, b]. By Duhamel's formula,

$$u(t) = e^{i(t-a)\Delta}u(a) - i \int_{a}^{t} e^{i(t-\tau)\Delta} |u(\tau)|^{4/3} u(\tau) d\tau.$$
(3.10)

$$\|P_{|\xi-\xi(t)|>N_j}u\|_{L^2_t L^6_x([a,b]\times\mathbf{R}^3)} \le \|P_{|\xi-\xi(a)|>\frac{N_j}{2}}u\|_{L^2_t L^6_x([a,b]\times\mathbf{R}^3)}$$

$$\lesssim 1 + \|P_{|\xi - \xi(a)| > \frac{N_j}{2}}(|u|^{4/3}u)\|_{L^2_t L^{6/5}_x([a,b] \times \mathbf{R}^3)}.$$

Without loss of generality suppose $\xi(a) = 0$.

$$(|u|^{4/d}u) = (|u_{\leq \eta N_j}|^{4/d}(u_{\leq \eta N_j}))$$

+ $O(|u_{>\eta N_j}||u_{|\xi-\xi(t)|>C_0}|^{4/d}) + O(|u_{>\eta N_j}||u_{|\xi-\xi(t)|\leq C_0}|^{4/d}).$

Using [28] and induction we can prove

$$\|P_{>N_j}(|u_{\leq \eta N_j}|^{4/d} u_{\leq \eta N_j})\|_{L^2_t L^{\frac{2d}{d+2}}_x} \le C\eta^{1/2} \frac{N^{1/2}}{N_j^{1/2}}.$$
(3.11)

Next, choose $C_0(\epsilon)$ sufficiently large so that

$$\|u_{>C_0}\|_{L^\infty_t L^2_x} \le \epsilon(\eta).$$

$$\||u_{>\eta N_j}||u_{>C_0}|^{4/d}\|_{L^2_t L^{\frac{2d}{d+2}}_x} \le C\eta^{-1/2} N_j^{-1/2} N^{1/2} \epsilon(\eta)^{4/d}.$$
(3.12)

Similarly, choose a cutoff function $\chi(x - x(t)), \chi \equiv 1$ for $|x - x(t)| \le C_0$.

$$\||u_{>\eta N_j}||u_{\le C_0}|^{4/d} (1-\chi(t))\|_{L^2_t L^{\frac{2d}{d+2}}_x} \le C\eta^{-1/2} N_j^{-1/2} N^{1/2} \epsilon(\eta)^{4/d}.$$
 (3.13)

Finally, we use a bilinear estimate to attack

$$\||u_{>\eta N_j}||u_{\le C_0}|^{4/d}\chi(t))\|_{L^2_t L^{\frac{2d}{d+2}}_x}.$$
(3.14)

This term is the "main term", since the mass is concentrated in both space and frequency. If \hat{u}_0 is supported on $|\xi| \leq M$ and \hat{v}_0 is supported on $|\xi| \geq N$, $M \ll N$,

$$\|(e^{it\Delta}u_0)(e^{it\Delta}v_0)\|_{L^2_{t,x}(\mathbf{R}\times\mathbf{R}^d)} \lesssim \frac{M^{(d-1)/2}}{N^{1/2}} \|u_0\|_{L^2_x(\mathbf{R}^d)} \|v_0\|_{L^2_x(\mathbf{R}^d)}.$$
 (3.15)

We partition [a, b] into $\sim N_j$ small intervals with $||u||_{L^{10/3}_{t,x}(J_l \times \mathbf{R}^3)} \leq \epsilon_0$. Then the linear solution dominates over each small interval.

$$\begin{split} \| \| u_{>\eta N_{j}} \| \| u_{\leq C_{0}} \|_{L^{2}_{t}L^{2}_{x}L^{\frac{2d}{d+2}}_{x}(J_{l} \times \mathbf{R}^{3})} \\ \lesssim \| (u_{\leq C_{0}})(u_{>\eta N_{j}}) \|_{L^{2}_{t,x}(J_{l} \times \mathbf{R}^{3})} \| \chi(t) \|_{L^{\infty}_{t}L^{6}_{x}(J_{l} \times \mathbf{R}^{d})} \| u \|_{L^{\infty}_{t}L^{2}_{x}(J_{l} \times \mathbf{R}^{3})} \\ \lesssim C_{0}^{3/2} \frac{N^{1/2}}{\eta^{1/2} N_{j}^{1/2}}. \end{split}$$

