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Nonlinear Schrödinger equation (NLS)

We consider one-dimensional periodic defocusing NLS:

(NLS)

{
iut − uxx + |u|2pu = 0

u
∣∣
t=0

= u0 ∈ Hs(T),
(x , t) ∈ T× R,

where T = R/2πZ and p ∈ N

NLS is a Hamiltonian PDE:

ut = i
∂H

∂ū
,

with Hamiltonian

H(u) =
1

2

∫
T
|ux |2 +

1

2p + 2

∫
T
|u|2p+2

NLS also conserves the L2-norm and the momentum

=⇒ a priori control on the H1-norm of solutions
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Bourgain ’93 proved local well-posedness of NLS (in subcritical sense):

• in L2(T) for the cubic NLS (p = 1),

• in Hs(T), s > 0, for the quintic NLS (p = 2),

• in Hs(T), s > 1
2 −

1
p , for p ≥ 3

A priori upperbound on H1-norm of solution

=⇒ NLS is globally well-posed in H1(T)

For s > 1, there is no a priori upperbound on Hs -norm

except for cubic (p = 1) NLS ⇐= completely integrable

Goal: Fix s > 1. Establish upperbounds on growth of Hs -norms of solutions
(without using complete integrability if p = 1)

Motivation: Growth of Sobolev norms may be interpreted as a manifestation of
low-to-high frequency cascade, and thus establishing upper- and lower-bounds is a
physically relevant study.

Tadahiro Oh (Princeton University) Normal forms and upside-down I -method Sep. 03, 2010 3 / 29



Bourgain ’93 proved local well-posedness of NLS (in subcritical sense):

• in L2(T) for the cubic NLS (p = 1),

• in Hs(T), s > 0, for the quintic NLS (p = 2),

• in Hs(T), s > 1
2 −

1
p , for p ≥ 3

A priori upperbound on H1-norm of solution

=⇒ NLS is globally well-posed in H1(T)

For s > 1, there is no a priori upperbound on Hs -norm

except for cubic (p = 1) NLS ⇐= completely integrable

Goal: Fix s > 1. Establish upperbounds on growth of Hs -norms of solutions
(without using complete integrability if p = 1)

Motivation: Growth of Sobolev norms may be interpreted as a manifestation of
low-to-high frequency cascade, and thus establishing upper- and lower-bounds is a
physically relevant study.

Tadahiro Oh (Princeton University) Normal forms and upside-down I -method Sep. 03, 2010 3 / 29



Bourgain ’93 proved local well-posedness of NLS (in subcritical sense):

• in L2(T) for the cubic NLS (p = 1),

• in Hs(T), s > 0, for the quintic NLS (p = 2),

• in Hs(T), s > 1
2 −

1
p , for p ≥ 3

A priori upperbound on H1-norm of solution

=⇒ NLS is globally well-posed in H1(T)

For s > 1, there is no a priori upperbound on Hs -norm

except for cubic (p = 1) NLS ⇐= completely integrable

Goal: Fix s > 1. Establish upperbounds on growth of Hs -norms of solutions
(without using complete integrability if p = 1)

Motivation: Growth of Sobolev norms may be interpreted as a manifestation of
low-to-high frequency cascade, and thus establishing upper- and lower-bounds is a
physically relevant study.

Tadahiro Oh (Princeton University) Normal forms and upside-down I -method Sep. 03, 2010 3 / 29



Bourgain ’93 proved local well-posedness of NLS (in subcritical sense):

• in L2(T) for the cubic NLS (p = 1),

• in Hs(T), s > 0, for the quintic NLS (p = 2),

• in Hs(T), s > 1
2 −

1
p , for p ≥ 3

A priori upperbound on H1-norm of solution

=⇒ NLS is globally well-posed in H1(T)

For s > 1, there is no a priori upperbound on Hs -norm

except for cubic (p = 1) NLS ⇐= completely integrable

Goal: Fix s > 1. Establish upperbounds on growth of Hs -norms of solutions
(without using complete integrability if p = 1)

Motivation: Growth of Sobolev norms may be interpreted as a manifestation of
low-to-high frequency cascade, and thus establishing upper- and lower-bounds is a
physically relevant study.

