Analyticity for the Navier-Stokes equations

Baoxiang Wang (Peking University)

Abstract

We study the Cauchy problem for the incompressible Navier-Stokes equations

 $u_t - \Delta u + u \cdot \nabla u + \nabla p = 0$, div u = 0, $u(0, x) = u_0$.

We show the analyticity of the local solutions of the Navier-Stokes equation with any initial data in critical Besov spaces $\dot{B}_{p,q}^{n/p-1}(\mathbb{R}^n)$ with $1 , <math>1 \leq q \leq \infty$ and the solution is global if u_0 is sufficiently small in $\dot{B}_{p,q}^{n/p-1}(\mathbb{R}^n)$. In the case $p = \infty$, the analyticity for the local solutions of the Navier-Stokes equation with any initial data in modulation space $M_{\infty,1}^{-1}(\mathbb{R}^n)$ is obtained. Similar results also hold for the generalized Navier-Stokes equation.