Sharp global well posedness for the non-elliptic derivative Schrödinger equation

BAOXIANG WANG*

*LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract. We consider the following DNLS:

$$iu_t - \Delta_{\pm} u = F(u, \bar{u}, \nabla u, \nabla \bar{u}), \quad u(0, x) = u_0(x),$$
(0.1)

where $\Delta_{\pm} = \partial_{x_1}^2 \pm ... \pm \partial_{x_n}^2$. $F(z) = O(|z|^{\alpha})$ with $\alpha \ge 3$ for $n \ge 2$ and $\alpha \ge 4$ for n = 1. Applying the Gabor frame, we get some time-global dispersive estimates for the Schrödinger semi-group in anisotropic Lebesgue spaces. By resorting to the smooth effect estimate together with the dispersive estimates in anisotropic Lebesgue spaces, we show that DNLS has a unique global solution if the initial data in modulation spaces and weighted Sobolev spaces are sufficiently small.

^{*}Email: wbx@math.pku.edu.cn