Tadahiro Oh (Princeton University) Normal forms and upside-down I -method Sep. 03, 2010 3 / 29



Exponential bound

-By iterating local theory: ‖u(t + τ)‖Hs ≤ C‖u(t)‖Hs , we obtain

‖u(t)‖Hs . C1eC2|t|,

where C1, C2 depend on s, p, and u0

Polynomial bound: Bourgain ’96

-Suppose that there exists δ = δ(s, p) > 0 such that an improved iteration
bound holds:

‖u(t + τ)‖Hs ≤ ‖u(t)‖Hs + C‖u(t)‖1−δ
Hs

where τ and C depend on s, p, and u0.

=⇒ This implies

‖u(t)‖Hs . C (1 + |t|) 1
δ

where C = C (s, p, u0)

Staffilani ’97: (nonhomogeneous) cubic NLS with δ−1 = (s − 1)+
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Upside-down I -method: Sohinger ’10

- For (nonhomogeneous) cubic NLS (p = 1),

‖u(t)‖Hs . (1 + |t|) 1
2 s+

- For p ≥ 2,
‖u(t)‖Hs . (1 + |t|)2s+

- It seems that “s” can be improved to “s − 1” if one is more careful

Normal form reduction (NF reduction): Bourgain ’04

- For quintic NLS (p = 2),

‖u(t)‖Hs . (1 + |t|) 1
2 (s−1)+

- This idea can be applied to other powers. Colliander-Kwon-O ’10

For p ≥ 3,
‖u(t)‖Hs . (1 + |t|)2(s−1)+

For p = 1, the same as p = 2.
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Idea: Combine upside-down I -method and normal form reduction

Theorem Colliander-Kwon-O ’10

Fix s > 1. Let u0 in Hs(T), and u be the global solution to NLS with initial
condition u0.

(a) For p ≥ 3, we have

‖u(t)‖Hs . (1 + |t|)(s−1)+

improvement: 2(s − 1)+ =⇒ (s − 1)+

(b) For p = 2, we have

‖u(t)‖Hs . (1 + |t|) 1
2 (s−1)+

No improvement

(c) p = 1: Then, by explicitly computing the terms appearing in the first few
steps of NF reduction, we obtain

‖u(t)‖Hs . (1 + |t|) 4
9 (s−1)+.

improvement: 1
2
(s − 1)+ =⇒ 4

9
(s − 1)+

- Our argument is closely related to Bourgain ’94 on “NF reduction and
I -method” for establishing GWP of (quintic) NLS in low regularity setting
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Upside-down I -method: Fix s > 1.

D = Fourier multiplier operator with multiplier m : Z→ R, where

m(n) =

{
1, |n| ≤ N( |n|

N

)s−1
, |n| > N.

i.e. D is basically a differentiation operator of order s − 1.
Moreover, it satisfies

‖Dq‖H1 ≤ ‖q‖Hs ≤ Ns−1‖Dq‖H1 .

Suppose that we have
∣∣ d
dt H(Dq)(t)

∣∣ . N−β+ for |t| ≤ T , assuming

‖Dq(t)‖H1 . 1. Then, we have

‖Dq(t)‖2
H1 ∼ H(Dq(t)) ≤ H(Dq(0)) + CT N−β+, |t| ≤ T .

By choosing N ∼ T
1
β +, we can gurantee ‖Dq(t)‖H1 . 1 for |t| ≤ T .

=⇒ ‖q(t)‖Hs . Ns−1‖Dq(t)‖H1 . T
1
β (s−1)+, |t| ≤ T .

Therefore, we conclude that

‖q(t)‖Hs . (1 + |t|)
1
β (s−1)+.
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Write the Hamiltonian H as

H(q) = H(q, q̄) =
∑

n

n2|qn|2 +
∑

n1−n2+···−n2p+2=0

qn1 q̄n2 · · · qn2p+1 q̄n2p+2

=: H0(q) + N(q).

