The existence and non-existence of positive solutions of the nonlinear Schrodinger equations for one dimentional case Yohei Sato We consider the following Schrodinger equations: $$-\Delta u + (1 + b(x))u = f(u) \text{ in } \mathbf{R}^N, \quad u \in H^1(\mathbf{R}^N),$$ (*) where b(x) satisfies $1 + b(x) \ge 0$, $\lim_{|x| \to \infty} b(x) = 0$ and $\lim \sup_{|x| \to \infty} e^{\beta |x|} b(x) \le 0$ for some $\beta > 2$ and a typical example of our f(u) is u^p . In this talk, we mainly consider about one dimentional case N = 1. By the concentration compactness arguments, we see that (*) has at least a positive solution for the case $b < b_0$, here b is a mountain pass value of the functional corresponding to (*) and b_0 is a mountain pass value corresponding to the limiting problem $-\Delta u + u = f(u)$ in \mathbf{R}^N , $u \in H^1(\mathbf{R}^N)$. In this talk, we also consider the case $b = b_0$. When $N \ge 2$ and $b = b_0$, we can also show the existence of the positive solution of (*) by the Bahri-Li's minimax procedure. When N = 1 and $b = b_0$, depending on the b(x), (*) has at least a positive solution or no non-trivial solutions.