Therefore, by induction, when d = 3,

$$\|u_{>N_{j}}\|_{L^{2}_{t}L^{6}_{x}([-N,N]\times\mathbf{R}^{3})} \leq C(d)C\eta^{1/2}(\frac{N}{N_{j}})^{1/2} + C(d)C\epsilon(\eta)^{4/3}\eta^{-1/2}(\frac{N}{N_{j}})^{1/2} + C(d)C_{0}(\epsilon)^{3/2}(\frac{N}{N_{j}})^{1/2}.$$
(3.16)

We choose η sufficiently small so that $C(d)\eta^{1/2} \ll 1$. Then we choose $\epsilon(\eta)$ sufficiently small so that $C(d)\eta^{-1/2}\epsilon(\eta)^{4/3} \ll 1$. Finally, choose C such that $C(d)C_0(\epsilon)^{3/2} \ll C$ to close the induction. We make a similar argument for $d \geq 4$.

References

 J. Bourgain. Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity. *International Mathematical Research Notices*, 5:253 – 283, 1998.

- [2] J. Bourgain. *Global Solutions of Nonlinear Schrödinger Equations*. American Mathematical Society Colloquium Publications, 1999.
- [3] J. Bourgain. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc., 12(1):145– 171, 1999.
- [4] T. Cazenave and F. Weissler. The Cauchy problem for the nonlinear Schrödinger Equation in H¹. Manuscripta Mathematics, 61:477 – 494, 1988.
- [5] T. Cazenave and F. Weissler. The Cauchy problem for the nonlinear Schrödinger Equation in H^s. Nonlinear Analysis, 14:807 – 836, 1990.
- [6] J. Colliander, M. Grillakis, and N. Tzirakis. Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on R². Int. Math. Res. Not. IMRN, (23):90 – 119, 2007.
- [7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. *Mathematical Research Letters*, 9:659 – 682, 2002.
- [8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on R³. Communications on Pure and Applied Mathematics, 21:987 – 1014, 2004.
- [9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Resonant decompositions and the I-method for cubic nonlinear Schrödinger equation on R². Discrete and Continuous Dynamical Systems A, 21:665 – 686, 2007.
- [10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \mathbb{R}^3 . Ann. of Math. (2), 167(3):767–865, 2008.
- [11] J. Colliander and T. Roy. Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on R². preprint, arXiv:0811.1803.
- [12] D. De Silva, N. Pavlovic, G. Staffilani, and N. Tzirakis. Global wellposedness for the L²-critical nonlinear Schrödinger equation in higher dimensions. to appear, Communications on Pure and Applied Analysis.

- [13] D. de Silva, N. Pavlović, G. Staffilani, and N. Tzirakis. Global wellposedness and polynomial bounds for the defocusing L²-critical nonlinear Schrödinger equation in ℝ. Comm. Partial Differential Equations, 33(7-9):1395–1429, 2008.
- [14] B. Dodson. Almost morawetz estimates and global well-posedness for the defocusing l²-critical nonlinear schrödinger equation in higher dimensions. arXiv:0909.4332v1.
- [15] B. Dodson. Global well-posedness and scattering for the defocusing, L^2 -critical, nonlinear Schrdinger equation when $d \ge 3$. arXiv:0912.2467v2.
- [16] B. Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. arXiv:0909.0757.
- [17] M. Keel and T. Tao. Endpoint Strichartz estimates. American Journal of Mathematics, 120:955 – 980, 1998.
- [18] R. Killip, T. Tao, and M. Visan. The cubic nonlinear Schrödinger equation in two dimensions with radial data. *Journal of the European Mathematical Society*, to appear.
- [19] R. Killip, M. Visan, and X. Zhang. The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. *Anal. PDE*, 1(2):229–266, 2008.
- [20] C. Sogge. Fourier Intergrals in Classical Analysis. Cambridge University Press, 1993.
- [21] E. Stein. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993.
- [22] T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, 2006.
- [23] T. Tao, M. Visan, and X. Zhang. The nonlinear Schrödinger equation with combined power-type nonlinearities. *Comm. Partial Differential Equations*, 32(7-9):1281–1343, 2007.
- [24] T. Tao, M. Visan, and X. Zhang. Minimal-mass blowup solutions of the mass-critical NLS. *Forum Math.*, 20(5):881–919, 2008.
- [25] M. Taylor. Pseudodifferential Operators and Nonlinear PDE. Birkhauser, 1991.

- [26] M. Taylor. Partial Differential Equations. Springer Verlag Inc., 1996.
- [27] Y. Tsutsumi. L² solutions for nonlinear Schrödinger equation and nonlinear groups. Funkcional Ekvacioj, 30:115 – 125, 1987.
- [28] M. Visan. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Mathematical Journal, 138:281 – 374, 2007.