Differentiating in time, we obtain

d

dt
H(Dq) =

∂H

∂q
(Dq) · Dqt +

∂H

∂q̄
(Dq) · Dqt

= i
∑

n

m(n)2n2

(
q̄n
∂N

∂q̄n
(q)− qn

∂N

∂qn
(q)

)
+ i
∑

n

m(n)n2

(
qn
∂N

∂qn
(Dq)− q̄n

∂N

∂q̄n
(Dq)

)
+ i
∑

n

m(n)

(
∂N

∂qn
(Dq)

∂N

∂q̄n
(q)− ∂N

∂qn
(q)

∂N

∂q̄n
(Dq)

)
In the following, we apply the upside-down I -method after “simplifying” H into a
new Hamiltonian of the form

H(q) = H0(q)︸ ︷︷ ︸
same quadratic part

+ N (q).
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Normal form reduction

Normal form reduction is a sequence of symplectic transformations, transforming
the nonlinear part H1(q) =

∑
n1−n2+···−n2p+2=0 qn1 q̄n2 · · · qn2p+1 q̄n2p+2 of the

Hamiltonian into expressions involving only nearly-resonant monomials for the
form

qn1 q̄n2 · · · qn2r−1 q̄n2r

where n1 − n2 + · · ·+ n2r−1 − n2r = 0 and |D(n̄)| < K with

D(n̄) := n2
1 − n2

2 + · · ·+ n2
2r−1 − n2

2r

and some large K > 0, plus a (non-resonant) error.

Goal: Iterate this procedure so that the transformed Hamiltonian H consists of the
quadratic part H0 =

∑
n n2|qn|2, the (nearly) resonant part N0, and the error Nr :

H(q) = H0(q) +N0(q) +Nr (q).

(Then, we apply the upside-down I -method to H.)

Tadahiro Oh (Princeton University) Normal forms and upside-down I -method Sep. 03, 2010 9 / 29



Normal form reduction

Normal form reduction is a sequence of symplectic transformations, transforming
the nonlinear part H1(q) =

∑
n1−n2+···−n2p+2=0 qn1 q̄n2 · · · qn2p+1 q̄n2p+2 of the

Hamiltonian into expressions involving only nearly-resonant monomials for the
form

qn1 q̄n2 · · · qn2r−1 q̄n2r

where n1 − n2 + · · ·+ n2r−1 − n2r = 0 and |D(n̄)| < K with

D(n̄) := n2
1 − n2

2 + · · ·+ n2
2r−1 − n2

2r

and some large K > 0, plus a (non-resonant) error.

Goal: Iterate this procedure so that the transformed Hamiltonian H consists of the
quadratic part H0 =

∑
n n2|qn|2, the (nearly) resonant part N0, and the error Nr :

H(q) = H0(q) +N0(q) +Nr (q).

(Then, we apply the upside-down I -method to H.)
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Consider (a part of) a Hamiltonian obtained at some stage of this process:

H̃(q, q̄) =
∑

n1−n2+···−n2r =0

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r

Divide H̃ into the resonant part H̃0 and non-resonant part H̃1, according to{
resonant: |D(n̄)| ≤ K =⇒ H̃0

non-resonant: |D(n̄)| > K =⇒ H̃1.

Now, introduce a Lie transform Γ = ΓF to eliminate H̃1. Define F ∼ “D−1H̃1” by

F (q, q̄) =
∑

n1−n2+···−n2r =0
|D(n̄)|>K

c(n̄)

D(n̄)
qn1 q̄n2 · · · qn2r−1 q̄n2r .

Then, F satisfies the following homological equation:

{H0,F} = −H̃1,

where H0(q) =
∑

n n2|qn|2 and the Poisson bracket {·, ·} is defined by

{H1,H2} = i
∑

n

[
∂H1

∂qn

∂H2

∂q̄n
− ∂H1

∂q̄n

∂H2

∂qn

]
.

Note analogy with I -method & resonant decomposition by CKSTT ’08
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Consider a Hamiltonian flow associated to the Hamiltonian F :

qt = i
∂F

∂q̄
.

Let Γt = Γt(F ) denote the flow map generated by F at time t.

Lemma: Chain rule

Let Γt be as above. Then, for a smooth function G , we have

d

dt
(G ◦ Γt) = {G ,F} ◦ Γt .

Proof.
By Chain Rule, we have

d

dt
(G ◦ Γt) =

∂G

∂q
(q(t)) · qt +

∂G

∂q̄
(q(t)) · q̄t

= i
∂G

∂q
· ∂F

∂q̄
− i

∂G

∂q̄
· ∂F

∂q
= {G(q(t)),F (q(t))}

since ∂F
∂q̄

= ∂F
∂q

.
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Let Γ := Γ1. Then, by the Taylor series expansion of G ◦ Γt centered at t = 0,

G ◦ Γ =
∞∑

k=0

1

k!
{G ,F}(k),

where {G ,F}(k) denotes the k-fold Poisson bracket of G with F , i.e.

{G ,F}(k) := {· · · {G ,F},F}, · · · ,F}︸ ︷︷ ︸
k times

, {G ,F}(0) = G .

Suppose H = H0 + H̃. Then, the transformed Hamiltonian H ′ = H ◦ Γ is given by

H ′ = H ◦ Γ = H0 ◦ Γ + H̃0 ◦ Γ + H̃1 ◦ Γ

= H0 + H̃0 + H̃1 + {H0,F}︸ ︷︷ ︸
=0

+{H̃0,F}+ {H̃1,F}+ h.o.t.

Hence, we have eliminated the non-resonant part H̃1 by the Lie transform Γ.

=⇒ Define the resonant part H̃ ′0 and the non-resonant part H̃ ′1 of H ′ by

H̃ ′0 := H̃0 + resonant part of {H̃0,F}+ {H̃1,F}+ h.o.t.

H̃ ′1 := non-resonant part of {H̃0,F}+ {H̃1,F}+ h.o.t.
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Remarks:

At each step, the lowest degree among the monomials in the non-resonant
part increases at least by two, since deg F ≥ 4.

Γ acts boundedly on bounded subsets of Hs(T), s > 1
2 . From Sobolev

embedding, ∥∥∥∥∂F

∂q̄

∥∥∥∥
Hs

. sup
‖p‖

L2 =1

K−1
∑

n

|c(n̄)||pn1 ||qn2 | · · · |qn2r−1 ||qn2r |

. sup
‖p‖

L2 =1

‖p‖L2‖q‖L2‖q‖2r−2

H
1
2

+
≤ ‖q‖2r−1

H
1
2

+
.

Γ “preserves” L2- and H1-norms:

‖Γq‖L2 = ‖q‖L2 , ‖Γq‖H1 ∼ ‖q‖H1 .

(L2-norm preservation) By definition, we have

Γtq = q(t) = q(0) + i

∫ t

0

∂F

∂q̄
(q(t′))dt′,

Let M(q) = ‖q‖2
L2 =

∑
n |qn|2. Then, by Chain rule, we have

d

dt
M(q(t)) = {M(q(t)),F (q(t))} = 0.
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Goal: By a finite sequence of Lie transforms, we transform H into H of the form

H(q) = H0(q)︸ ︷︷ ︸
quadratic

+N0(q)︸ ︷︷ ︸
resonant

+Nr (q)︸ ︷︷ ︸
error

,

assuming that q = {qn}n∈Z satisfies the following L2- and H1-bounds:

‖q‖L2 ≤ C1,(L2)

‖q‖H1 ≤ C2.(H1)

Remark: Regard the phase space element q above as really Dq ∈ H1 for q ∈ Hs .

We need to define the “norm” ‖ · ‖ to measure a size of a Hamiltonian.

Given N (q, q̄) =
∑

n1−n2+···−n2r =0 c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r , define the “size” of N by

‖N‖ = sup
∗

∑
n

|c(n̄)||q(1)
n1
||q(2)

n2
| · · · |q(2r)

n2r
|

where the supremum is taken over factors q(j), 1 ≤ j ≤ 2r such that

all factors satisfy (L2)

all except at most two factors also satisfy (H1).

i.e. the supremum is taken over all the factors, allowing two exceptional ones.
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Proposition: “Algebra” property

Let H1 and H2 be homogeneous Hamiltonians. Then, we have

‖{H1,H2}‖ . ‖H1‖‖H2‖.

Idea of proof: It suffices to prove∥∥∥∥∑
n

∂H1

∂qn

∂H2

∂q̄n

∥∥∥∥ . ‖H1‖‖H2‖.

Consider three cases, depending on the location of the two exceptional factors.

(i) both exceptional factors appear in ∂H1/∂qn

(ii) exactly one exceptional factor appears in each of ∂H1/∂qn and ∂H2/∂q̄n

(iii) both exceptional factors appear in ∂H2/∂q̄n
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For fixed N (to be chosen in terms of T in the next section), we set K = Nδ.
Assume that at some stage of the process, the Hamiltonian is of the form

(*) H(q) =
∑

n

n2|qn|2 +N0(q) +N1(q) +Nr (q),

where there exists small δ > 0 such that

resonant part N0: |D(n̄)| ≤ Nδ

non-resonant part N1: |D(n̄)| > Nδ

remainder part Nr : ‖Nr‖ < N−C for some large C > 0

Moreover, we have ‖N0‖, ‖N1‖ . 1.

By Sobolev embedding along with (L2) and (H1), we have∣∣∣∣ ∑
n1−n2+···−n2p+2=0

qn1 q̄n2 · · · qn2p+1 q̄n2p+2

∣∣∣∣
≤ ‖q‖2

L2‖q‖2p
L∞ ≤ ‖q‖

2
L2‖q‖2p

H
1
2

+
. 1.

Hence, the initial Hamiltonian satisfies the above conditions.

=⇒ We proceed by induction with inductive hypothesis (*).
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Non-resonant part N1 is given by∑
n1−n2+···−n2r =0

|D(n̄)|>Nδ

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r .

As before, define F (q, q̄) =
∑

n1−n2+···−n2r =0

|D(n̄)|>Nδ

c(n̄)

D(n̄)
qn1 q̄n2 · · · qn2r−1 q̄n2r

such that {F ,H0} = N1. Then, we have

H′ = H ◦ Γ = H0 +N0 +N1

+ {H0,F}+ {N0,F}+ {N1,F}+ h.o.t. +Nr ◦ Γ

= H0 +N0 + {N0,F}+ {N1,F}+ h.o.t. +Nr ◦ Γ.

Since |D(n̄)| > Nδ, we have

‖F‖ ≤ N−δ‖N1‖ . N−δ

By Proposition Nr ◦ Γ is “small”: ‖Nr ◦ Γ‖ . ‖Nr‖ . N−C

Higher order terms with sufficiently high degrees are also small

⇐= new error part N ′r
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Remaing terms N:

N :=
M∑

k=1

1

k!
{N0, F}(k) +

M∑
k=1

1

k!
{N1, F}(k) +

M∑
k=2

1

k!
{H0, F}(k)

Proposition and ‖F‖ . N−δ

=⇒ ‖{N0,F}(k)‖ . N−kδ‖N1‖

=⇒ ‖N‖ . N−δ‖N1‖

Divide N into its resonant part N0 and its non-resonant part N1, and write the
new Hamiltonian H′ as

H′ = H0 +N ′0 +N ′1 +N ′r
where N ′0 := N0 + N0 with ‖N ′0‖ . 1 and

N ′1 := N1 with ‖N ′1‖ . N−δ‖N1‖

=⇒ By iterating the process sufficiently many times, we can hide non-resonant
part in error part
=⇒ By a finite sequence of Lie transforms, we obtain a new Hamiltonian H:

H(q) =
∑

n

n2|qn|2 +N0(q) +Nr (q),

where ‖N0‖ . 1 and ‖Nr‖ . N−C
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Upside-down I -method

Apply the upside-down I -method to the transformed Hamiltonian H = H0 +N .
Differentiating in time, we obtain

d

dt
H(Dq) =

∂H
∂q

(Dq) · Dqt +
∂H
∂q̄

(Dq) · Dqt

= −i
∑

n1−n2+···−n2r =0

c(n̄)R(n̄)qn1 q̄n2 · · · q̄n2r

+ i
∑

n1−n2+···−n2r =0

c(n̄)D(n̄)Dqn1Dqn2
· · · Dqn2r

+ i
∑

n

m(n)

(
∂N
∂qn

(Dq)
∂N
∂q̄n

(q)− ∂N
∂qn

(q)
∂N
∂q̄n

(Dq)

)
=: I + II + III,

where R(n̄) := m(n1)2n2
1 −m(n2)2n2

2 + · · · −m(n2r )2n2
2r

Note: I + II = 0 and III = 0 if supp q ⊂ [−N,N]

=⇒ we can assume that

max(|n1|, . . . , |n2r |) > N
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In the following, we assume that Dq satisfies both (L2) and (H1). Then, we have

‖P≥NDq‖Hσ . N−1+σ‖Dq‖H1 . N−1+σ(decay)

• Estimate on I:

N0-contribution: ⇐= worst term

Suppose n∗3 � N
δ
2 . In this case, it turns out

|R(n̄)| = |m(n1)2n2
1 −m(n2)2n2

2 + · · · −m(n2r )2n2
2r |

. m(n1)m(n2)n∗3 n∗4 .

By Hölder, Sobolev, and (decay), we have

| I | .
∑

n1−n2+···−n2r =0

|c(n̄)| ·m(n1)qn1 ·m(n2)q̄n2 · n
∗
3 n∗4 qn3 · · · q̄n2r

. ‖P&NDq‖2

H
1
2

+

∥∥|∂x | q
∥∥2

L2‖q‖
2r−4

H
1
2

+

. N−1+‖Dq‖2r
H1 . N−1+.

Nr -contribution: Use |R(n̄)| . m(n∗1 )2(n∗1 )2 and ‖Dq‖H1 . 1

=⇒ | I | . ‖Nr‖ < N−C
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Proof of Theorem (a)

Given u0 ∈ Hs , let Dq0 = Γ−1Du0. Then , we have∣∣ d

dt
H(Dq)(t)

∣∣ . N−1+ for |t| ≤ T ,

assuming ‖Dq(t)‖H1 . 1. Then, we have

‖Dq(t)‖2
H1 ∼ H(Dq(t)) ≤ H(Dq(0)) + CT N−1+, |t| ≤ T .

By choosing N ∼ T 1+, we can gurantee ‖Dq(t)‖H1 . 1 for |t| ≤ T .

=⇒ ‖u(t)‖Hs . Ns−1‖Du(t)‖H1 ∼ Ns−1‖Dq(t)‖H1 . T (s−1)+, |t| ≤ T .

Therefore, we conclude that

‖u(t)‖Hs . (1 + |t|)(s−1)+.
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Improvement for p ≤ 2: Theorem (b)

So far, we simply used Sobolev embedding.

=⇒ The basic idea for improvement when p ≤ 2 is to use the space-time estimate
to obtain improved spatial estimates.

Recall the L6-Strichartz estimate due to Bourgain ’93:

(L6) ‖e−it∆φ‖L6(T2) . CN‖φ‖L2 , supp φ̂ ⊂ [−N,N],

where CN = exp
(
C log N

log log N

)
� N0+. From (L6), one obtains

max
a∈Z

∣∣∣∣ ∑
n1−n2+···−n2r =0

D(n̄)=a

|c(n̄)||q(1)
n1
||q(2)

n2
| · · · |q(6)

n6
|
∣∣∣∣ . (n∗1 )0+

6∏
j=1

‖q(j)
nj
‖L2

by setting Q(j)(nj) = e itn2
j q

(j)
nj , j ≥ 2, and Q(1)(n1) = e−itae itn2

1 q
(1)
n1 .

Then, one inductively proves estimates for Hamiltonians with higher order
nonlinearity, which appear in the process of the normal form reduction.
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In the end, one obtains

(*) max
a∈Z

∣∣∣∣ ∑
n1−n2+···−n2r =0

D(n̄)=a

|c(n̄)||q(1)
n1
||q(2)

n2
| · · · |q(2r)

n2r
|
∣∣∣∣ . (n∗1 )0+

2r∏
j=1

‖q(j)
nj
‖L2 .

We had
∣∣ d
dtH(Dq)(t)

∣∣ . N−2+ for |t| ≤ T , except for ”‘worst term”:

N0-contribution of I .

By (*), we have

| I | . Nδ max
|a|≤Nδ

∑
n1−n2+···−n2r =0

D(n̄)=a

|c(n̄)| ·m(n1)qn1 ·m(n2)q̄n2 · n
∗
3 n∗4 qn3 · · · q̄n2r

. Nδ|P&NDq‖2
H0+

∥∥|∂x | q
∥∥2

L2‖q‖
2r−4
L2

. N−2+δ+‖Dq‖2r
H1 .

This provides an improvement.
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Cubic NLS: p = 1

For cubic NLS, we can improve the result further by explicitly computing the first
few terms appearing in the normal form reduction

Write the Hamiltonian H as

H(q) =
∑

n

n2|qn|2 +
∑

n1−n2+n3−n4=0

qn1 q̄n2qn3 q̄n4 =: H0(q) + H1(q).

First, divide H1 into the resonant part R and non-resonant part N ,
depending on D1(n̄) = 0 or 6= 0, where

D1(n̄) := n2
1 − n2

2 + n2
3 − n2

4 = −2(n1 − n2)(n3 − n2).

We further split R into two parts:

R =
∑

n1−n2+n3−n4=0
D1(n̄)=0

qn1 q̄n2qn3 q̄n4 = 2
∑
n1

∑
n3

|qn1 |
2|qn3 |

2 −
∑

n

|qn|4 =: R1 +R2.

By the conservation of the L2-norm, R1 = 2µ
∑

n |qn|2, with

µ = (2π)−1
∫
|u|2dx . By a direct computation, one easily sees that

{R1,F} = 0 for homogeneous polynomial F
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Write the Hamiltonian H as

H(q) =
∑

n

n2|qn|2 +
∑

n1−n2+n3−n4=0

qn1 q̄n2qn3 q̄n4 =: H0(q) + H1(q).

First, divide H1 into the resonant part R and non-resonant part N ,
depending on D1(n̄) = 0 or 6= 0, where

D1(n̄) := n2
1 − n2

2 + n2
3 − n2

4 = −2(n1 − n2)(n3 − n2).

We further split R into two parts:

R =
∑

n1−n2+n3−n4=0
D1(n̄)=0

qn1 q̄n2qn3 q̄n4 = 2
∑
n1

∑
n3

|qn1 |
2|qn3 |

2 −
∑

n

|qn|4 =: R1 +R2.

By the conservation of the L2-norm, R1 = 2µ
∑

n |qn|2, with

µ = (2π)−1
∫
|u|2dx . By a direct computation, one easily sees that

{R1,F} = 0 for homogeneous polynomial F
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As the first step of the normal form reduction, define F1 such that
{H0,F1} = −N . i.e.

F1 =
∑

n1−n2+n3−n4=0
n2 6=n1,n3

qn1 q̄n2qn3 q̄n4

−2(n1 − n2)(n3 − n2)
.

Let Γ1 be the Lie transform associated with F1. Then, we have

H ′ := H ◦ Γ1 = H0 +R1︸ ︷︷ ︸
=:H̃0

+R2 + {R2,F1}+ 1
2
{N ,F1}+ h.o.t.

where {R2,F1} = 2i(I0 − I0), with I0 given by

I0 =
∑

n1−n2+n3−n4=0
n2 6=n1,n3

qn1 q̄n2qn3 |qn4 |2q̄n4

(n1 − n2)(n3 − n2)

=
∑

n1−n2+n3−n4+n5−n6=0
n2 6=n1,n3
n4=n5=n6

qn1 q̄n2qn3 q̄n4qn5 q̄n6

(n1 − n2)(n3 − n2)
.
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Next, we introduce two more transformations to eliminate the “non-resonant”
part of {R2,F1} and 1

2{N ,F1}. Write

{R2,F1} = {R2,F1}(r) + {R2,F1}(nr)

{N ,F1} = {N ,F1}(r) + {N ,F1}(nr),

depending on |D2(n̄)| ≤ Nβ or |D2(n̄)| > Nβ for some β > 0 (to be chosen later),

where D2(n̄) is defined by

D2(n̄) := n2
1 − n2

2 + n2
3 − n2

4 + n2
5 − n2

6.

Now, define F2 and F3 such that

{H0,F2} = − 1
2
{N ,F1}(nr)

{H0,F3} = {R2,F1}(nr)
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Let Γ2 and Γ3 be the Lie transforms associated with F2 and F3. Then,

H ′′ : = H ◦ Γ1 ◦ Γ2 ◦ Γ3

= H0 +R1 +R2 + {R2,F1}(r) + 1
2{N ,F1}(r) + h.o.t.

with

{R2,F1}(r) = 2i(I1 − I1),

1
2
{N ,F1}(r) = 2i(I2 − I2),

where I1 is the resonant part of I0 and I2 is given by

I2 =
∑

n1−n2+n3−n4+n5−n6=0
n2 6=n1,n3
n5 6=n4,n6

|D2(n̄)|≤Nβ

qn1 q̄n2qn3 q̄n4qn5 q̄n6

(n1 − n2)(n3 − n2)
.

After this point, we perform the (usual) normal form reductions on the higher
order terms . In particular, we use |D(n̄)| ≥ Nδ or < Nδ to distinguish the
resonant and non-resonant terms.
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After a finite number of iterations, we obtain

H = H̃0 +R2 + {R2,F1}(r) + 1
2{N ,F1}(r) +N0 +Nr ,︸ ︷︷ ︸

= h.o.t.

where H̃0 := H0 +R1 =
∑

n(n2 + 2µ)|qn|2.

Higher order terms have an extra factor of N−β : |c(n̄)| < N−β

=⇒ larger β is better (more decay)

Sums {R2,F1}(r) and {N ,F1}(r) are restricted to |D2(n̄)| ≤ Nβ

=⇒ smaller β is better (fewer terms to sum)

{R2,F1}(r) and {N ,F1}(r) have (n1 − n2)(n3 − n2) in the denominators

=⇒ either (n1 − n2)(n3 − n2) is large or sum is restricted!!

This provides an improvement with β = 1
4 .
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Remarks and comments

For cubic NLS, further improvement can be probably achieved by computing
more terms in an explicit manner. However, the computation becomes very
cumbersome. Moreover, iterating such computation would require exploiting
fine (integrable) structure of cubic NLS. In such a case, one may as well use
uniform Hk -bounds directly obtained from integrability.

We plan to use normal form reduction and (upside-down) I -method on gKdV
for low regularity GWP as well as upperbounds on growth of high Sobolev
norms.

Can we combine normal form reduction with the idea in Takaoka-Tsutsumi
’04 and Nakanishi-Takaoka-Tsutsumi ’10 of reducing the nonlinear (nearly)
resonant effect to prove local well-posedness of a PDE?

In applying the I -method, one can add a correction term to non-resonant
part for improvement. Colliander-Keel Staffilani-Takaoka-Tao ’08. This can
be viewed as the first step of normal form reduction.

The idea used in Germain-Masmoudi-Shatah, Babin-Ilyin-Titi, Kwon-Oh, etc.
can be regarded as a version of normal form reduction.
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